Computational Structural Mechanics and Dynamics

Assignment 2
Zahra Rajestari

Assignment 2.1

1. Identify the symmetry and antisymmetry lines in the two-dimensional problems illustrated in the figure.

Figure 1: symmetry and antisymmetry lines
2. Having identified those symmetry/antisymmetry lines, state whether it is possible to cut the complete structure to one half or one quarter before laying out a finite element mesh. Then draw a coarse FE mesh indicating, with rollers or fixed supports, which kind of displacement BCs you would specify on the symmetry or antisymmetry lines.

Figure 2: FE mesh

Assignment 2.2

1. The plate structure shown in the figure is loaded and deforms in the plane of the paper. The applied load at D and the supports at I and N extend over a fairly narrow area. List what you think are the likely "trouble spots" that would require a locally finer finite element mesh to capture high stress gradients. Identify those spots by its letter and a reason.

Figure 3: inplane bent plate

Spots N, I and D need mesh refinement because they are support points and tolerating critical loads. Spots B, F, M, L, K and J have to have refined mesh because they are corners regarded as critical geometry points because of changes happening in area.

Assignment 2.3

1. A tapered bar element of length l and areas Ai and Aj with A interpolated as:

$$
A=A_{i}(1-\xi)+A_{j} \xi
$$

and constant density ρ rotates on a plane at uniform angular velocity $\omega(\mathrm{rad} / \mathrm{sec})$ about node i. Taking axis x along the rotating bar with origin at node i , the centrifugal axial force is $q(x)=\rho A \omega^{2} x$ along the length in which x is the longitudinal coordinate $x=x^{e}$.

Find the consistent node forces as functions of $\rho, A_{i}, A_{j}, \omega$ and l, and specialize the result to the prismatic bar $A=A_{i}=A_{j}$.

The consistency nodal force vector is definded as:

$$
\begin{gathered}
f_{\text {ext }}=\int_{0}^{1} q\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] l d \xi \\
q=\rho A \omega^{2} x=\rho A \omega^{2} \xi l=\rho \omega^{2} \xi l\left(A_{i}(1-\xi)+A_{j} \xi\right)
\end{gathered}
$$

After normalize the axial centrifugal force:

$$
\begin{aligned}
f_{e x t} & =\int_{0}^{1} \rho l^{2} \omega^{2} \xi\left(A_{i}(1-\xi)+A_{j} \xi\right)\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] d \xi \\
& =\rho l^{2} \omega^{2} \int_{0}^{1}\left[\begin{array}{c}
A_{i}\left(\xi^{3}-2 \xi^{2}+\xi\right)+A_{j}\left(\xi^{2}-\xi^{3}\right) \\
A_{i}\left(\xi^{2}-\xi^{3}\right)+A_{j} \xi^{3}
\end{array}\right] d \xi \\
& =\rho l^{2} \omega^{2}\left[\begin{array}{c}
A_{i}\left(\xi^{4} / 4-2 / 3 \xi^{3}+\xi^{2} / 2\right)+A_{j}\left(\xi^{3} / 3-\xi^{4} / 4\right) \\
A_{i}\left(\xi^{3} / 3-\xi^{4} / 4\right)+A_{j} \xi^{4} / 4
\end{array}\right] \\
& =\rho l^{2} \omega^{2}\left[\begin{array}{c}
A_{i}(1 / 4-2 / 3+1 / 2)+A_{j}(1 / 3-1 / 4) \\
A_{i}(1 / 3-1 / 4)+A_{j} 1 / 4
\end{array}\right] \\
& =\rho l^{2} \omega^{2}\left[\begin{array}{c}
A_{i} / 12+A_{j} / 12 \\
A_{i} / 12+A_{j} / 4
\end{array}\right] \longrightarrow f_{\text {ext }}=\rho l^{2} \omega^{2}\left[\begin{array}{c}
A / 6 \\
A / 3
\end{array}\right]
\end{aligned}
$$

