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Assignment 1 

The finite element model for the problem is shown in the following: 

 
 

Nodes, Elements, DoFs Applied loads and supports 

 

As it is obvious from the figures, the structure has 4 nodes each of which has 2 degrees of freedom 

meaning that the whole structure has 8 DoFs. Therefore, the global stiffness matrix is 8 by 8 and the 

global equation can be written as the following: 

𝑓 = [𝑓𝑥1 𝑓𝑦1 𝑓𝑥2 𝑓𝑦2 𝑓𝑥3 𝑓𝑦3 𝑓𝑥4 𝑓𝑦4]
𝑇

 

𝑢 = [𝑢𝑥1 𝑢𝑦1 𝑢𝑥2 𝑢𝑦2 𝑢𝑥3 𝑢𝑦3 𝑢𝑥4 𝑢𝑦4]
𝑇

 

𝐾 =

[
 
 
 
 
 
 
 
 
𝐾𝑥1𝑥1 𝐾𝑥1𝑦1
𝐾𝑦1𝑥1 𝐾𝑦1𝑦1

𝐾𝑥1𝑥2 𝐾𝑥1𝑦2
𝐾𝑦1𝑥2 𝐾𝑦1𝑦2

𝐾𝑥2𝑥1 𝐾𝑥2𝑦1
𝐾𝑦2𝑥1 𝐾𝑦2𝑦1

𝐾𝑥2𝑥2 𝐾𝑥2𝑦2
𝐾𝑦2𝑥2 𝐾𝑦2𝑦2

𝐾𝑥1𝑥3 𝐾𝑥1𝑦3
𝐾𝑦1𝑥3 𝐾𝑦1𝑦3

𝐾𝑥1𝑥4 𝐾𝑥1𝑦4
𝐾𝑦1𝑥4 𝐾𝑦1𝑦4

𝐾𝑥2𝑥3 𝐾𝑥2𝑦3
𝐾𝑦2𝑥3 𝐾𝑦2𝑦3

𝐾𝑥2𝑥4 𝐾𝑥2𝑦4
𝐾𝑦2𝑥4 𝐾𝑦2𝑦4

𝐾𝑥3𝑥1 𝐾𝑥3𝑦1
𝐾𝑦3𝑥1 𝐾𝑦3𝑦1

𝐾𝑥3𝑥2 𝐾𝑥3𝑦2
𝐾𝑦3𝑥2 𝐾𝑦3𝑦2

𝐾𝑥4𝑥1 𝐾𝑥4𝑦1
𝐾𝑦4𝑥1 𝐾𝑦4𝑦1

𝐾𝑥4𝑥2 𝐾𝑥4𝑦2
𝐾𝑦4𝑥2 𝐾𝑦4𝑦2

𝐾𝑥3𝑥3 𝐾𝑥3𝑦3
𝐾𝑦3𝑥3 𝐾𝑦3𝑦3

𝐾𝑥3𝑥4 𝐾𝑥3𝑦4
𝐾𝑦3𝑥4 𝐾𝑦3𝑦4

𝐾𝑥4𝑥3 𝐾𝑥4𝑦3
𝐾𝑦4𝑥3 𝐾𝑦4𝑦3

𝐾𝑥4𝑥4 𝐾𝑥4𝑦4
𝐾𝑦4𝑥4 𝐾𝑦4𝑦4]

 
 
 
 
 
 
 
 

 

𝑓8×1 = 𝐾8×8 × 𝑢8×1 

with f and u defined as nodal forces and nodal displacements, respectively. 

In order to form the global equation, we need to find the elemental stiffness matrices. The member 

stiffness equation for an element in arbitrary angle 𝜑, is obtained using the following procedure: 



Consider the bar of length L, area A and 

Young modulus E as shown in the 

figure. For this bar the elemental 

stiffness matrix can be written 

according to the nodal forces and 

displacements: 

[
 
 
 
 
𝑓𝑥̅1
𝑓𝑦̅1

𝑓𝑥̅2
𝑓𝑦̅2]
 
 
 
 

=
𝐸𝐴

𝐿
[

1    0
0    0

−1 0
   0 0

−1 0
0 0

   
1 0
0 0

] [

𝑢̅𝑥1
𝑢̅𝑦1
𝑢̅𝑥2
𝑢̅𝑦2

] 

while the bar has two nodes and each node has two 

DoFs, the stiffness matrix is 4 by 4. 

Now, consider a 2-noded element with arbitrary 

angle 𝜑 with respect to x axis. The nodal 

displacements and forces both need transformation 

to standard axis. These transformations are done 

using the following transformation matrix 

𝑇(𝑒) = [

𝑐  𝑠
−𝑠  𝑐

  
0  0
0  0

  
0   0
0   0

𝑐 𝑠
−𝑠 𝑐

] 

where 𝑐 = 𝑐𝑜𝑠(𝜑) and 𝑠 = 𝑠𝑖𝑛(𝜑) such that 

𝑢̅(𝑒) = 𝑇(𝑒)𝑢(𝑒) 

𝑓(𝑒) = (𝑇(𝑒))
𝑇
𝑓̅(𝑒) 

Therefore, the transformed elemental stiffness matrix for any bar of angle 𝜑 is 

(𝑇(𝑒))
𝑇
𝐾̅(𝑒)𝑇(𝑒) =

𝐸(𝑒)𝐴(𝑒)

𝐿(𝑒)
[
      𝑐

2      𝑐𝑠
𝑐𝑠      𝑠2

  −𝑐
2 −𝑐𝑠

−𝑐𝑠 −𝑠2

  −𝑐
2  −𝑐𝑠

−𝑐𝑠  −𝑠2
    𝑐

2   𝑐𝑠
𝑐𝑠    𝑠2

] 

In our problem, we have three bars whose angles, based on the figure, are written as the following 



 

Element Number Angle (𝜑) Trigonometric Relations and Element Length 

(1) 𝜑 =
𝜋

2
+ 𝛼 

cos(𝜑) = −sin (𝛼) ; sin(𝜑) = 𝑐𝑜𝑠 (𝛼) 

𝐿(𝑒) =
𝐿

cos(𝛼)
 

(2) 𝜑 =
𝜋

2
 

cos(𝜑) = 0 ; sin(𝜑) = 1 

𝐿(𝑒) = 𝐿 

(3) 𝜑 =
𝜋

2
− 𝛼 

cos(𝜑) = sin (𝛼) ; sin(𝜑) = 𝑐𝑜𝑠 (𝛼) 

𝐿(𝑒) =
𝐿

cos(𝛼)
 

Therefore, taking into account that the bars have the same A and E, the element stiffness matrix for 

each bar is written in terms of sin (𝛼) and cos(𝛼) as: 

𝐾(1) =
𝐸𝐴

𝐿
[
  𝑐𝑠

2  −𝑠𝑐2

−𝑠𝑐2   𝑐3
 −𝑐𝑠

2   𝑠𝑐2

𝑠𝑐2 −𝑐3

 −𝑐𝑠
2  𝑠𝑐2

𝑠𝑐2  −𝑐3
   𝑐𝑠2  −𝑠𝑐2

−𝑠𝑐2   𝑐3

] 

𝐾(2) =
𝐸𝐴

𝐿
[

0    0
0     1

 
0  0
0 −1

0    0
0  −1

 
0    0
0    1

] 

𝐾(3) =
𝐸𝐴

𝐿
[
  𝑐𝑠

2     𝑠𝑐2

𝑠𝑐2     𝑐3
 −𝑐𝑠

2  −𝑠𝑐2

−𝑠𝑐2 −𝑐3

 −𝑐𝑠
2 −𝑠𝑐2

−𝑠𝑐2  −𝑐3
  𝑐𝑠

2    𝑠𝑐2

𝑠𝑐2     𝑐3

] 

In order to proceed with the assembly process, we should write the expanded element stiffness equations 

and then reconnect members by compatibility rule. The expanded element stiffness equations are 



[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(1)

𝑓𝑦1
(1)

𝑓𝑥2
(1)

𝑓𝑦2
(1)

𝑓𝑥3
(1)

𝑓𝑦3
(1)

𝑓𝑥4
(1)

𝑓𝑦4
(1)
]
 
 
 
 
 
 
 
 
 
 
 

=
𝐸𝐴

𝐿

[
 
 
 
 
 
 
 
𝑐𝑠2 −𝑠𝑐2

−𝑠𝑐2 𝑐3
−𝑐𝑠2 𝑠𝑐2

𝑠𝑐2 −𝑐3

−𝑐𝑠2 𝑠𝑐2

𝑠𝑐2 −𝑐3
𝑐𝑠2 −𝑠𝑐2

−𝑠𝑐2 𝑐3

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0     0
0     0

            
0     0
0     0

0     0
0     0

            
0     0
0     0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(2)

𝑓𝑦1
(2)

𝑓𝑥2
(2)

𝑓𝑦2
(2)

𝑓𝑥3
(2)

𝑓𝑦3
(2)

𝑓𝑥4
(2)

𝑓𝑦4
(2)
]
 
 
 
 
 
 
 
 
 
 
 

=
𝐸𝐴

𝐿

[
 
 
 
 
 
 
 
 0   0
 0   1

  
0 0
0 0

 
0   0
0   0

  
0 0
0 0

0 0
0 −1

0 0
0 0

0   0
0   0

0 0
0 0

0  0
0 −1

 
0 0
0 0

0    0
0    0

 
0 0
0 0

0   0
0   1

0 0
0 0

0   0
0   0

0 0
0 0 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(3)

𝑓𝑦1
(3)

𝑓𝑥2
(3)

𝑓𝑦2
(3)

𝑓𝑥3
(3)

𝑓𝑦3
(3)

𝑓𝑥4
(3)

𝑓𝑦4
(3)
]
 
 
 
 
 
 
 
 
 
 
 

=
𝐸𝐴

𝐿

[
 
 
 
 
 
 
   
𝑐𝑠2 𝑠𝑐2

𝑠𝑐2 𝑐3
      
0 0
0 0

      
0     0
0     0

       
0 0
0 0

 
 0 0
0 0

−𝑐𝑠2 𝑠𝑐2

−𝑠𝑐2 −𝑐3

0 0
0 0

   
0 0
0 0

0     0
0     0

 
0 0
0 0

−𝑐𝑠2 −𝑠𝑐2

−𝑠𝑐2 −𝑐3
 
0 0
0 0

0 0
0 0

     
0 0
0 0

0 0
0 0

    𝑐𝑠
2 𝑠𝑐2

𝑠𝑐2 𝑐3 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

From equilibrium rule, taking into account the expanded element stiffness equations, we have: 

𝑓 = 𝑓(1) + 𝑓(2) + 𝑓(3) = (𝐾(1) +𝐾(2) + 𝐾(3))𝑢 = 𝐾𝑢 

Therefore the master stiffness equation is: 



[
 
 
 
 
 
 
 
 
𝑓𝑥1
𝑓𝑦1
𝑓𝑥2
𝑓𝑦2
𝑓𝑥3
𝑓𝑦3
𝑓𝑥4
𝑓𝑦4]
 
 
 
 
 
 
 
 

=
𝐸𝐴

𝐿

[
 
 
 
 
 
 
 
2𝑐𝑠2 0

1 + 2𝑐3
−𝑐𝑠2 𝑠𝑐2

𝑠𝑐2 −𝑐3

𝑐𝑠2 −𝑠𝑐2

𝑐3

     

0 0
0 −1

−𝑐𝑠2 𝑠𝑐2

−𝑠𝑐2 −𝑐3

0 0
0 0

0 0
0 0

𝑠𝑦𝑚𝑚.

0 0
1

      
0 0
0 0

𝑐𝑠2 𝑠𝑐2

𝑐3 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

The 5th row and column corresponds the horizontal displacement of node 3. The horizontal forces are 

taken by nodes 1 and 4 which means node 3 doesn’t tolerate any horizontal reaction therefore it can’t 

move in horizontal direction.  

The boundary conditions and applied loads for this problem are: 

Displacement BC 𝑢𝑥2 = 𝑢𝑦2 = 𝑢𝑥3 = 𝑢𝑦3 = 𝑢𝑥4 = 𝑢𝑦4 = 0 

Force BC 
𝑓𝑥1 = 𝐻 
𝑓𝑦1 = −𝑃 

 We strike out the rows and columns which pertain to known displacement. Therefore, the reduced 

stiffness equation is 

[
𝐻
−𝑃

] =
𝐸𝐴

𝐿
[2𝑐𝑠

2 0
0 1 + 2𝑐3

] [
𝑢𝑥1
𝑢𝑦1

] ⇒

{
 

 𝑢𝑥1 =
𝐻𝐿

2𝑐𝑠2𝐸𝐴

𝑢𝑦1 = −
𝑃𝐿

(1 + 2𝑐3)𝐸𝐴

 

If 𝐻 ≠ 0 𝑎𝑛𝑑 𝛼 → 0⇒ 𝑢𝑥1→∞ 𝑎𝑛𝑑 𝑢𝑦1 = −
𝑃𝐿

3𝐸𝐴
 . This means that the solution 

blows up which is because of the fact that a pin cannot tolerate bending moment 

but as we have horizontal force a moment appears at the pin. And also the 

vertical displacement is then divided between the three bars which are now in 

contact due to 𝛼 = 0 . . 

If 𝛼 →
𝜋

2
⇒ 𝑢𝑥1→∞ 𝑎𝑛𝑑 𝑢𝑦1 = −

𝑃𝐿

𝐸𝐴
  .  

The axial forces are then found as posteriori process. In order to do this we have to do the following 

steps: 

1st element:  

1) 𝑢̅(1) = 𝑇(1)𝑢(1)⇒ 𝑢̅(1) = [

−𝑠 𝑐
−𝑐 −𝑠

  
0  0
0  0

  
0   0
0   0

−𝑠 𝑐
−𝑐 −𝑠

]

[
 
 
 
 

𝐻𝐿

2𝑐𝑠2𝐸𝐴

−
𝑃𝐿

(1+2𝑐3)𝐸𝐴

0
0 ]

 
 
 
 

=
𝐿

𝐸𝐴

[
 
 
 
 
−𝐻

2𝑐𝑠
−

𝑃𝑐

1+2𝑐3

−𝐻

2𝑐𝑠
+

𝑃𝑠

1+2𝑐3

0
0 ]

 
 
 
 

 

2) Elongation: 𝑑(1) = 𝑢̅𝑥2
(1) − 𝑢̅𝑥1

(1) = 0 − (
𝐿

𝐸𝐴
(
−𝐻

2𝑐𝑠
−

𝑃𝑐

1+2𝑐3
)) 

3) Axial force: 𝐹(1) =
𝐸𝐴

𝐿/𝑐
𝑑(1) =

𝐻

2𝑠
+

𝑃𝑐2

1+2𝑐3
 



2nd element:  

1) 𝑢̅(2) = 𝑇(2)𝑢(2)⇒ 𝑢̅(2) = [

0  1
−1  0

  
0  0
0  0

  
0   0
0   0

0 1
−1 0

]

[
 
 
 
 

𝐻𝐿

2𝑐𝑠2𝐸𝐴

−
𝑃𝐿

(1+2𝑐3)𝐸𝐴

0
0 ]

 
 
 
 

=
𝐿

𝐸𝐴

[
 
 
 
 −

𝑃

1+2𝑐3

−𝐻

2𝑐𝑠2

0
0 ]

 
 
 
 

 

2) Elongation: 𝑑(2) = 𝑢̅𝑥2
(2) − 𝑢̅𝑥1

(2) = 0 − (
𝐿

𝐸𝐴
(0 −

𝑃

1+2𝑐3
)) 

3) Axial force: 𝐹(2) =
𝐸𝐴

𝐿
𝑑(2) =

𝑃

1+2𝑐3
 

3rd element:  

1) 𝑢̅(3) = 𝑇(3)𝑢(3)⇒ 𝑢̅(3) = [

𝑠  𝑐
−𝑐  𝑠

  
0  0
0  0

  
0   0
0   0

𝑠 𝑐
−𝑐 𝑠

]

[
 
 
 
 

𝐻𝐿

2𝑐𝑠2𝐸𝐴

−
𝑃𝐿

(1+2𝑐3)𝐸𝐴

0
0 ]

 
 
 
 

=
𝐿

𝐸𝐴

[
 
 
 
 
𝐻

2𝑐𝑠
−

𝑃𝑐

1+2𝑐3

−𝐻

2𝑐𝑠
−

𝑃𝑠

1+2𝑐3

0
0 ]

 
 
 
 

 

2) Elongation: 𝑑(3) = 𝑢̅𝑥2
(3) − 𝑢̅𝑥1

(3) = 0 − (
𝐿

𝐸𝐴
(
𝐻

2𝑐𝑠
−

𝑃𝑐

1+2𝑐3
)) 

3) Axial force: 𝐹(3) =
𝐸𝐴

𝐿/𝑐
𝑑(3) =

−𝐻

2𝑠
+

𝑃𝑐2

1+2𝑐3
 

If 𝐻 ≠ 0 as ∝→ 0 we can see from the solution of 𝐹(1) and 𝐹(3) that sin (∝) → 0 which is the 

denominator of one term in 𝐹(1) and 𝐹(3) which means 𝐹(1)and 𝐹(3)  → ∞. So the solution blows up 

which is because as the 3 bars are in the same position the whole structure is not restricted in x 

direction however a force of value H is applied to it. 

  



Assignment 2 

 

Element Number Angle (𝜑) Trigonometric Relations and Element Length 

(1) 𝜑 = 0 
EA = 100  

𝐿(𝑒) = 10 

(2) 𝜑 =
𝜋

2
 

EA = 50  

𝐿(𝑒) = 10 

(3) 𝜑 = 𝛼 
EA = 200√2  

𝐿(𝑒) = 5√2 

(4) 𝜑 = 𝜋 + 𝛼 
EA = 200√2  

𝐿(𝑒) = 5√2 
 

The globalized element stiffness matrix can be written as the following according to the truss example: 

𝐾(1) = [

10 0
0 0

−10 0
0 0

−10 0
0 0

10 0
0 0

] 

𝐾(2) = [

0 0
0 5

0 0
0 −5

0 0
0 −5

0 0
0 5

] 

𝐾(3) = [

20 20
20 20

−20 −20
−20 −20

−20 −20
−20 −20

20 20
20 20

] 

𝐾(4) = [

20 20
20 20

−20 −20
−20 −20

−20 −20
−20 −20

20 20
20 20

] 



The expanded element stiffness equations are written as: 

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(1)

𝑓𝑦1
(1)

𝑓𝑥2
(1)

𝑓𝑦2
(1)

𝑓𝑥3
(1)

𝑓𝑦3
(1)

𝑓𝑥4
(1)

𝑓𝑦4
(1)
]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
10 0
0 0

−10 0
0 0

−10 0
0 0

10 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(2)

𝑓𝑦1
(2)

𝑓𝑥2
(2)

𝑓𝑦2
(2)

𝑓𝑥3
(2)

𝑓𝑦3
(2)

𝑓𝑥4
(2)

𝑓𝑦4
(2)
]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 5

0 0
0 0

0 0
0 0

0 0
0 −5

0 0
0 0

0 0
0 0

0 0
0 −5

0 0
0 0

0 0
0 0

0 0
0 5

0 0
0 0

0 0
0 0

0 0
0 0 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(3)

𝑓𝑦1
(3)

𝑓𝑥2
(3)

𝑓𝑦2
(3)

𝑓𝑥3
(3)

𝑓𝑦3
(3)

𝑓𝑥4
(3)

𝑓𝑦4
(3)
]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
20 20
20 20

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

−20 −20
−20 −20

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

−20 −20
−20 −20

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

20 20
20 20 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

 



[
 
 
 
 
 
 
 
 
 
 
 𝑓𝑥1
(4)

𝑓𝑦1
(4)

𝑓𝑥2
(4)

𝑓𝑦2
(4)

𝑓𝑥3
(4)

𝑓𝑦3
(4)

𝑓𝑥4
(4)

𝑓𝑦4
(4)
]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

20 20
20 20

−20 −20
−20 −20

−20 −20
−20 −20

20 20
20 20 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

The master stiffness equation based on equilibrium is found as: 

[
 
 
 
 
 
 
 
 
𝑓𝑥1
𝑓𝑦1
𝑓𝑥2
𝑓𝑦2
𝑓𝑥3
𝑓𝑦3
𝑓𝑥4
𝑓𝑦4]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
30 20
20 20

−10 0
0 0

−10 0
0 0

10 0
0 0

0 0
0 0

−20 −20
−20 −20

0 0
0 0

0 0
0 −5

0 0
0 0

0 0
0 −5

−20 −20
−20 −20

0 0
0 0

20 20
20 25

−20 −20
−20 −20

−20 −20
−20 −20

40 40
40 40 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑢𝑥1
𝑢𝑦1
𝑢𝑥2
𝑢𝑦2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 
 
 
 

 

The boundary conditions and applied loads are: 

Displacement BC 𝑢𝑥1 = 𝑢𝑦1 = 𝑢𝑦2 = 0 

Force BC 
𝑓𝑥2 = 0 
𝑓𝑥3 = 2 
𝑓𝑦3 = 1 

 

Applying these condition to the master equation and reducing the system based on the boundary 

conditions on displacement yield: 

[
 
 
 
 
0
2
1
0
0]
 
 
 
 

=

[
 
 
 
10 0 0 0 0

0
0
0
0

20
20
−20
−20

20
25
−20
−20

−20
−20
40
40

−20
−20
40
40 ]

 
 
 

[
 
 
 
 
𝑢𝑥2
𝑢𝑥3
𝑢𝑦3
𝑢𝑥4
𝑢𝑦4]

 
 
 
 

 

The determinant of the reduced stiffness matrix is zero (or the last rows of reduced stiffness matrix are 

dependent) therefore it is singular. Adding a node in the middle of the bar makes the structure instable. 


