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Assignment 1

The finite element model for the problem is shown in the following:
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As it is obvious from the figures, the structure has 4 nodes each of which has 2 degrees of freedom
meaning that the whole structure has 8 DoFs. Therefore, the global stiffness matrix is 8 by 8 and the
global equation can be written as the following:
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with f and u defined as nodal forces and nodal displacements, respectively.

In order to form the global equation, we need to find the elemental stiffness matrices. The member
stiffness equation for an element in arbitrary angle ¢, is obtained using the following procedure:




Consider the bar of length L, area A and
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while the bar has two nodes and each node has two
DofFs, the stiffness matrix is 4 by 4.

Now, consider a 2-noded element with arbitrary
angle ¢ with respect to x axis. The nodal
displacements and forces both need transformation
to standard axis. These transformations are done
using the following transformation matrix
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where ¢ = cos(¢) and s = sin(¢) such that
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Therefore, the transformed elemental stiffness matrix for any bar of angle ¢ is
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In our problem, we have three bars whose angles, based on the figure, are written as the following



Element Number | Angle (@) | Trigonometric Relations and Element Length
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Therefore, taking into account that the bars have the same A and E, the element stiffness matrix for
each bar is written in terms of sin(«) and cos(«) as:
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In order to proceed with the assembly process, we should write the expanded element stiffness equations
and then reconnect members by compatibility rule. The expanded element stiffness equations are



— (1).

x1

&

fy1 cs? —sc? —cs? s¢2 0 0 0 O7[%)
x(zl) —sc? 3 sc2 —=c3 0 0 0 O0f%n
1) —cs? sc?  cs? —sc2 0 0 0 Of|"x2
Tyz :E sc2 —c3 —sc2 3 0 0 0 Off%e
WIT L 0 0 0 0 0 0 0 Ofl*s
D 0 0 0 0 0 0 0 0f%s
fy3 0 0 0 0 0 0 0 0}jUxs
() 0 0 0 0 0 0 0 o0lluyl
fya |
— (2)_

x1

@

i 0 0 000 0 0 0%

-(2) 01 00 0 -1 0 0]

@ 0 0 00 0 0 0 OfWe

2’| _EAlo 0 0 0 0 0 0 ofwe
@|=7]o 0 00 0 0 0 0flus

o 00 -1 00 0 1 0 0f/%s

fys 0 0 0 0 0 0 0 Of|luw

@ o 0 00 0 0 0 0lluy,l

x4
A
.

x1

3

fy(l) [ cs?  sc? 0 0 0 0 —cs? sc? Ux1
(3) scz ¢3 0 0 0 0 —sc2 —c3%n
@ 0 0 00 00 0 0 ||
2| _EAl 0 0 0 0 0 0 0 0 ||we
7L 0 0 00 00 0 0 [|us
o 0 0 00 00 0 0 [|%s
fys —cs? —sc? 0 0 0 O cs? sc? ||Uxa
(43) ——SC2 —C3 0 0 0 0 SC2 C3 Uy
X
£

From equilibrium rule, taking into account the expanded element stiffness equations, we have:
F=fW4f@4rB = (K(l) + K@ 4 K(3))u = Ku

Therefore the master stiffness equation is:
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The 5% row and column corresponds the horizontal displacement of node 3. The horizontal forces are
taken by nodes 1 and 4 which means node 3 doesn’t tolerate any horizontal reaction therefore it can’t
move in horizontal direction.

The boundary conditions and applied loads for this problem are:

Displacement BC | Uy, = Uyy = Uyg = Uyz = Uyy = Uy =0
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We strike out the rows and columns which pertain to known displacement. Therefore, the reduced
stiffness equation is
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blows up which is because of the fact that a pin cannot tolerate bending moment

but as we have horizontal force a moment appears at the pin. And also the
vertical displacement is then divided between the three bars which are now in
contact duetoa = 0‘ .
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The axial forces are then found as posteriori process. In order to do this we have to do the following

steps:

1°t element:
[ HL -l i _ Pc
—S c | 2CS2EA | [ch 1+263]
PL -H Ps

0 0
_ _ —c -S 0 0 |j———— LZZ
1) u(l) = T(l)u(l) = u(l) = 0 0 —s e (1+263)EA = a 2cs 112¢3
0 0 —c sl 0 | 0

0 0
i - _ L (—H p
2) Elongation: d® = uxz(l) - uxl(l) -V (EA (ch N 1+2Cc3))

EA jay _ H | _Pc?

3) Axial force: F( =
L/c 25 1+2¢3




2" element:

r | [
0 1 0 O | ZCSZEA | [ 1+2c3]
~ B -1 0 0 0 PL L —-H
1) a® =T7@y@ = 5@ = 0 0 0 1 | (1+2¢3)EA al 2cs? }

0
0 0 0
l 0 J 0
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If H # 0 as x— 0 we can see from the solution of F( and F® that sin(<) = 0 which is the
denominator of one term in F(1 and F®) which means FMand F®) - co. So the solution blows up

which is because as the 3 bars are in the same position the whole structure is not restricted in x
direction however a force of value H is applied to it.



Assignment 2

(2)

Element Number | Angle (¢) | Trigonometric Relations and Element Length
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The globalized element stiffness matrix can be written as the following according to the truss example:
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The expanded element stiffness equations are written as:
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The master stiffness equation based on equilibrium is found as:
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The boundary conditions and applied loads are:
Displacement BC | Uy = Uy = Uy, =0

fx2 =0
Force BC frz =2

fy3=1

Applying these condition to the master equation and reducing the system based on the boundary
conditions on displacement yield:
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The determinant of the reduced stiffness matrix is zero (or the last rows of reduced stiffness matrix are
dependent) therefore it is singular. Adding a node in the middle of the bar makes the structure instable.



