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Assingment 1

a)

The general form of the elemental stiffness matrix is given by:

K(e) =

(
EA

L

)e 
c2 sc −c2 −sc
sc s2 −sc −s2
−c2 −sc c2 sc
−sc −s2 sc s2

 (1)

Where c = cos(ϕ) and s = sin(ϕ), and ϕ is the angle between the horizontal axis of the global coordinate
system and the element axial line.

Evaluation of elemental stiffness matrices for the structure:

Element 1:

For element 1 we have:
ϕ = π

2 + α, thus: c = cosϕ = cos(π2 + α) = −sinα and s = sinϕ = sin(π2 + α) = cosα. Further L(1) = L
cosα

From this result, equation (1), for element 1, can be written as:

K(1) = cos(α)

(
EA

L

)
sin(α)2 −cos(α)sin(α) −sin(α)2 cos(α)sin(α)

cos(α)2 cos(α)sin(α) −cos(α)2

sin(α)2 −cos(α)sin(α)
Symm. cos(α)2

 (2)

Writing sinα = s and cosα = c, equation (2) becomes:

K(1) =

(
EA

L

)
cs2 −c2s −cs2 c2s

c3 c2s −c3
cs2 −c2s

Symm. c3

 (3)
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Element 2:

For element 2 we have:
ϕ = π

2 , thus: c = cosϕ = cos(π2 ) = 0 and s = sinϕ = sin(π2 ) = 1. Further L(2) = L
From this result, equation (1), for element 2, can be written as:

K(2) =

(
EA

L

)
0 0 0 0

1 0 −1
0 0

Symm. 1

 (4)

Element 3:

For element 3 we have:
ϕ = π

2 − α, thus: c = cosϕ = cos(π2 − α) = sinα and s = sinϕ = sin(π2 − α) = cosα. Further L(3) = L
cosα

From this result, equation (1), for element 3, can be written as:

K(3) = cos(α)

(
EA

L

)
sin(α)2 cos(α)sin(α) −sin(α)2 −cos(α)sin(α)

cos(α)2 −cos(α)sin(α) −cos(α)2

sin(α)2 cos(α)sin(α)
Symm. cos(α)2

 (5)

Writing sinα = s and cosα = c, equation (5) becomes:

K(3) =

(
EA

L

)
cs2 c2s −cs2 −c2s

c3 −c2s −c3
cs2 c2s

Symm. c3

 (6)

Assembling global stiffness matrix

The expanded stiffness equations for element 1 are:

f
(1)
x1

f
(1)
y1

f
(1)
x2

f
(1)
y2

f
(1)
x3

f
(1)
y3

f
(1)
x4

f
(1)
y4


=

(
EA

L

)


cs2 −c2s −cs2 c2s 0 0 0 0
c3 c2s −c3 0 0 0 0

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
0 0 0

0 0
Symm. 0





u
(1)
x1

u
(1)
y1

u
(1)
x2

u
(1)
y2

u
(1)
x3

u
(1)
y3

u
(1)
x4

u
(1)
y4


(7)

The expanded stiffness equations for element 2 are:

f
(2)
x1

f
(2)
y1

f
(2)
x2

f
(2)
y2

f
(2)
x3

f
(2)
y3

f
(2)
x4

f
(2)
y4


=

(
EA

L

)


0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
1 0 0

0 0
Symm. 0





u
(2)
x1

u
(2)
y1

u
(2)
x2

u
(2)
y2

u
(2)
x3

u
(2)
y3

u
(2)
x4

u
(2)
y4


(8)
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The expanded stiffness equations for element 3 are:

f
(3)
x1

f
(3)
y1

f
(3)
x2

f
(3)
y2

f
(3)
x3

f
(3)
y3

f
(3)
x4

f
(3)
y4


=

(
EA

L

)


cs2 c2s 0 0 0 0 −cs2 −c2s
c3 0 0 0 0 −c2s −c3

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

cs2 c2s
Symm. c3





u
(3)
x1

u
(3)
y1

u
(3)
x2

u
(3)
y2

u
(3)
x3

u
(3)
y3

u
(3)
x4

u
(3)
y4


(9)

From the application of compatibility on displacements and equilibrium of forces in each nodes, the upper
indexes can be dropped and the stiffness matrices on equations (7), (8) and (9) can be summed-up leading
to the following:



fx1

fy1
fx2

fy2
fx3

fy3
fx4

fy4


=

(
EA

L

)


(cs2 + cs2) (−c2s+ c2s) −cs2 c2s 0 0 −cs2 −c2s
(c3 + 1 + c3) c2s −c3 0 −1 −c2s −c3

cs2 −c3 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
Symm. c3





ux1

uy1
ux2

uy2
ux3

uy3
ux4

uy4


(10)

Thus, the global (master) stiffness matrix (K) is given by:

K =



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c3 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
Symm. c3


(11)

Given the orientation of element 2 (along global y direction), and the fact that node 3 is not being shared
with any other element,no forces in x direction at this node (fx3 = 0) can exist, as expected for an axial
loaded element. Thus, the whole 5th row must be zero to satisfy. Its worth to recall that the K5j component
of the stiffness matrix relates the force and the 5th D.O.F. (ux3

in this case) with the displacement of the
jth D.O.F.

b)

Appling the following set of B.C. on forces and displacements: fx1 = H; fy1 = −P ; uxi = uyi = 0 for
i = 2, 3, 4., the reduced (modified) stiffness system becomes:(

EA

L

)[
2cs2 0

0 1 + 2c3

]{
ux1

uy1

}
=

{
H
−P

}
(12)

c)

From equation (12) we obtain the displacements:

ux1
=

HL

2EA

1

cs2
(13)
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uy1 =
−PL
EA

1

1 + 2c3
(14)

Limit case: α→ 0

lim
α→0

ux1
=

HL

2EA
lim
α→0

1

cs2
=∞

lim
α→0

uy1 =
−PL
EA

lim
α→0

1

1 + 2c3
=
−PL
3EA

When α→ 0 for H 6= 0, ux1
→∞. This is explained by the fact that the modified stiffness matrix (equation

(12)) becomes singular. In a physical point of view, there will not be any element resisting loads in x
direction, thus force in x direction and the momentum equilibrium can not be satisfied and the structure
becomes a mechanism. The result for uy1 is expected, as the 3 bars will be aligned each resisting an axial of
load -P/3 in global y direction.

Limit case: α→ π/2

lim
α→π/2

ux1
=

HL

2EA
lim
α→0

1

cs2
=∞

lim
α→π/2

uy1 =
−PL
EA

lim
α→0

1

1 + 2c3
=
−PL
EA

The infinity value for ux1
found in this case is only due to the length (Le) of elements 2 and 3 that will

become infinity due to the way they were defined (L/cosα). If they are kept finite (e.g., Keeping their lenght
constant while α is changed) this singularity is vanished. The result for uy1 is expected as now only one
element will be resisting the axial load -P in global y direction.

d)

The general form of the elemental Transformation matrix is given by:

T(e) =


c s 0 0
−s c 0 0
0 0 c s
0 0 −s c

 (15)

Where c = cos(ϕ) and s = sin(ϕ).

Evaluation of elemental axial forces

Element 1

With cosϕ = −sinα = −s and sinϕ = cosα = c, we obtain.

T(1) =


−sinα cosα 0 0
−cosα sinα 0 0

0 0 −sinα cosα
0 0 −cosα −sinα

 =


−s c 0 0
−c s 0 0
0 0 −s c
0 0 −c −s

 (16)

The displacement in the local axis is given by:

u(1) = T(1)u(1) = T(1)


ux1

uy1
0
0

 =


−sux1

+ cuy1
−cux1

+ suy1
0
0

 (17)
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The element 1 elongation (axial direction) is:

d(1) = u(1)x2
− u(1)x1

= sux1
− cuy1 (18)

Thus, from equations (13), (14) and (18) the force axial force in element 1 is given by:

F (1) =
EA

L(1)
d(1) =

EA

L
(sux1 − cuy1) =

H

2s
+

Pc2

1 + 2c3
(19)

Element 2

With cosϕ = cos(π/2) = 0 and sinϕ = sin(π/2) = 1, we obtain.

T(2) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 (20)

The displacement in the local axis is given by:

u(2) = T(2)u(2) = T(2)


ux1

uy1
0
0

 =


uy1
−ux1

0
0

 (21)

The element 2 elongation (axial direction) is:

d(2) = u(2)x3
− u(2)x1

= −uy1 (22)

Thus, from equations (13), (14) and (22) the force axial force in element 1 is given by:

F (2) =
EA

L(2)
d(2) =

EA

L
(−uy1) =

P

1 + 2c3
(23)

Element 3

With cosϕ = sinα = s and sinϕ = cosα = c, we obtain.

T(1) =


sinα cosα 0 0
−cosα sinα 0 0

0 0 sinα cosα
0 0 −cosα sinα

 =


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s

 (24)

The displacement in the local axis is given by:

u(3) = T(3)u(3) = T(3)


ux1

uy1
0
0

 =


sux1 + cuy1
−cux1 + suy1

0
0

 (25)

The element 3 elongation (axial direction) is:

d(3) = u(3)x4
− u(3)x1

= −sux1
− cuy1 (26)

Thus, from equations (13), (14) and (26) the force axial force in element 1 is given by:

F (3) =
EA

L(3)
d(3) =

EA

L
(−sux1

− cuy1) =
−H
2s

+
Pc2

1 + 2c3
(27)

F (1) and F (2) →∞ when α→ 0 because when α increases both axial forces must increase in order to balance
the horizontal load H, as those forces projection in x direction is reduced with the increasement of α. For
α = 0, the limit case where those bars do not exert forces on x direction is reached and the reduced stiffness
matrix becomes singular (Mechanism behavior).
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Assingment 2

Each element of this ”new” truss, proposed by Dr.Who, will have the following physical properties.

Element Length EA
1 10 100
2 10 50

3 5
√

2 200
√

2

4 5
√

2 200
√

2

Table 1: Elements physical properties

Evaluation of elemental stiffness matrices for the structure:

Element 1:

For element 1 we have:
ϕ = 0, thus: c = cosϕ = 1 and s = sinϕ = 0.From this result, equation (1), for element 1, can be written as:

K(1) = 10


1 0 −1 0

0 0 0
1 0

Symm. 0

 (28)

Element 2:

For element 2 we have:
ϕ = π/2, thus: c = cosϕ = 0 and s = sinϕ = 1.From this result, equation (1), for element 2, can be written
as:

K(2) = 5


0 0 0 0

1 0 −1
0 0

Symm. 1

 (29)

Elements 3 and 4:

For element 2 we have:
ϕ = π/4, thus: c = cosϕ =

√
2
2 and s = sinϕ =

√
2
2 .From this result, equation (1), for elements 3 and 4, can

be written as:

K(3) = K(4) = 20


1 1 −1 −1

1 −1 −1
1 1

Symm. 1

 (30)

Assembling global stiffness matrix

The expanded stiffness equations for element 1 are:

f
(1)
x1

f
(1)
y1

f
(1)
x2

f
(1)
y2

f
(1)
x3

f
(1)
y3

f
(1)
x4

f
(1)
y4


=



10 0 −10 0 0 0 0 0
0 0 0 0 0 0 0

10 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
Symm. 0





u
(1)
x1

u
(1)
y1

u
(1)
x2

u
(1)
y2

u
(1)
x3

u
(1)
y3

u
(1)
x4

u
(1)
y4


(31)
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The expanded stiffness equations for element 2 are:

f
(2)
x1

f
(2)
y1

f
(2)
x2

f
(2)
y2

f
(2)
x3

f
(2)
y3

f
(2)
x4

f
(2)
y4


=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
5 0 −5 0 0

0 0 0 0
5 0 0

0 0
Symm. 0





u
(2)
x1

u
(2)
y1

u
(2)
x2

u
(2)
y2

u
(2)
x3

u
(2)
y3

u
(2)
x4

u
(2)
y4


(32)

The expanded stiffness equations for element 3 are:

f
(3)
x1

f
(3)
y1

f
(3)
x2

f
(3)
y2

f
(3)
x3

f
(3)
y3

f
(3)
x4

f
(3)
y4


=



20 20 0 0 0 0 −20 −20
20 0 0 0 0 −20 −20

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

20 20
Symm. 20





u
(3)
x1

u
(3)
y1

u
(3)
x2

u
(3)
y2

u
(3)
x3

u
(3)
y3

u
(3)
x4

u
(3)
y4


(33)

The expanded stiffness equations for element 4 are:

f
(4)
x1

f
(4)
y1

f
(4)
x2

f
(4)
y2

f
(4)
x3

f
(4)
y3

f
(4)
x4

f
(4)
y4


=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

20 20 −20 −20
20 −20 −20

20 20
Symm. 20





u
(4)
x1

u
(4)
y1

u
(4)
x2

u
(4)
y2

u
(4)
x3

u
(4)
y3

u
(4)
x4

u
(4)
y4


(34)

From the application of compatibility on displacements and equilibrium of forces in each nodes, the upper
indexes can be dropped and the stiffness matrices on equations (31), (32),(33) and (34) can be summed-up
leading to the following:

fx1

fy1
fx2

fy2
fx3

fy3
fx4

fy4


=



30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

40 40
Symm. 40





ux1

uy1
ux2

uy2
ux3

uy3
ux4

uy4


(35)

Appling the following set of B.C. on forces and displacements: fx3
= 2; fy3 = 1;fx2

= fx4
= fy4 = 0;

ux1
= uy1 = uy2 = 0, the reduced (modified) stiffness system becomes:

10 0 0 0 0
0 20 20 −20 −20
0 20 25 −20 −20
0 −20 −20 40 40
0 −20 −20 40 40




ux2

ux3

uy3
ux4

uy4

 =


0
2
1
0
0

 (36)
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The modified stiffness matrix(K̂) of equation (36) has the two last lines and rows linearly dependent on

each other, which leads to a rank of 4 (rank(K̂) < dim(K̂)), thus, |K̂| = 0, and the solution goes to infinity
(singular). The two linearly dependent equations are the equations that relates the forces fx4

and fy4 with
the displacements in those two elements sharing node 4 (element 3 and element 4). As those two forces are
equal (Because 2 equations have same coefficients) the resultant force is acting along those two elements
(as expected for axially loaded member). Thus, any external load acting o node 4 having a component
in a perpendicular direction to the members orientation (non axial load) would not face any resistance,
and under such circumstance the structure is unstable. Adding and extra element sharing node 4 would
recover the structure stability,as last two rows and columns will turn linear independent, leading to leading
to rank(K̂) = dim(K̂) = 5.However it will reduce the structure degree of determinacy as one more unknown
is added to the problem. Other approach could be constrain one of the D.O.F of node 4, thus one of the
lines of the modified system of equation can be eliminated leading to rank(K̂) = dim(K̂) = 4.
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