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Assignment 1.1 
 
On “The Direct Stiffness Method” 
 
Consider the truss problem defined in the figure 1.1. All geometric and material 
properties: L, α, E and A, as well as the applied forces P and H are to be kept as 
variables. This truss has 8 degrees of freedom, with six of them removable by the fixed-
displacement conditions at nodes 2, 3 and 4. This structure is statically indeterminate as 
long as α ≠ 0. 
 

 
Figure 1.1.- Truss structure. Geometry and mechanical features 

 
 
  



1. Show that the master stiffness equations are, 
 

 
 
in which c = cosα and s = sinα. Explain from physics why the 5th row and column 
contain only zeros. 

 
2. Apply the BC’s and show the 2-equation modified stiffness system. 
 
3. Solve for the displacements ux1 and uy1. Check that the solution makes physical 

sense for the limit cases α → 0 and α → π/2. Why does ux1 “blow up” if H≠0 and 
α→0? 

 
4. Recover the axial forces in the three members. Partial answer: F(3) = –H/(2s) + 

Pc2/(1+2c3). Why do F(1) and F(3) “blow up” if H≠0 and α→0? 
 
5. Dr. Who proposes “improving” the result for the example truss of the 1st lesson by 

putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided 
in two different members: (3) 1-4 and (4) 3-4. His “reasoning” is that more is 
better. Try Dr. Who’s suggestion by hand computations and verify that the solution 
“blows up” because the modified master stiffness is singular. Explain physically. 

 
 
 
Assignment 1.2 
 
Dr. Who proposes “improving” the result for the example truss of the 1st lesson by 
putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided in 
two different members: (3) 1-4 and (4) 3-4. His “reasoning” is that more is better. Try 
Dr. Who’s suggestion by hand computations and verify that the solution “blows up” 
because the modified master stiffness is singular. Explain physically. 
 
 
 
Date of Assignment: 5 / 02 / 2018 
Date of Submission:  12 / 02 / 2018 
 
The assignment must be submitted as a pdf file named As1-Surname.pdf to the 
CIMNE virtual center. 
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1.a

Data Given:

The general stiffness matrix of any element can be written as follows (as derived in the
lecture.)
Here, ϕ is the angle at which the element is inclined with respect to the x-axis.
To avoid confusion, the notation is followed
a = cosϕ, b = sinϕ, s = sin ∝, c = cos ∝

Ke =
EeAe

Le


b2 ab −b2 −ab
ab a2 −ab −a2
−b2 −ab b2 ab
−ab −a2 ab a2


For element 1 ϕ = π/2+ ∝

∴ a = cos(π/2+ ∝) = −sin ∝= −s, b = sin(π/2+ ∝) = cos ∝= c

K(1) =
EA

L


s2c −sc2 −s2c sc2

−sc2 c3 sc2 −c3
−s2c sc2 s2c −sc2
sc2 −c3 −sc2 c3


For element 2 ϕ = π/2

∴ a = cosϕ = 0, b = sinϕ = 1
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K(2) =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1


For element 3 ϕ = π/2− ∝

∴ a = cos(π/2− ∝) = sin ∝= s, b = sin(π/2− ∝) = cos ∝= c

K(3) =
EA

L


s2c sc2 −s2c −sc2
sc2 c3 −sc2 −c3
−s2c −sc2 s2c sc2

−sc2 −c3 sc2 c3


Computing Global Stiffness Matrix

f = f(1) + f
(2)

+ f
(3)

= [K(1) +K(2) +K(3)]u = Ku

Expanding elemental stiffness matrices

K(1) =
EA

L



s2c −sc2 −s2c sc2 0 0 0 0
−sc2 c3 sc2 −c3 0 0 0 0
−s2c sc2 s2c −sc2 0 0 0 0
sc2 −c3 −sc2 c3 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



K(2) =
EA

L



0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



K(3) =
EA

L



s2c sc2 0 0 0 0 −s2c −sc2
sc2 c3 0 0 0 0 −sc2 −c3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−s2c −sc2 0 0 0 0 s2c sc2

−sc2 −c3 0 0 0 0 sc2 c3


Global system of equations

EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
0 1 + 2c3 c2s −c3 0 −1 −c2s −c3
−cs2 c2s cs2 −cs2 0 0 0 0
c2s −c3 −c2s c3 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
−cs2 −c2s 0 0 0 0 cs2 c2s
−c2s −c3 0 0 0 0 c2s c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
fx2
fy2
fx3
fy3
fx4
fy4


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All coefficient of K involving x3 are zero. Therefore, it can be said that no horizontal force
would appear on node 3 upon prescribing a displacement in any direction at any node of the
structure. In fact, its easy to see that fx3 = 0 and horizontal reaction forces only appear at
node 2 and 4. This fact is directly related withe symmetry of the structure. Also, there is no
reaction at node 3 as in our model it is assumed that only axial forces are acting on the elements.

1.b

Applying boundary conditions and obtaining modified stiffness matrix.

Boundary conditions are as follows
ux2 = uy2 = ux3 = ux3 = uy3 = ux4 = uy4 = 0

EA

L

[
2cs2 0
0 1 + 2c3

] [
ux1
uy1

]
=

[
H
−P

]
1.c

Solving the above equations for ux1 and uy1

ux1 =
HL

2cs2EA
uy1 =

PL

(1 + 2c3)EA

To check if the solution makes physical sense for given limit cases.

Limit case ∝→ 0 ⇒ c→ 1 s→ 0

Thus uy =
−PL
3EA

and this makes sense as this displacement corresponds with the case of a

single ba fixed at one end, with a vertical load applied at th free end and with axial stiffness
3AE

L
.

If H 6= 0, the solution blowsup as ux →∞. As s→ 0, the reduced stiffness matrix is singular.
In this case the structure is in fact a mechanism and as the support allows free rotation, the
solution blows up.
Even though the support didn’t allow any rotation, the solution would still fail as the truss model
used for the analysis does not account for any bending resistance. It just includes axial effects.

Limit case ∝→ π/2 ⇒ c→ 0 s→ 1

Thus, uy =
−PL
EA

and this makes sense as it corresponds with the case of an unique ba with

axial stiffness
EA

L
, fixed at one end and free at the other end.

For this case, the length of bars 1 and 3 tends to the ∞ (L1,3 =
L

c
) and thus they don’t show

any axial stiffness.
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1.d

Recovering axial forces in the three members.

Element 1

Global displacement u(1) =


ux1
uy1
ux2
uy2

 =


ux1
uy1
0
0



Local Displacement u(1) = T (1)u(1) =


−s c 0 0
−c −s 0 0
0 0 −s c
0 0 −c −s



ux1
uy1
0
0

=

−ux1.s+ uy1.c
−ux1.c− uy1.s

0
0


On simplification we get,

Elongation d(1) =
HL

2csEA
+

PLc

(1 + 2c3)EA

Axial force F (1) =
H

2s
+

Pc2

1 + 2c3

Element 2

Global displacement u(2) =


ux1
uy1
ux3
uy3

 =


ux1
uy1
0
0



Local Displacement u(2) = T (2)u(2) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



ux1
uy1
0
0

=

uy1
−ux1
0
0


On simplification we get,

Elongation d(2) = ux3 − ux1 = −uy1 =
PL

(1 + 2c3)EA

Axial force F (2) =
P

1 + 2c3

Element 3

Global displacement u(3) =


ux1
uy1
ux4
uy4

 =


ux1
uy1
0
0



Local Displacement u(3) = T (3)u(3) =


s c 0 0
−c −s 0 0
0 0 s c
0 0 −c −s



ux1
uy1
0
0

=

ux1.s+ uy1.c
−ux1.c+ uy1.s

0
0


On simplification we get,

Elongation d(3) = u
(3)
x2 − u

(3)
x1 = −ux1s− uy1c =

−HLs
2cs2EA

+
PLc

(1 + 2c3)EA

Axial force F (1) =
−H
2s

+
Pc2

1 + 2c3
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Limit case ∝→ 0, H 6= 0
Again, as ∝→ 0⇒ c→ 1 s→ 0

This case is like considering a single bar with axial stiffness
3EA

L
. In fact, the value of the

inertial force would be F = P
As ∝→ 0, both F (1) and F (3) tend to infinity.
For the case H 6= 0
Due to the idealized truss model is too simple as it only considers axial loads on truss members
with no bending resistance. This case is in fact some kind of mechanism.

2

As per Dr. Who, for ’improving’ the result of the example from lesson 1, one extra node has
been added midway between node 1 and 3.So that it is subdivided into two different members
1− 4 (element 3) and 3− 4 (element 4).
Member stiffness matrix in global coordinates
c = cosϕ, s = sinϕ

K(e)=
E(e)A(e)

L(e)


c2 sc −c2 −sc
sc s2 −sc −s2
−c2 −sc c2 sc
−sc −s2 sc s2


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Element 1 ϕ = 0→ cosϕ = c = 1; sinϕ = s = 0

K(1) =
100

10


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 =


10 0 −10 0
0 0 0 0
−10 0 10 0
0 0 0 0


Element 2 ϕ = π/2→ cosϕ = c = 0; sinϕ = s = 1

K(2) =
50

10


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 =


0 0 0 0
0 5 0 −5
0 0 0 0
0 −5 0 5


Element 3 ϕ = π/4→ cosϕ = c = 1/

√
2 =
√
2/2; sinϕ = s = 1/

√
2 =
√
2/2

K(3) =
200
√
2

5
√
2


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 =


20 20 −20 −20
20 20 −20 −20
−20 −20 20 20
−20 −20 20 20


Element 4 ϕ = 3π/4→ cosϕ = c = −1/

√
2 = −

√
2/2; sinϕ = s = −1/

√
2 = −

√
2/2

K(3) =
200
√
2

5
√
2


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 =


20 20 −20 −20
20 20 −20 −20
−20 −20 20 20
−20 −20 20 20


f = f(1) + f

(2)
+ f

(3)
+ f

(4)
= [K(1) +K(2) +K(3) +K(4)]u = Ku

Expanding the elemental stiffness matrices for obtaining the global stiffness matrix.

K(1) =



10 0 −10 0 0 0 0 0
0 0 0 0 0 0 0 0
−10 0 10 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



K(2) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 5 0 −5 0 0
0 0 0 0 0 0 0 0
0 0 0 −5 0 5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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K(3) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 20 20 −20 −20
0 0 0 0 20 20 −20 −20
0 0 0 0 −20 −20 20 20
0 0 0 0 −20 −20 20 20



K(4) =



20 20 0 0 0 0 −20 −20
20 20 0 0 0 −20 −20
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−20 −20 0 0 0 0 20 20
−20 −20 0 0 0 20 20


Global system of equation Ku = f

30 20 −10 0 0 0 −20 −20
20 20 0 0 0 0 −20 −20
−10 0 −10 0 0 0 0 0
0 0 0 5 0 −5 0 0
0 0 0 0 0 0 0 0
0 0 0 −5 20 25 −20 −20
−20 −20 0 0 −20 −20 40 40
−20 −20 0 0 −20 −20 40 40





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



fx1
fy1
fx2
fy2
fx3
fy3
fx4
fy4


Boundary conditions are as follows:

ux1 = uy1 = uy1 =0
fx2 = fx4 = fy4 = 0
fx3 =2
fy3 =1

After Introducing the boundary condition, the global syste of equations is reduced as follows:
−10 0 0 0 0
0 20 20 −20 −20
0 20 25 −20 −20
0 −20 −20 40 40
0 −20 −20 40 40



ux2
ux3
uy3
ux4
uy4

=

0
2
1
0
0


It is easy to realize that the stiffness matrix of reduced system is singular, as the fourth and

fifth columns are equal. Therefore det[Kred] =0 and the system of equations is not compatible
and there is no solution. That is there is no way for the mathematical model to react to the
applied forces.
Physically, this is due to the fact that the structure is not fully constrained in space. It is like the
structure is ’floating’ in the x-y plane. Or we can even say this is a four bar chain mechanism.
In order to solve this a compatibility equation at joint 4 may be imposed. Also, another element
between 2 and 4 can be added to make the truss stable.
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