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Introduction

The report has been divided into two parts. Part I deals with the analysis of the Rate

independent model and Part II deals with the analysis of the Rate dependent model. The

rate independent non-symmetric tension compression continuum damage model and the rate

independent tension only continuum damage model are implemented in MATLAB to analyse

the stress state and the evolution of the elastic domain for the Plane strain case. For the rate

dependent model, the effects of strain rate, viscous coefficient and time integration parameter

(α) on the stress path in the stress space and stress-strain plot are analysed.

Rate Independent Model

Tension Only Model

The damage surface in the stress space for a tension only model is shown in the Figure. 1.

As seen in the figure, the damage surface is infinite in the compressive domain, implying

that the material is infinitely elastic under compression, but it has a finite damage surface

under tension.
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Figure 1: Tension only damage surface

Linear Hardening/Softening

To understand the effect of Linear Hardening/Softening we consider a test case(I) as shown

in Figure. 2 with load states :
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Figure 2: Load state for Tension only model
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For linear hardening, the Hardening modulus(H) is taken to be 0.1 and the r0 value

is found to be 1.4. Figure. 3 and Figure. 4 show the path in the stress space and the

corresponding plot between hardening variable(q) and strain like variable(r). As shown in

Figure.3a and 4a, the damage surface expands as the material hardens while it shrinks for a

softening material. Figures 3b and 4b show the linear variation of q with respect to r.

Figure 3: Linear Hardening stress path and corresponding q vs r

Figure 4: Linear Softening stress path and corresponding q vs r

3



Exponential Hardening/Softening

The same test case as for the Linear Hardening is chosen. The minimum value that q can take

is assumed to be qmin = 1.42×10−6 and the maximum value is taken to be qmax = r0+2. The

value of A for the exponential model is assumed to be 0.4. The qmax has been exaggerated

to clearly see the exponential behavior in the stress strain plot.

Figure 5: Exponential Hardening stress path and corresponding q vs r

Figure 6: Exponential Softening stress path and corresponding q vs r
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With these constant values defined, Figure. 5 and Figure. 6 show the path in the stress

space and the corresponding plot between hardening variable(q) and strain like variable(r).

As shown in Figure.5a and 6a, the damage surface expands as the material hardens while it

shrinks for a softening material. Figures 3b and 4b show the exponential variation of q with

respect to r.

Verification of the Model

3 cases of stress increments are chosen to assess the correctness of the implementation. The

increments are chosen as: α = 300, β = 200 and γ = 400. As the effects of linear and

exponential hardening/softening has already been discussed, linear hardening with H = 0.1

is chosen for all the 3 cases.

1. Case one is uniaxial loading and unloading with σ̄2 = 0 and σ̄1 given by :

∆σ̄
(1)
1 = α

∆σ̄
(2)
1 = −β

∆σ̄
(3)
1 = −γ

The path in the stress space is shown in the Figure. 7 and the corresponding stress

(σ1) vs strain ((ε1) is shown in Figure. 8. As seen in Figure. 7 during the first stress

increment(marked by numbers in pink) the material is loaded elastically until it reached

the damage surface. Loading beyond that leads to the expansion of the damage surface.

During the second stress increment(marked by numbers in red) the material is unloaded

elastically and during the third stress increment(marked by numbers in black) the

material is again loaded elastically until it reached the new damage surface after which

the damage surface further expands.

The material behavior can also be analysed from the Stress1-Strain1 plot( Figure. 8

). Initially the material is loaded until its elastic limit (numbers 1-8), beyond which

it undergoes linear hardening as seen by the change in the slope (8-11). During the
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second stress increment, the material is elastically unloaded (11-18) and during the

third increment the material is elastically loaded until the new elastic limit (18-22)

beyond which it undergoes linear hardening (22-26).

Figure 7: Path in the stress space

Figure 8: Stress1 strain1 plot

2. Case 2 is a combination of uniaxial loading and biaxial loading and unloading, given

by :

∆σ̄
(1)
1 = α ∆σ̄

(1)
2 = 0
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(2)
2 = −β
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(3)
2 = γ
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The path in the stress space is shown in the Figure 9 and the corresponding norm

stress vs norm strain is shown in Figure 10.

Figure 9: Path in the stress space

Figure 10: Norm Stress Norm strain plot for case 2

3. Case 3 is biaxial loading and unloading, given by :

∆σ̄
(1)
1 = α ∆σ̄

(1)
2 = α

∆σ̄
(2)
1 = −β ∆σ̄

(2)
2 = −β

∆σ̄
(3)
1 = γ ∆σ̄

(3)
2 = γ

The path in the stress space is shown in the Figure 11 and the corresponding norm

stress vs norm strain is shown in Figure 12.
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With these three cases the implementation of the Tensile only model has been verified

as the stresses do not exceed the damage surface and are always in the elastic domain.

Figure 11: Path in the stress space

Figure 12: Norm Stress Norm strain plot for case 3

Non symmetric Model

The damage surface in the stress space for a Non symmetric tension compression model is

shown in the figure 13. As seen in the figure, the damage surface has both tension and

compression parts, with the material having higher elastic limit in Compression.

We consider the same test case as for the tension only model to analyse the behaviour

of the Non symmetric model for linear and exponential hardening/softening. The damage
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Figure 13: Damage surface for the non-symmetric model

surface undergoes expansion under hardening while it shrinks during softening similar to the

case of the Tension only model (see Figures 3, 4, 5 and 6).

Verification of the Implementation of the Model

The cases one, two and three of the previous section are used to verify the implementation

of the model. The same value of α, β and γ are used.

Figure 14: Path in the stress space
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Figure 15: Zoomed in view of the path in the stress space

However, we use exponential hardening here with qmax = r0 + (r0 − qmin) where r0 is the

initial value of the hardening variable (q) and qmax and qmin are as defined before and A =

0.1.

1. For case1 (Uniaxial loading and unloading),Figure. 14 and Figure. 15 show the path

in the stress space and its zoomed in view. The material behavior is similar to that

observed in the tensile only model explained in the Page 5.

In case 2(combination of uniaxial loading and biaxial loading and unloading) and case 3

(biaxial loading and unloading ) we get stress paths similar to that of case 2 and 3 of the

tensile only model. This is because, although the material has an elastic limit under com-

pression for the Non symmetric model, the limit is high and the material behaves elastically

under compression for the load paths chosen in the cases one, two and three.

Rate Dependent Model

The rate dependent model is studies for Symmetric tension compression under the plain

strain condition. Case(I)(Page-2) is used as the Load path for the analysis of the effect of
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various parameters in the Rate dependent model. As Case(I) involves biaxial loading and

unloading, norm stress and norm strain, hereafter referred as stress and strain are used in

the stress-strain plots.

Effect of the Viscosity Parameter

Figure. 16 and Figure. 17 show the effect of the viscosity coefficient on the path in the stress

space and in the Stress strain plot.

Figure 16: Effect of the viscosity Parameter on the Path in the stress space

Figure 17: Variation of the stress strain plot with the viscous parameter.

eta = 0 is the non-viscous case and the material behaves like a rate independent model.

This is shown in Figure. 16 (marked by blue numbers), where the stresses do not cross the

damage surface. It is seen that for higher value of the viscous parameter the stresses in the

inelastic domain are further from the damage surface. From Figure. 16, it can be concluded

that the viscous parameter does not affect the stress - strain behavior in the elastic domain
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but in the inelastic domain the stresses increase with viscosity parameter for the same strain

value.

Effect of the strain rate

In the rate dependent model, the stresses depend not only on the strains but also on the

strain rate. Figure. 18 and Figure. 19 show the effect of the strain rate on the path in the

stress space and in the Stress strain plot.

Figure 18: Effect of the Strain rate on the Path in the stress space

Figure 19: Variation of the stress strain plot with the Strain rate.

The strain rates were varied by changing the total time for the given strain history and
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were calculated as the rate of the norm strain.

It is seen that as the strain rate increases, the stresses in the inelastic domain are further

away from the damage surface. From Figure. 19, it can be concluded that the strain rate

does not affect the stress - strain behavior in the elastic domain but in the inelastic domain

the stresses increase with strain rate for the same strain value.

Effect of α (the time integration parameter)

Figure. 20 shows the effect of the α parameter on Stress strain plot.

Figure 20: Variation of the stress strain plot with the α parameter

It is seen that in the elastic domain, there is no effect of α on the stress-strain plot. In

the inelastic domain, as α increases the value of the stresses are smoothed and there is lesser

variation. For α less than 0.5 for higher time steps ∆t, instabilities are induced and the

stress strain plots may be erroneous as shown in the Figure. 21.
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Figure 21: Instability of the stress - strain plot for α = 0

Effect of the α values on the C11 component of the Tangent and

Algorithmic Constitutive operator

Figure. 22 and Figure. 23 show the effect of α on the C11 component of the Tangent and

Algorithmic Constitutive operator.

It is seen that as the value of α increases the elastic domain denoted by a constant C11

(equal to corresponding component of the constitutive matrix) on both the plots decreases.

Also, it is noted that fluctuations in the C11 component of the algorithmic constitutive

operator are more for higher value of α.
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Figure 22: Effect of α on the C11 component of Ctan

Figure 23: Effect of α on the C11 component of Calg
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General Remarks and Conclusion

1. It is seen that for 0 viscosity parameter and α = 1 the rate independent model is

recovered from the rate dependent model

2. For a very large time length (equivalent to a strain rate close to 0) and α = 1 the

rate independent model is recovered from the rate dependent model irrespective of the

value of the viscosity parameter.

3. For the viscosity parameter = 0, the strain rate has no effect on the variation of stress

with respect to strain.

4. In the Elastic domain, both the rate independent and the rate dependent models behave

in the same manner, which was expected at the beginning of the study.
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Appendix 

This section contains the modified MATLAB codes used in the report. 

Damage_main_visc.m 

This function implements the damage surface under loading and returns the stress and 

other variables to plot. A common function has been implemented for both the inviscid 

and viscous model. 

function 

[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR,c11_t,c11_ta]=damage_main_visc

(Eprop,ntype,istep,strain,MDtype,n,TimeTotal) 
global hplotSURF  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CONTINUUM DAMAGE MODEL 
% ---------------------- 
% Given the almansi strain evolution ("strain(totalstep,mstrain)") and 

a set of 
% parameters and properties, it returns the evolution of the cauchy 

stress and other  variables 
% that are listed below. 
% 
% INPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
% ---------------------------------------------------------------- 
% Eprop(1) = Young's modulus  (E) 
% Eprop(2) = Poisson's coefficient (nu) 
% Eprop(3) = Hardening(+)/Softening(-) modulus (H) 
% Eprop(4) = Yield stress (sigma_y) 
% Eprop(5) = Type of Hardening/Softening law  (hard_type) 
%            0 --> LINEAR 
%            1 --> Exponential 
% Eprop(6) = Rate behavior (viscpr) 
%            0 --> Rate-independent (inviscid) 
%            1 --> Rate-dependent   (viscous) 
% 
% Eprop(7) = Viscosity coefficient (eta)  (dummy if inviscid) 
% Eprop(8) = ALPHA coefficient (for time integration), (ALPHA) 
%             0<=ALPHA<=1 , ALPHA = 1.0 --> Implicit 
%                           ALPHA = 0.0 --> Explicit 
%            (dummy if inviscid) 
% 
% ntype    = PROBLEM TYPE 
%            1 : plane stress 
%            2 : plane strain 
%            3 : 3D 
% 
% istep = steps for each load state (istep1,istep2,istep3) 
% 
% strain(i,j) = j-th component of the linearized strain vector at the 

i-th 
%               step, i = 1:totalstep+1 
% 
% MDtype      = Damage surface criterion % 
%            1 : SYMMETRIC 
%            2 : ONLY-TENSION 
%            3 : NON-SYMMETRIC 
% 
% 



% n          = Ratio compression/tension strength (dummy if MDtype is 

different from 3) 
% 
% TimeTotal  = Interval length 
%  
%  OUTPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
%  ------------------------------------------------------------------ 
%  1) sigma_v{itime}(icomp,jcomp)  --> Component (icomp,jcomp) of the 

cauchy 
%                                   stress tensor at step "itime" 
%                                   REMARK: sigma_v is a type of 
%                                   variable called "cell array". 
% 
% 
%  2) vartoplot{itime}              --> Cell array containing 

variables one wishes to plot 
%                                    ---------------------------------

----- 
%   vartoplot{itime}(1) =   Hardening variable (q) 
%   vartoplot{itime}(2) =   Internal variable (r)% 

  
% 
%  3) LABELPLOT{ivar}              --> Cell array with the label 

string for 
%                                    variables of "varplot" 
% 
%          LABELPLOT{1} => 'hardening variable (q)' 
%          LABELPLOT{2} => 'internal variable' 
% 
% 
%  4) TIME VECTOR  - > 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% SET LABEL OF "vartoplot" variables  (it may be defined also outside 

this function) 
% ---------------------------------- 
 LABELPLOT = {'hardening variable (q)','internal variable'}; 

  
E      = Eprop(1) ; nu = Eprop(2) ;  
viscpr = Eprop(6) ; 
sigma_u = Eprop(4); 

  

  

  
if ntype == 1 
    menu('PLANE STRESS has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
elseif ntype == 3 
    menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
else 
    mstrain = 4    ; 
    mhist   = 6    ; 
end 

  
totalstep = sum(istep) ; 

  

  
% INITIALIZING GLOBAL CELL ARRAYS 



% ------------------------------- 
sigma_v = cell(totalstep+1,1) ; 
TIMEVECTOR = zeros(totalstep+1,1) ; 
delta_t = TimeTotal./istep/length(istep) ; 
c11_t = zeros(totalstep+1,1);             %c11 component of the 

tangent constitutive operator                
c11_ta = zeros(totalstep+1,1);            %c11 of the algorithmic 

constitutive operative 
% Elastic constitutive tensor 
% ---------------------------- 
[ce]    = tensor_elastico1 (Eprop, ntype); 
% Initz. 
% ----- 
% Strain vector 
% ------------- 
eps_n1  = zeros(mstrain,1); 
% Historic variables 
% hvar_n(1:4) --> empty 
% hvar_n(5) = q --> Hardening variable 
% hvar_n(6) = r --> Internal variable 
hvar_n  = zeros(mhist,1)  ; 

  
% INITIALIZING  (i = 1) !!!! 
% ***********i* 
i = 1 ; 
r0 = sigma_u/sqrt(E); 
hvar_n(5) = r0; % r_n  
hvar_n(6) = r0; % q_n  
eps_n1 = strain(i,:) ; 
sigma_n1 =ce*eps_n1'; % Elastic  
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 

0  sigma_n1(4)];  
c11_t = ce(1,1); %the c11 component of the tangent constitutive 

operator 
c11_ta = c11_t;  %the c11 component of the tangent algorithmic 

operator 

  

  
nplot = 3 ;  
vartoplot = cell(1,totalstep+1) ;  
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 

  
for  iload = 1:length(istep) 
    % Load states 
    for iloc = 1:istep(iload) 
        i = i + 1 ; 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 
        % Total strain at step "i" 
        % ------------------------ 
        eps_n1 = strain(i,:) ; 
        eps_np = strain(i-1,:); %the strain vector for the previous 

time step 
        

%*********************************************************************

***************** 
        %*      DAMAGE MODEL 
        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 



        [sigma_n1,hvar_n,aux_var,c11_tan,c11_tan_alg] = 

rmap_dano1_visc(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_np,delta_t); 
        % PLOTTING DAMAGE SURFACE 
        if(aux_var(1)>0) 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 

'r:',MDtype,n ); 
            %set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1); 
            set(hplotSURF(i),'Color','blue','LineWidth',1); 
        end 

  
        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
        

%*********************************************************************

* 
        % GLOBAL VARIABLES 
        % *************** 
        % Stress 
        % ------ 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 

; 0 0  sigma_n1(4)]; 
        sigma_v{i} =  m_sigma ; 
        c11_t(i) = c11_tan; 
        c11_ta(i) = c11_tan_alg; 

  
        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 
        % ---------------- 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)         
        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable 

(d) 
    end 
end 

 

rmap_dano1_visc.m 

This function implements the integration algorithm for both the inviscid and viscous 

model. 

function [sigma_n1,hvar_n1,aux_var,c11_tan,c11_tan_alg] = 

rmap_dano1_visc (eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_np,delta_t) 

  
%*********************************************************************

***************** 
%*                                         * 
%*           Integration Algorithm for a isotropic damage model 
%* 
%*                                                                                    

* 
%*            [sigma_n1,hvar_n1,aux_var] = rmap_dano1 

(eps_n1,hvar_n,Eprop,ce)        * 
%*                                                                                    

* 
%* INPUTS              eps_n1(4)   strain (almansi)    step n+1                       

* 
%*                                 vector R4    (exx eyy exy ezz)                     

* 
%*                     hvar_n(6)   internal variables , step n                        

* 



%*                                 hvar_n(1:4) (empty)                          

* 
%*                                 hvar_n(5) = r  ; hvar_n(6)=q                       

* 
%*                     Eprop(:)    Material parameters                                

* 
%* 
%*                     ce(4,4)     Constitutive elastic tensor                        

* 
%*                                                                                    

* 
%* OUTPUTS:            sigma_n1(4) Cauchy stress  , step n+1                          

* 
%*                     hvar_n(6)   Internal variables , step n+1                           

* 
%*                     aux_var(3)  Auxiliar variables for computing 

const. tangent tensor  * 
%*********************************************************************

****************** 

  

  
hvar_n1 = hvar_n; 
r_n     = hvar_n(5); 
q_n     = hvar_n(6); 
E       = Eprop(1); 
nu      = Eprop(2); 
H       = Eprop(3); 
sigma_u = Eprop(4); 
hard_type = Eprop(5) ; 
visc = Eprop(6); 
eta = Eprop(7); 
alpha = Eprop(8); 
%*********************************************************************

**************** 

  

  
%*********************************************************************

**************** 
%*       initializing                                                

%* 
 r0 = sigma_u/sqrt(E); 
 zero_q=1.d-6*r0; 
% if(r_n<=0.d0) 
%     r_n=r0; 
%     q_n=r0; 
% end 
%*********************************************************************

**************** 

  

  
%*********************************************************************

**************** 
%*       Damage surface                                                              

%* 
[rtrial,rtrialp] = Modelos_de_dano1_visc (MDtype,ce,eps_n1,n,eps_np); 

  
rtr = (1-alpha)*rtrialp + alpha*rtrial; %strain norm at n+alpha 
%*********************************************************************

**************** 

  



  
%*********************************************************************

**************** 
%*   Ver el Estado de Carga                                                           

%* 
%*   --------->    fload=0 : elastic unload                                           

%* 
%*   --------->    fload=1 : damage (compute algorithmic constitutive 

tensor)         %* 
fload=0; 

  
if (visc == 1)  %implementing the viscous case 

     
         if(rtr > r_n) 
            %*   Loading 

  
            fload=1; 
            r_n1 = ((eta-delta_t*(1-alpha))/(eta + alpha*delta_t))*r_n 

+ (delta_t/(eta+alpha*delta_t))*rtr; 
            delta_r=r_n1-r_n; 

     
            if hard_type == 0 
               %  Linear 
               q_n1= q_n+ H*delta_r; 
            else 
               %exponential 
               if H>0 
                  q_inf = r0+(r0-zero_q); %hardening 
               else   
                  q_inf = zero_q; %softening 
               end 
               A = abs(H); 
               q_n1= q_inf-(q_inf-q_n)*exp(A*(1-r_n1/r_n)); 

         
            end 

  
            if(q_n1<zero_q) 
               q_n1=zero_q; 
            end 

  

  
         else 

  
             %*     Elastic load/unload 
             fload=0; 
             r_n1= r_n  ; 
             q_n1= q_n  ; 

  

  
        end 
else                %implementing the inviscid model 

     
    if(rtrial > r_n) 
       %*   Loading 

  
       fload=1; 
       delta_r=rtrial-r_n; 
       r_n1= rtrial  ; 
       if hard_type == 0 



          %  Linear 
          q_n1= q_n+ H*delta_r; 
       else 
          %exponential 
           if H>0 
                  q_inf = r0+(r0-zero_q); %hardening 
           else   
                  q_inf = zero_q; %softening 
           end 
          A = abs(H); 
          q_n1= q_inf-(q_inf-q_n)*exp(A*(1-r_n1/r_n)); 

         
       end 

  
       if(q_n1<zero_q) 
          q_n1=zero_q; 
       end 

  

  
    else 

  
        %*     Elastic load/unload 
        fload=0; 
        r_n1= r_n  ; 
        q_n1= q_n  ; 

  

  
    end 

     
end 
% Damage variable 
% --------------- 
dano_n1   = 1.d0-(q_n1/r_n1); 
%  Computing stress 
%  **************** 
sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 
%hold on  
%plot(sigma_n1(1),sigma_n1(2),'bx') 

  
%*********************************************************************

**************** 

  

  
%*********************************************************************

**************** 
%* Updating historic variables                                            

%* 
%  hvar_n1(1:4)  = eps_n1p; 
hvar_n1(5)= r_n1 ; 
hvar_n1(6)= q_n1 ; 
%*********************************************************************

**************** 

  

  

  

  
%*********************************************************************

**************** 



%* Auxiliar variables                                                               

%* 
aux_var(1) = fload; 
aux_var(2) = q_n1/r_n1; 
aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 

  
if fload ==0 
    C_tan_alg = (1-dano_n1)*ce;  % C_tan_alg is the algorithmic 

constitutive operator 
else 
    if visc == 0 
        C_tan_alg = (1-dano_n1)*ce - aux_var(3)*(sigma_n1*sigma_n1'); 
    else 
        C_tan_alg = (1-dano_n1)*ce + 

((alpha*delta_t)/(eta+alpha*delta_t))*(1/rtrial)*((H*r_n1-

q_n1)/r_n1^2)*(sigma_n1*sigma_n1'); 
    end 
end 
c11_tan_alg = C_tan_alg(1,1);     
C_tan = (1-dano_n1)*ce;            % C_tan is the tangent constitutive 

operator 
c11_tan = C_tan(1,1); 
end 
%*********************************************************************

**************** 

  

dibujar_criterio_dano1.m 

 
This function gives the damage surface for all the MDtypes 

 
function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 
%*********************************************************************

**************** 
%*                 PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL                             

%* 
%*                                                                                  

%* 
%*      function [ce] = tensor_elastico (Eprop, ntype)                    

%* 
%*                                                                                  

%* 
%*      INPUTS                                                       

%* 
%*                                                                                  

%* 
%*                    Eprop(4)    vector de propiedades de material                 

%* 
%*                                      Eprop(1)=  E------>modulo de 

Young          %* 
%*                                      Eprop(2)=  nu----->modulo de 

Poisson        %* 
%*                                      Eprop(3)=  H----->modulo de 

Softening/hard. %* 
%*                                      Eprop(4)=sigma_u-----

>tensiï¿½n ï¿½ltima        %* 
%*                     ntype                                 %* 
%*                                 ntype=1  plane stress                            

%* 
%*                                 ntype=2  plane strain                            

%* 



%*                                 ntype=3  3D                                      

%* 
%*                     ce(4,4)     Constitutive elastic tensor  (PLANE 

S.       )    %* 
%*                     ce(6,6)                                  ( 3D)                

%* 
%*********************************************************************

**************** 

  

  
%*********************************************************************

**************** 
%*        Inverse ce   %* 

  

  
ce_inv=inv(ce); 
c11=ce_inv(1,1); 
c22=ce_inv(2,2); 
c12=ce_inv(1,2); 
c21=c12; 
c14=ce_inv(1,4); 
c24=ce_inv(2,4); 
%*********************************************************************

***************** 

  

  

  

  

  

  

  
%*********************************************************************

***************** 
% POLAR COORDINATES 
if MDtype==1 
    tetha=[0:0.01:2*pi]; 
    

%*********************************************************************

***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 

     
    for i=1:Contador 
        radio(i)= q/sqrt([m1(i) m2(i) 0 

nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 
            nu*(m1(i)+m2(i))]'); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   

         



    end 
    hplot =plot(s1,s2,tipo_linea); 

     

     
elseif MDtype==2 
   tetha=[0:0.01:2*pi]; 
    

%*********************************************************************

***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
    thet_part = zeros(Contador,4) ; 
    for i=1:Contador 
        thet_part(i,:) = [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 
        radio(i)= 

q/sqrt((thet_part(i,:).*(thet_part(i,:)>0))*ce_inv*[m1(i) m2(i) 0 ... 
            nu*(m1(i)+m2(i))]'); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);  

               
    end 
    hplot =plot(s1,s2,tipo_linea); 

       

   

     
elseif MDtype==3 

    
    tetha=[0:0.01:2*pi]; 
    

%*********************************************************************

***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
    ratio = zeros(1,Contador) ; 
    for i=1:Contador 
        ratio(i) = 

(m1(i)*(m1(i)>0)+m2(i)*(m2(i)>0))/(abs(m1(i))+abs(m2(i))); 
        %ratio(i) = 

(m1(i)*(m1(i)>0)+m2(i)*(m2(i)>0))/(abs(m1(i))+abs(m2(i))); 

  
        radio(i)= q/(sqrt([m1(i) m2(i) 0 

nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 



            nu*(m1(i)+m2(i))]')*(ratio(i)+(1-ratio(i))/n)); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   

         
    end 
    hplot =plot(s1,s2,tipo_linea); 

     
end 
%*********************************************************************

***************** 

  

  

  
%*********************************************************************

***************** 
return 

   

modelos_de_dano1_visc.m 

 
This function calculates the strain norm for all the three MDtypes. 

 
function [rtrial,rtrialp] = Modelos_de_dano1_visc 

(MDtype,ce,eps_n1,n,eps_np) 
%*********************************************************************

***************** 
%*          Defining damage criterion surface                                        

%* 
%*                                                                                   

%* 
%* 
%*                          MDtype=  1      : SYMMETRIC                              

%* 
%*                          MDtype=  2      : ONLY TENSION                           

%* 
%*                          MDtype=  3      : NON-SYMMETRIC                          

%* 
%*                                                                                   

%* 
%*                                                                                   

%* 
%* OUTPUT:                                                                           

%* 
%*                          rtrial                                                   

%*                
%*********************************************************************

***************** 

  

  

  
%*********************************************************************

***************** 
if (MDtype==1)      %* Symmetric 
rtrial= sqrt(eps_n1*ce*eps_n1');                        
rtrialp= sqrt(eps_np*ce*eps_np');   %strain norm for previous time 

step 
elseif (MDtype==2)  %* Only tension  
rtrial = sqrt(eps_n1.*(eps_n1>0)*ce*eps_n1'); 



rtrialp =0;     
elseif (MDtype==3)  %*Non-symmetric 
    sig_n1 = eps_n1*ce; 
    ratio = 

(sig_n1(1)*(sig_n1(1)>0)+sig_n1(2)*(sig_n1(2)>0))/(abs(sig_n1(1))+abs(

sig_n1(2))); 
 % rtrial= sqrt(eps_n1*ce*eps_n1');    
rtrial = (ratio+((1-ratio)/n))*sqrt(eps_n1*ce*eps_n1'); 
rtrialp =0; 

  

  

  
end 
%*********************************************************************

***************** 
return 

 

  
  

  

  
  

  

  

  

  

  

 

 

 


