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Abstract

The aim the project is to implement a Matlab algorithm to simulate damage modelling in isotropic materials. In physical
terms damage occurs as a result of irreversible material degradation from processes involving initiation and growth of micro
defects and as a consequence of which material suffers stiffness degradation. Damage is simulated for symmetric, tensile
only and non-symmetric tension compression models under rate dependent(viscous) and rate independent (non-viscous)
framework. Results have been validated using analytical model and intuitive interpretation.

Part 1:Rate Independent framework

Mathematically, the term rate-independent is usually referred to time-dependent processes which are invariant under time
rescaling. In physical term, in this framework, viscous behaviour of the material is ignored which decouples the stress
generated in material to rate of deformation. In rate independent framework, following models are implemented in the
formulated algorithm.

(a) Tension only and Non-symmetric models
In this section,a Matlab algorithm is formulated for simulating tensile only and non-symmetric tension compression
model.In the provided pseudo Matlab code, commits are made in dibujar-criterio-dano1.mand modelos-de-dano1.m
fileas shown in Appendix A.1 and A.2.

(b) Linear and Exponential Hardening and Softening
In this section linear and exponential hardening (H > 0)/softening(H < 0) representing pure loading case is integrated
in the formulated symmetric, tension only and non-symmetric damage models. For this purpose the provided Matlab
file rmap-dano.m is modified as shown in Appendix A.3.

(c) Correctness of the Algorithm Implementation
The correctness and accuracy of implementation of damage model is gauged against a number of test cases involving
various loading scenarios. The case studies are carried out using material properties mentioned in table 1.Note that in
this analysis all physical parameters mentioned here are considered dimensionless.

Material Properties Value
Young Modulus E 20000
Poisson Ratio v 0.3

Saturation value of hardening parameter
σinfinity

2

Hardening Modulus H 0.5
Yield strength σy 200

Viscosity η 0.5

Table 1 Material properties of employed in case studies

A simple case study is outlined here in order to establish the definition of the output parameter of the code. Fig.1 represents
a case study when specimen is subjected to prescribed loads in terms of principle stress (σ1, σ2)loading path defined in time
interval [0 10] i.e.(0, 0)|t=0 → (300, 400)|t=3.333 → (500, 400)|t=6.666 → (500, 0)|t=10. The path with red points on the plot
illustrate the loading path in terms of effective principle stresses. While the path with black points represent the apparent
stress (σ1, σ2) generated in the specimen. It can be seen that in fig 1 apparent stress is always less than effective stress by
a factor of (1-d) where d is the damage variable. And it can be noted that apparent stress and effective stress coincide as
long as the material is in elastic range. As the loading exceed the yield strength σy, damage variable start playing a role in
decreasing the load bearing strength of the material.
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Figure 1 Zoomed in view of the damaged surface illustrating effective σ(red) and apparent stress σ(black)

1-Test Case 1

In this case study a loading path involving uni-axial tensile and compressive load is applied on the specimen as show as follow:
4σ(1)

1 = 500;4σ(1)
2 = 0;

4σ(2)
1 = −600;4σ(2)

2 = 0

4σ(3)
1 = 600;4σ(3)

2 = 0

Under loading conditions prescribed above, a number of plots are generated with the formulated algorithm. Results are
presented in terms of evolution of internal variable r and stress-strain plot. Results of each model are discussed one by one
as follow:
Symmetric Tension Compression model: For symmetric model (fig. 2), in first phase of loading, the material behaves

linear under yield strength but as the loading exceeds the yield strength, the curve exhibit nonlinear behaviour as material
stiffness starts to degrade. Moreover as material damage under pure loading scenario, .the damage surface start to expand due
to hardening of material. From P1 to P2 the loading curve changes its direction and the material is subjected to compression
state. The point to be noted here is that under compression the material curve restores back with a different slope. Under
compression the material behaves linearly as long as the apparent stresses are within the damage surface and then changes
its slope as material starts to damage. This trend can be verified in stress-strain plot in fig. 3.

Figure 2 Symmetric model Damage surface
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Figure 3 Symmetric model: Stress-Strain plot

In internal variable r evolution plot (fig 4),it can be seen that r ≥ 0 and it stays constant in the elastic range and increase
its value as material cross nonlinear range. Moreover from the internal variable evolution plot it can be seen that:

TensileLoad

CompressiveLoad
=

500

600
∼ Max.raftertension

Max.raftercompression
=

3.20

3.75

Figure 4 Symmetric model:Internal variable evolution

Tension-only model:In tensile only model, the material undergo nonlinearity in tensile phase (P=0 to P=1) and yields
exactly the same results as in symmetric model but in compression phase (P=1 to P=2) material does not undergo degra-
dation and from P2 to P3 the stress strain curve returns with the same value of slope as from P1 to P2 and the internal
variable r does not evolve under compression. Results of tension only model are illustrated in fig 5, 6 and 7.

Figure 5 Tension only model Damage surface plot
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Figure 6 Tension only model: stress-strain plot

Figure 7 Tension only model: Internal variable evolution plot

Non symmetric Tension Compression model: In the non-symmetrical model, value of n is set equal 3 that physically
implies that compressive strength of the material is three times higher than the symmetric case but not infinitely high as
the tension-only model.In this case, that material damage in compression but the non-linear stress strain curve start when
stress exceed almost the three times of the yield strength value. Hence nonlinearity representing damage in material is less
as compared to the symmetric model. But in the presented test case, the prescribed loading does not exceed the material
compressive yield strength. Therefore there is no non-linearity in compression.Moreover the damage variable d or the internal
variable r only evolve in inelastic regime. Therefore these parameters don’t evolve in compression (P=1 to P=2) and only
evolve in tension phase (P=0 to P=1 and P=2 to P=3). The results of this model are described in fig. 8,9 and 10.

Figure 8 Unsymmetrical Tension Compression model: Damage surface plot
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Figure 9 Unsymmetrical Tension Compression model:Evolution of internal variable r

Figure 10 Unsymmetrical Tension Compression model: Stress Strain plot

2-Test Case 2

The given prescribe loading conditions involve one uniaxial load and two biaxial loads. For each damage model, the results
are analysed using damage surface plot and stress-strain plots.

4σ(1)
1 = 500;4σ(1)

2 = 0;

4σ(2)
1 = −600;4σ(2)

2 = −600

4σ(3)
1 = 700;4σ(3)

2 = 700

Symmetric Tension Compression model:In symmetric model in first phase of the plot (fig.11 and 12) from point P=0
to P=1,the material undergo a tensile test. The results obtained for this phase are quite similar to test case study 1 where
the material start to degenerate as soon as loading exceeds the yield strength of the material.The second and third phase,
from point P=1 to P=3, the material undergo damage both in compression and tension as can be seen in stress-strain plot
in fig.11. This trend can be confirmed from evolution of internal variable r in fig. 12, where there is a slight fluctuation from
point P=1 to P=2 and then just before P=3.
Tension Only model:In tension only model,the material behaves very similar to the symmetric case under uniaxial loading.
From P=1 to P=2, under compression the material remains linear as can be seen in figure 13 There is no evolution in damage
variable d or internal variable r. As the curve move toward from P = 2 to P = 3 the damage surface start to expand again
as internal variable r start evolving again as can be seen in fig 14.
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Figure 11 Results of Symmetric model a)Damage surface plot(Top)b)Stress-strain plot(Bottom)

Figure 12 Symmetric model: Internal variable plot
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Figure 13 Tension only model: a)Damage surface plot(right) b)Stress-strain plot(left)

Figure 14 Tension only model: Evolution of internal variable r(left) and damage variable d(right)

Non symmetric Tension Compression model:For tension compression model, the plots are illustrated in fig.15. It
can be seem that the plot is exactly similar to symmetric case for phase 1 and phase 3. In phase two, the plot, due to high
compression yield strength, the material behaves linear and there is no evolution in damage variable d or internal variable r.

Figure 15 Non-symmetric Tension Compression model a)Damage surface plot(left)b)Stress-strain plot(right)

Figure 16 Non Symmetric Tension Compression model: Evolution of internal variable r(left) and damage variable d(right) in time

3-Test Case 3

Case study 3 consist of three biaxial loads such that in each loading steps the magnitude of loading is greater than the
previous step as follow: 

4σ(1)
1 = 500;4σ(1)

2 = 500;

4σ(2)
1 = −600;4σ(2)

2 = −600

4σ(3)
1 = 700;4σ(3)

2 = 700
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Symmetric Tension Compression model:For symmetric case, the damage surface and stress strain curve are illustrated
in fig 17. It can be seen that in damage surface plots, the trend observed in first phase of biaxial loading from P=0 to P=1,
is very similar to test case study 2.Nonlinearity is observed in this phase as loading exceeds the materials yield strength.
Similarly nonlinearity is observed in other two phases of the loading as well for the similar reasons. Moreover in the fig. 18
it can be seen that the value of damage variable d or internal variable r increases by end of every loading phases.
Tension only model: For tension only case the results are displayed in fig 19 and 20. In figure, the curve undergo non-
linearity twice: once in first phase (from P=0 to P=1) and second time in third phase (from point P=2 to P=3) as can be
verified from the internal variable r vs time plot.

Figure 17 Symmetric model: damage plot surface(left),stress-strain plot(right)

Figure 18 Symmetric model: Internal variable evolution(right)) damage variable evolution(left)

Figure 19(a) Tension only model: a)Damage surface(left)b)Stress-strain plot(right)

Figure 20 Tension only model: Evolution of internal variable r

For tension compression case the results are plotted in fig 21 it can be seen that the damage surface does not only evolves
in biaxial tension tests i.e. in phase 1 and 3 as the loading in the material does not exceed the yield strength and behaves
elastic. This trend can be verified by can be verified from the internal variable r vs time plot as can be seen in fig. 22.
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Figure 21 Un-symmetric model:Damage surface plot(left)-stress strain plot(right)

Figure 22 Un-symmetric tension compression model: Internal variable evolution

4-Verification of implementation of exponential hardening

Exponential hardening and softening model is implemented in the formulated Matlab code as shown in appendix A.3.
Hardening and softening trends have been analysed for a uniaxial case study involving prescribe loading data of test case
study 1.
Hardening is studied for a range of values of H as shown in figure 23. It should be noted that here the value of qinfinity is
set to be 2. Results are studied in terms of various plots as illustrated in fig.23. Softening in the material is studied setting
values of qinfinity to be 10−6r0.Value of qinfinity is not set zero for numerical stability of the code. Note that in hardening
variable q vs time plot the curve shifts up as hardening modulus is increased as shown in figure 21. Moreover q-r plot behaves
as expected and does not go beyond qinfinity.

Figure 23 Linear hardening model:Hardening variable vs internal variable plot for a) Softening (H < 0) b)Hardening (H > 0)
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Figure 24 Linear hardening model:Internal variable evolution plot for various values of hardening modulus H

The exponential hardening and softening have been plotted in figure 25. The hardening and softening have been studied
for varying values of A. For softening, the qinf was set at 10−6r0. The curves behave as expected, and developed faster with
higher values of A.

Figure 25 Exponential hardening model:Hardening variable vs internal variable plot a)Softening (H < 0)b)Hardening (H > 0)

Part 2:Rate Dependent models

1. Implementation of rate dependent model
Rate dependent model is implemented in the formulated Matlab algorithm for symmetric compression tension model.
Details of the changes committed in the provided pseudo code are given in Appendix B.1.
To verify the trends of the obtained plot, the formulated algorithm is implemented for a case study using the input
data given in table 1. The damage surface obtained for this case study is illustrated in fig. 26. It can be seen that
unlike in inviscid model, this case the apparent stress points(black) can lie outside the damage surface.

Figure 26 Rate dependent mode Damaged surface at 4t = 0.1illustrating effective σ (red) and apparent stress σ (black)

2. Verification of implementation of rate dependent model

In this section the influence of input parameters like viscosity η,strain rate ε̇ and on stress-strain plot is studied using the
formulated algorithm and results are compared with analytical model to establish the accuracy of algorithm.Note that
material parameters are adopted from table 1 and value of α is set to 0.5.
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(a) Viscosity η
Influence of value viscosity on stress-strain plot are analysed for a uniaxial test with loading conditions:

4σ(1)
1 = 1000;4σ(1)

2 = 0; (1)

It can be seen in fig. 27 that as increasing viscosity value shifts the stress-strain plot upward i.e. it increases the value
of apparent stress in the material.

Figure 27 Influence of viscosity at 4t = 0.1

Moreover the value of damage variable decreases with increasing viscosity as shown in fig 28.

Figure 28 Influence of internal variable for 4t = 0.1(left)and damage variable (d)(right)

This result is consistent with the analytical model [1] i.e.

σ(t, ε(t)) = (1− d(r(t)))C : ε (2)

d = 1− q

r
(3)

As r decreases with increasing viscosity η, as a consequence d decreases which according to equation 2 increases the
value of apparent stress.

(b) Strain rate ε̇
Fig.29 shows the damage surface plot of the presented case study at 4t = 100 and 4t = 0.001. It should be noted that
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less value of 4t reflect a higher strain rate. Hence from fig. 29 it can be seen that a higher apparent stress is obtained at
a high strain rate as in general for rate dependent model stress is directly proportional to the strain rate. Hence higher
the strain rate, higher would be the apparent stress.This result is also obvious in the stress-strain plot depicted in fig. 30.

Figure 29 Damage surface models for 4t = 100(left) and 4t = 0.001(right)

Figure 30 Influence of varying values of 4t on stress-strain plot)

(c) Alpha α
The value of alpha α influences the stability of results. Each value of alpha correspond to a different method as
described follows:

(a) For value of α = 0, the method corresponds to Backward Euler (Explicit) time integration method. This method
is first order accurate in time 0(4t). This method is fast but less robust.

(b) For value of α = 1.0, the method corresponds to Forward Euler( Implicit)time integration method. This method
is first order accurate in time and space O(4t). This method is robust compared to Backward Euler method.
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(c) For value of α = 0.5, the method corresponds to Crank Nicolson time integration method. This method is second
order accurate in time and space O(4t2). This method is the most robust and accurate compared to the former
two method.
In the following test stress-strain curve of a uniaxial test is evaluated for varying values of α at 4t = 10. Fig.31
presents result of the test and it can be seen that stress-strain plot for α = [0.5, 1] give least oscillation while α = 0
give most oscillations. This proves that time integration is only unconditionally stable for value α = [0.5, 1].

Figure 31 Influence on stress-strain curve for varying values of α

In the literature [1] it can be seen that numerical integration dont propagate error for values of 4t such that

−1 ≤ [η −4t(1− α)]

η + α4t
≤ 1 (4)

Following equation 4 for the value of 4t for which stable integration is obtained is [0, 2η]. For η = 0.5 the result
obtained is depicted in fig.32.

Figure 32 Influence on stress-strain curve for varying values of αat 4t = 1

It can be seen that for α = 0, the plot shows some initial fluctuations, but the fluctuations dont propagate and
diminish with time.
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(d) Comparison of C11 with α values
The algorithmic Calg and secant tangent operator Ctangent

11 at is implemented in the formulated algorithm as
shown in appendix B.2. The evolution of C11 element of consistent algorithmic and tangent operator is analysed
for varying values of as shown in fig 33. The test has been conducted for the values of loading conditions of test
case study 1. The value of 4t and η is set to be 1 and 2 respectively. It can be seen that value of Calg

11 and
Ctangent

11 increases with increasing α values.

Figure 33 Evolution of Ctangent
11 and Calg

11 with varying α

Moreover for α = 0, Ctangent
11 and Calg

11 give the same value in time and for rest of the values of α Ctangent
11 is

always greater than Calg
11 as shown in fig 34.

Figure 34 Evolution of Ctangent
11 and Cclg

11 at α = 0.5(left)and at α = 0(right)

This behaviour of Ctangent
11 and Cclg

11 is consistent with analytical model presented in literature[1].

Discussion and Conclusion

In this study an algorithm is formulated to implement damage modelling in isotropic materials. The algorithm has been
tested for a number of case studies under rate independent (non-viscous) and rate independent (viscous) framework involving
uniaxial and biaxial tension/ compression loading paths. Following conclusions have been obtained from the analysis of case
studies in rate independent framework.

1. The material behaves perfectly elastic under neutral loading and unloading.

2. A soon as the apparent stress load tries to jump out of the damage surface under pure loading, the surface expands
and parameters like internal variable r and damage variable d increase. In such phase the material undergo decrease in
stiffness.

3. In tensile strength model material is only able to undergo nonlinearity in tensile phase whereas in compression, the
material does not undergo damage.

14



4. In non-symmetric tension compression model (for n > 1), the material is more resilient to damage under compressive
load compared to the symmetric model.

From analysis of case studies in rate dependent model, following conclusions are derived.

1. With increasing viscosity, the apparent stress in the material increases.

2. Increasing the strain rate increases the apparent stress magnitude in the materials.

3. C11 component of algorithmic and tangential stiffness matrix give the same value for α = 0. Apart from that for other
values of α, the C11 component of tangential stiffness matrix is always equal to or greater than the algorithmic stiffness
matrix.

4. For values of α = 0 ∈ [0.5, 1] numerical time integration give stable and accurate results.
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Appendix  

A Rate Independent model 

A.1 Tension only model 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

A.2 Non symmetric model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

A.3 Hardening/Softening Implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.1 Rate Dependent model 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.1 Rate dependent model / viscous model 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.2 Implementation of  consistent tangent operator  

 

 

 

 

 


