Universitat Politecnica de Catalunya

Master’s degree in
Numerical Methods in Engineering

Computer Solid Mechanics

Assignment 3

Nonlinear elasticity

Gabriel Valdés Alonzo

II Semester A.Y. 2016-2017
Professor: Marino Arroyo

1. Kirchhoff Saint-Venant material model
Isotropic linear elasticity can be derived from balance of linear momentum, the linearized strain displacement

relation € = %(Vu + VuT), and the stored elastic energy function

A A
W(e) = §(tr €)? + utr(e?) = 5(5“)2 + HERE jk-

(1) Check that, the stress tensor obtained from o = 9W/0e agrees with the usual linear elasticity expression.

The matrix derivative of a trace can be seen in tensorial notation for the first term:

0tre 0
e~ Bey;)
= 0ij
-1

and for the second one:

d tr(e?) 0 ()

Oe - 8%-
= 251’]’
= 2e

Knowing this, we can compute the derivative of the function:

0 2\
%W(E) = K(tr €)1+ 2ue

= A(tr €)1 + 2ue
= M&ii)Or1 + 2peR

From theory it is known that the linear elasticity expression is o = C : &, which can be developed as:

c=AN®1+2ul):¢
= (A1 ® 1+ 2ul) ki€
= AOki10ji€ij + 2p40k1ijEij
= AOpi€ii + 2UER

which is identical to the formulation obtained from W, so we can conclude that both expressions are

the same.

Since the linearization of the Green-Lagrange strain tensor E = 3(C — Id) is the small strain tensor &, it is
natural to extend isotropic elasticity to nonlinear elasticity as

W(E) = %(tr E) 4 p tr(E?) (1)

This hyperelastic model is called Kirchhoff Saint-Venant material model.

(2) According to the definition we gave in class about isotropy in nonlinear elasticity, is this model isotropic?

The definition for isotropy in class was that any rotation @) is a material symmetry, also written as
W(F) =W(FQ). We can prove it taking a rotation matrix of the form

cosf) —sinf 0
Q= 1| sinf cosf O
0 0 1

We choose an angle to work with (i.e, § = w/2), and applying it to the tensor:

0 -1 0 E1l1 E12 E13 0 1 0 E22 —FE12 —E23
QEQT=|1 0 0 E21 E22 E23 -1 0 0|=| —-E12 EI1 FE13
0 0 1 E31 E32 E33 0 0 1 —FE23 F13 E33
Computing E? and (QEQT)? also:
E11% + E12° + E132 E11E12 + E12E22 + E13E23 E11E13 + E12E23 + E13E33
E? = | E11E12+ E12E22 + E13E23 E122 + E222 4+ E232 E12E13 + E22 E23 + E23 E33
E11E13+ E12E23 + E13E33 E12E13 + E22E23 + E23 E33 E132 + E23° + E332
E12% + E22° + E232 —E11E12 — E12E22 — E13E23 —EI12E13 — E22E23 — E23 E33
(QEQT)? = | —E11E12 — E12E22 — E13E23 E11? + E12? + E13? E11E13 + E12E23 + E13E33
—E12E13 — E22E23 — E23E33 El11E13 + E12E23 + E13E33 E13% + E23% + E332

We know that for this model, the value of W(E) is a linear combination of the traces of E and E?.
As we see, with a rotation the values of the diagonal of both E and E? are not altered, just changes
position. This means that the trace remains intact, meaning that the value of W (FE) will be equal to
the value of W(QFEQT). This is a case where the rotation is complete in an axis. If we generalize
to ”semi-rotations” (for example § = 7/4), we would have some multiplications for constant terms
everywhere. In any case, at the moment of summing the diagonal, said terms should disappear, and
give again the same trace. So in conclusion, the model is isotropic.

(3) Derive the second Piola-Kirchhoff stress S.

The formula for the second Piola-Kirchhoff tensor comes directly from W (E):

oW (E) 0 (A

A
= 52(tr E)1+2uE

= \tr E)1+2uE
=)\Eiiéjk + Q,UEjk

(4) For a uniform deformation of a rod aligned with the X axis (x = AX, y =Y, z = Z, where A > 0 is
the stretch ratio along the X direction) derive the relation between the nominal normal stress P (the zX
component of the first Piola-Kirchhoff stress) and the stretch ratio A, P(A), and plot it.

From the uniform deformation we have the relation

A0 O
F=|0 10
0 0 1
1 1(A2-1) 0 0
E=_(FFT-1)= 0 00
2 0 0 0

Since we have a uniform deformation, the relation between stress and strain is given by Hooke’s Law,
namely Pj1(A) = S11F11. The first component of the Piola-Kirchhoff tensor is

1
511 =)\tT(E) + QILLEH = (2>\ + M> (A2 — 1)

So the relation is)
Pu(A) = (2A s u) (A% - A)

So we can plot the normalized version in order to see the behavior (i.e., f(z) = 2 — z):

1000 T T T T T T

800

600

400

200

=200

400

-600

Figure 1: P(A) vs. A.

(5) Is the relation P(A) monotonic? If not, derive the critical stretch A+ at which the model fails with zero
stiffness. Does this critical stretch depend on the elastic constants? Show that the material does not satisfy
the growth conditions

W(E) — +oo when J — 0.

Discuss your answers.

In order to see if the function is monotonic, we check the derivative:

dP(A) 1 9
—— ==X 3A° -1
= (5hm) e
From here we see that from the range [—1/1/3,1/1.3], the value of the derivative is negative, and else-
where is positive, so the fnction is not monotonic since there is a change if direction. This points also

serve as the critical points (i.e., A..;+) where the model fails with zero stiffness.

To show that the material does not satisfy the growth consition, we take the condition for J tending
to 0 from the right. Since J is the determinant of F', this value is A. Looking at the condition

1m1WUDZIM1%WEF+NW@%

J—0+ A—0+

- (300) ()
1G+)

So the growth condition is not satisfied.

(6) Consider now the modified Kirchhoff Saint-Venant material model:
A 2 2
W(E) = 5(111 J)* + ptr(E*)

Does this model circumvent the drawbacks of the previous model?

The easiest part to check is the growth condition. Using the values from the previous part:

A (InJ)? + ptr(E?)

lim W(E)= lim =
.JEI()l+ (E) ALHolJr 2
A 1 2
= lim Z(InA)? ~(A2—1
Ag;2ﬁl)+ﬂ(g 0
= —00

So the growth condition is now satisfied. To check the the monotonic part, we obtain the Piola-
Kirchhoff tensor:
S(E) =2uFE

so replacing values for 11:
511 = /J,(A2 —].)

and the value for P is
Pui(A) = p(A° = A)

which still has the same critical points, so the problem is not really circumvented.

(7) Implement the material model in Eq.(1) in the Matlab code. Perform the consistency test to check your
implementation. Try to demonstrate the material instabilities of this model with a numerical example.

The model is implemented in the MATLAB program by modifying the NeoHookean functions. Since
we already have the relation for W(E) and S(F), we need to obtain the one for C, which is given by
the relation
C_ 0S(E)
- 0E

and this gives
A2 A 0
C= A A+2u 0
0 0 I

plus the In the annex the code for StVenant_3.m is given in order to show the procedure. The results
are shown for example 4:

o
0 2 4 6 8 10 12 1 15 2 25 3 a5 4

(a) deformation of the arch. (b) Force vs. 4. (¢) convergence error.

Figure 2: example 1.

for example 1:

e
i
T

Force

\ I 0.5 g\ﬁww “‘\

o
0 005 01 015 02 025 03 035 04 045 05 1 15 2 25 3 35 4 a5 5
&

(a) deformation of the block. (b) Force vs. 4. (¢) convergence error.

Figure 3: example 3, comparison.

and also for example 0:

04 035 03 025 02 045 04 005 0 112 14 16 18 2 22 24 26 28 3

(a) deformation of the block. (b) Force vs. 4. (c) convergence error.

Figure 4: example 3, comparison.

As can be seen, the model presents the expected results for the St. Venant model. The deformation
of the arch, as well as the one from the block are in a non-linear fashion, but the shown deformations
are according to the deflection of the geometry analyzed. Also, seeing the displacement vs. force plots
it can be clearly seen the point in which buckling appears, espetially in the arch figure, where the
increase of deformation is too big after a little increment in force.

2. Implementation of line-search.

Implement a line-search algorithm to be used in combination with Newton’s method. For this, I suggest you
resort to Matlab’s function fminbd, which performs 1D nonlinear minimization with bounds. You need to define
a function Ener_1D that evaluates the energy along the line that passes through x in the direction of p (the
descent search direction). The function LineSearch may include lines like the ones suggested next:

t=1;

opts=optimset (’TolX’,options.TolX, ’MaxIter’,options.n_iter_max_LS);
t = fminbnd(@(t) Ener_1D(t,x_short,p),0,2,o0pts);
x_short=x_short+tx*p;

Test the code with the examples where you expect buckling (the compression of the beams, or the deflection of
the arch), and compare the results with and without line-search.

The code for LineSearch was already implemented in the provided code, so this part will be skipped. The
testing of the function is done in order to see the effectiveness of the function.

For example 3 with Neo-Hookian model, the results are shown for both simple Newton-Raphson and
the one with Line-Search:

Force

10! (‘\' ¢
1

il
o

?
f

" \“\ 0 ﬁ@ o T
U ENE e A

102 T
i
I\

o P

-250
-3500 3000 2500 2000 -1500 1000 -500 0 500 0 0 20 30 40 50 6 70 80 90
&

(b) Force vs. 4. (c) convergence error.

0.025 10°

e
0.02 = = 2nd buckiing mode

0.005

(d) deformation of the beam. (e) Force vs. 4. (f) convergence error.

Figure 5: example 3, comparison.

For example 4, the results for both simple Newton-Raphson and the one with Line-Search:

[~ Noniinear alasticty
Linear elasticity

0.04 s 15t buckling mode
~ = 20d bucking mode

g 0.02 a
4
0.01)D
o
=001 102
-1600 -1400 -1200 -1000 -800 -600 400 -200 0 200 0 10 20 30 40 50 60 70 80 20
&
(b) Force vs. 4. (¢) convergence error.
0.05 — 107!
—5— Nonlinear elastcy
- — rbacaing mete 0?
= = 2nd buckling mode N
107 -
0.03 N
° 10 S
S 002 \
- 107
- Y
0.01 .
10 N
¢ 107 \\\\
0.01 108 -
o 2 4 6 8 10 12 14 1 15 2 25 3 35 4
&
(d) deformation of the arch. (e) Force vs. 4. (f) convergence error.
Figure 6: example 3, comparison.
And for example 5:
0.6 108
{5 Nonlnear dasticly
s s)
= = 2nd buckiing mode
0.4
Lé D
o 03
g B
" oozfe—
=
0.1 7
s
o
01 102
-500 o 500 1000 1500 2000 0 10 20 30 40 50 60 70 80 20
&
(b) Force vs. . (c) convergence error.
0.6 - 100
—&— Nonlinear elasticity
Linear slasticiy
05 s 15t buckling mode
= = 2nd buckiing mode
0.4 %
¢
o 03)?
5 ¢
* oz Y
|
0.1 e
l?/
. ‘
041 10710
10 5 0 5 10 15 15 2 25 3 35 4
&
(d) deformation of the arch. (e) Force vs. 4. (f) convergence error.

Figure 7: example 3, comparison.

The main conclusion to be extracted from all this examples is the fact that the system does not converge
at all when the LineSearch algorithm is not implemented. This is mainly due to the fact that buckling
is an unstable equilibrium, which at the slightest perturbation could create a movement big compared
to the previous ones. This translates as an instability in the system due to singular matrices appearing
at the moment of reaching the instability point, which sends the next steps into an inexistent solution.

LineSearch is an optimization tool that helps to identify the minimum energy of the system, which adds
stability to the solutions, leading to the better solutions.

In the stabilized plots, it can be seen that in the deformed topography we obtain different curves, which
correspond to the different modes of buckling. Each one of this deformed geometries correspond to a
stable deformed shape of the beam or arch. Typically in structures buckling is considered a failure state
because of the consequences that bring to the structure, but in material science this is not necessarily
the case, since buckling is still an elastic case, that can be returned to the normal geometry by removing
the load that is causing it. In every force vs. deformation graph shown for the stabilized case we can see
perfectly the moment in which buckling is achieved, since for a very small increment of the force we get
a big deformation.

Finally, it is worth noting that for the third example the convergence is not as perfect as the other
cases, since we have an oscillating pattern of errors, and the error tend to increase in every step, so this
is something that should be analyzed better in future applications.

3. Implementation of a material model.

The code you are given implements a plane-strain finite element method for finite deformation elasticity. A
compressible Neo-Hookean material is already in place (modeling a slightly porous rubber for instance), whose
strain energy density (or hyper-elastic potential) is

1 1
wW(C) = 5)\0(111 J)? — polnJ + iuo(trace C-3)

This constitutive model is isotropic. Note that, since we are considering plane strain, we can use a 2 x 2 reduced
right Cauchy-Green deformation tensor and replace trace C' — 3 by trace C' — 2 in the above equation.

We want to consider now an anisotropic material, more specifically, a transversely isotropic material. We
consider a material constitutive law for a rubber reinforced by fibers, all aligned in the same direction in such
a way that perpendicular to the fibers, the material remains isotropic. The orientation of the fibers is given in
the reference configuration by a unit vector N/%*. Such a model depends on the principal invariants of C, and
additionally by the fourth invariant

L(C)=N'".Cc. NI =cpN]* NI

More specifically,
1 4
W(C) = iuo(trace C—-3)—polnJ+&G(J) + ¢ {exp {cl(L(C)-1)] - 1} ,

where g, K, ¢ and ¢; are material parameters, and G(J) provides the volumetric response of the material. We

consider)
G(J) = Z<J2 —1-2InJ).

The last term in the strain energy function specifies the contribution to the deformation energy of the fibers,
and as typical in biological fibers, with this model these become stiffer the more deformed they are.

(a) Implement this material model into the code. The code is prepared for this model (material=2), including
the definition of the material parameters in preprocessing.m.

The model was implemented in a similar fashion the the code in problem 1.7. We have the form for
W(C), so we obtain the Piola tensor by using the formula

ow
= 27
s oC
and the constitutive tensor by
oS
= 27
c oC

From class we have some derivatives for basic matrices and invariants. Using this, we reach to the
form for the Piola tensor:

1
S =po(l—C™ 1)+ §I€<J2 —1)C™ +4cpey (VI4—1)exp [cl(\/ﬁ —1)* Ny ® NfTib

1
JIA(C)

and deriving again for C

C = po(CrgCrl + Crl Crg) + (J*Cr; Crcp, — 5 (J* =)(CrgCol + Crl Crg)) + -+

N =

.-+ dcgerexp [cl(\/ﬁ - 1)4} (VI4—1)2N;N; [134 - \/%(\/ﬁ —1)+ %(m ~ 1)4} NgNy

In the annex the code for this model is shown for reference under the name transv_isotr_3.m.

10

(b) Check the correctness (consistency test) of your implementation by running the script Check Derivatives.m
with material=2. This script checks the gradient of the energy (out-of-balance forces) and the Hessian of the
energy (tangent stiffness matrix) by numerical differentiation. Check also that when solving a mechanical
problem with this mode, Newton’s method converges quadratically.

Running the code through Check Derivatives.m we obtain a convergence of the gradient and Hessian
for every step, so we can safely assume that the model is working correctly. Furthermore, we run
example number 3 in order to see the convergence of the error:

ey —=—data1l
3 x,&_ —o—data?

Figure 8: convergence of error for example 3 for § = 0.

where we see that we have a linear dependence of the error, whose slope should be of value 2.

(¢) Solve example=0, a dead load applied on an elastic block in tension, with a few representative orientations
of the fibers. Consider § = 0 (fibers aligned with the loading direction), # = 7/6, § = 7/4 and 0 = 7/2
(fibers perpendicular to the loading direction), where

N/® = [cosf,sin 0] .
Explain the results from a mechanical viewpoint.

The plots for every angle are shown below.

11

For 6 = 0:

T Ii": g 15 10
mik: S £
=i — 1 ‘ }
hi 10
04 035 <03 025 -02 5-075 0.1 -0.05 o 0.05 1 12 14 16 18 2 22 24 26 28 3
(a) deformation of the block. (b) Force vs. 6. (c) convergence error.
Figure 9: example 0, 6 = 0.
For 6 = 7 /6:
- 10°
—‘T*ﬁ——r'g'r'”—'_r/{
=
— T T T]]
| |
——t—T11 T & —
——--Aﬁq_;ﬁ
S ERAmER kﬂ “\
] ‘\—T U 1 J\‘
Tyt -
& 10710 :
1 15 2 25 3 3.5 4
(a) deformation of the block. (b) convergence error.
Figure 10: example 0, § = /6.
For 0 = 7/4:

8|

[L/]/]
niae

L

LT T
De R
kﬁ_fsx LT
i

(a) deformation of the block. (b) convergence error.

Figure 11: example 0, § = 7/4.

12

And for 0 = 7w /2:

(a) deformation of the block.

As can be seen, the model converges perfectly when § = 0, but there are some convergence problems for
any other value of the angle. This could be explained by the fact that we are considering an anisotropic
model for the material, which has different properties according to the rotation of the material. Since
the force we are applying is rotating, this causes instabilities on the code for the values in which the dis-
placement is not considered, leading to the results. In the deformation plots can be seen the effect of the
force oriented in other angles. For § = 0, we see that the material is stretched perfectly uniaxially, but
for the other cases we have a kind of rotation, that is given by the shear stresses applied to the material.

Even though the algorithm has problems with convergence, we still see that we have a decreasing
error, expect for the m/2 case, were there are some oscillation to it.

Figure 12: example 0, 6 = /2.

13

(b) convergence error.

Annex

Kirchhoff-St.Venant model

function [W,S,CC]=StVenant_3(C,lambda,mu,icode)

E = 0.5%x([C(1) C(3); C(3) C(2)]-eye(2));
trE = trace(E);

trE2 = trace(E*E);

W = 0.b5xlambda*trE"2 + muxtrE2;

S = lambdaxtrExeye(2) + 2*muxE;

S = [S(1,1) S(2,2) S(1,2)];

CC = zeros(3);
CC(1,1) = lambda+2*mu;

CC(2,2) = lambda+2*mu;
CC(1,2) = lambda;
CC(2,1) = lambda;
CC(3,3) = mu;

14

Anisotropic model

function [W,S,CCl=transv_isotr_3(C,c0,cl,kappa,mu,N_fib)

Cm = [C(1) C(3);C(3) C(2I;
J2 = C(1)*C(2)-C(3)*C(3);

J = sqrt(J2);

logJ = log(J);

trC = C(1)+C(2);

gl = 0.25%(J2-1-2%logl);

I4 = N_fib’*Cm*N_£fib;

W = 1/2#mu*(trC-2) - muxlogJ + kappa*xgJ + cO*x(exp(cl*(sqrt(I4)-1)"4)-1);

[C(2) C(1) -C(3)]1/7J2;
[C_inv(1) C_inv(3);C_inv(3) C_inv(2)];

C_inv
C_invm

NN = N_fib*N_£fib’;

S = mu*(eye(2)-C_invm)+0.5xkappa* (J2*C_invm—-C_invm)+4*cOxcl* (sqrt (I4)-1) 3%
(sqrt(14))~(-1)*exp(ci*(sqrt(I4)-1)"4)*NN;
S = [s(1,1) 8(2,2) s(1,2)1;

CC(1,1) = mux(C_inv(1)*C_inv(1)+C_inv(1)*C_inv(1))+kappa*(J2*C_inv(1)*C_inv(1)-0.5%(J2-1)*
(C_inv(1)*C_inv(1)+C_inv(1)*C_inv (1))) +4*cO*c1/I4* (exp(cl*(sqrt(I4)-1)"4))*(sqrt(I4)-1) "2%(3-
147 (-1/2)*(sqrt (I4)-1) +4*c1* (sqrt (I4)-1) "4)*NN(1,1)*NN(1,1);

CC(1,2) = mu*x(C_inv(3)*C_inv(3)+C_inv(3)*C_inv(3))+kappa* (J2*C_inv(1)*C_inv(2)-0.5*%(J2-1)*
(C_inv(3)*C_inv(3)+C_inv(3)*C_inv(3)))+4*cO*cl/I4* (exp(cl*(sqrt(I4)-1)~4))*(sqrt(I4)-1) " 2*(3-
147 (-1/2)*(sqrt (I4)-1)+4*c1*(sqrt (I4)-1) "4)*NN(1,2) *NN(1,2);

CC(1,3) = mux(C_inv(1)*C_inv(3)+C_inv(1)*C_inv(3))+kappa*(J2*C_inv(1)*C_inv(3)-0.5%(J2-1)*
(C_inv(1)*C_inv(3)+C_inv (1) *C_inv(3))) +4*cO*c1/I4* (exp(cl*(sqrt(I4)-1)"4))*(sqrt(I4)-1) "2%(3-
I47(-1/2)*(sqrt (I4)-1)+4*c1x(sqrt (I4)-1) "4)*NN(1,1)*NN(1,2);

CC(2,2) = mu*x(C_inv(2)*C_inv(2)+C_inv(2)*C_inv(2))+kappa* (J2*C_inv(2)*C_inv(2)-0.5*%(J2-1)*
(C_inv(2)*C_inv(2)+C_inv(2)*C_inv(2)))+4*cO*cl/I4* (exp(cl*(sqrt(I4)-1)~4))*(sqrt(I4)-1) 2% (3-
147 (-1/2)*(sqrt (I4)-1)+4*cl*(sqrt(I4)-1) "4)*NN(2,2)*NN(2,2);

CC(2,3) = mux(C_inv(2)*C_inv(3)+C_inv(2)*C_inv(3))+kappa* (J2+C_inv(2)*C_inv(3)-0.5%(J2-1)*
(C_inv(2)*C_inv(3)+C_inv(2)*C_inv(3))) +4*cO*c1/I4* (exp(cl*(sqrt(I4)-1)"4))*(sqrt(I4)-1) 2% (3-
I47(-1/2)*(sqrt (I4)-1)+4*clx(sqrt (I4)-1) "4)*NN(2,2)*NN(1,2);

CC(3,3) = mux(C_inv(1)*C_inv(2)+C_inv(3)*C_inv(3))+kappa* (J2*C_inv(3)*C_inv(3)-0.5*%(J2-1)*
(C_inv(1)*C_inv(2)+C_inv(1)*C_inv(2)))+4*cO*cl/I4* (exp(cl*(sqrt(I4)-1)~4))*(sqrt(I4)-1) " 2%(3-
147 (-1/2)*(sqrt (I4)-1)+4*c1x(sqrt (I4)-1) "4)*NN(1,2)*NN(1,2);

CcC(2,1) = CC(1,2);
CC(3,1) = CC(1,3);
CC(3,2) = CC(2,3);

15

