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1. Introduction 

This is the second part of the report for Assignment_2, the course “Computational Mechanics in 

Solids” which deals with 3D Plasticity models [J2]. The goal in this project is to implement the 

algorithm of constitutive model at gauss integration level in order to check the performance of 3D 

plastic model, so there would be no discretization of continuum model nor mesh procedure for the 

finite element method. 

In this project, data base (Input 

variables) would be strains; so we 

have a strain driven code and 

along this way, backward Euler 

time stepping algorithm for one 

dimensional plasticity is 

implement covering both rate 

independent and rate dependent 

models. However, the code is 

only implemented for the rate 

dependent case and as a 

consequence of choosing zero 

viscosity parameter it would 

behave rate independent. 

Different models for including 

hardening behaviors which are 

exploited in the code are 

introduced in Chart1 and for all 

mentioned scenarios different 

numerical simulation of uniaxial 

cyclic plastic loading/elastic 

unloading examples are performed using the Matlab code which is provided and discussed in the 

Annex. 

For all cases the Young modulus is taken [E = 200,000 MPa] and the 

yield stress as [σy = 200 MPa]. Poisson ratio is also 0.3 for main cases. 

These material property values are almost in the range of steel. 

Table1 is related to the regular three paths cyclic loading which is the 

main loading scenario for Chapter2 to Chapter6 and captures the 

Tension-Compression-Tension behavior of material. 

Based on Table2, 21 loading cases are studied In Chapter2 to Chapter6. In order to explain these 

cases, it is important to note that 5 Hardening type are considered into account and for each 

hardening type, 2 models of rate-independent and rate-dependent are considered. For any of which 

some sensitivity analysis is studied that can be checked in detail in Table2. 

Models Behavior 
With respect to  

 
Hardening 
Procedure 

 

Models Behavior 
 With respect to 

 
Rate of Loading 

 

 Chart1. Plasticity Models. 

Strain point 
Loading 
scenario 

1st point 0 

2nd point 0.0025 

3rd point -0.0025 

4th point 0.0005 

No Hardening 

Linear Isotropic 

Non-linear Isotropic 

Linear Kinematic 

Isotropic + Kinematic 

Rate Independent 

Rate Dependent 

Table1. Cyclic Loading Scenario 
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Hardening Type 

RATE INDEPENDENT RATE DEPENDENT 

Main 
case 

Sensitivity 
analysis 1 

Sensitivity 
analysis 2 

Sensitivity 
analysis 1 

Sensitivity 
analysis 2 

Perfect Plasticity Case  1   Case  2 - η Case  3 - t 

Linear Isotropic Case  4 Case  5 - K  Case  6 - η Case  7 - t 

Nonlinear Isotropic Case  8 Case  9 - δ Case 10 - σu Case 11 - η Case 12 - t 

Linear Kinematic Case 13 Case 14 - H  Case 15 - η Case 16 - t 

Nonlinear Isotropic + 
Linear Kinematic 

Case 17 Case 18 - δ Case 19 - H Case 20 - η Case 21 - t 

 

Table3 is related to different values of parameters in the sensitivity analysis done on different cases. 

In this table Main parameters are mentioned in the left column and 3 variants are introduced for 

each one, as well. 

 Main Var_1 Var_2 Var_3 

K 50,000 25,000 50,000 100,000 

H 50,000 25,000 50,000 100,000 

δ 20,000 5,000 20,000 80,000 

σu 350 250 450 550 

η 5,000 1,000 5,000 10,000 

t 1 sec 10 sec 1 sec 0.5 sec 

 

In each part, first of all, the step by step curve is plotted in 3 colors, each color for one path of 

loading. Then the sensitivity analysis results are plotted and discussed. For the rate-dependent 

models, the stress-strain and the stress-time curves are going to show the influence of the viscosity 

parameter and the loading rate. It is evident and also experienced in all cases that the rate-

independent response can be recovered from the rate-dependent results using very small values for 

the viscosity or high values for the loading time (low loading rate). An interesting point in comparing 

the effect of viscosity and strain rate in rate dependent models is that by doubling the strain rate 

from one side and making the viscosity parameter half from the other side, the behavior of material 

would not undergo any change. This fact is studied in all 5 types of hardening scenarios and 

considering the page limit of this report, here only the results of sensitivity analysis on the viscosity 

are provided.   

Table2. Numerical simulation cases 

Table3. Sensitivity analysis values 
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2. Perfect Plasticity 

2.1. Rate Independent response 

The Stress-strain curves for a rate-independent 

model with linear elastic and perfect plastic 

response is provided in Figure1. Due to 3D nature 

of the model the material does not yield exactly 

when σy is reached by one of stress components. 

Rather it yields when the von Mises criteria is 

satisfied. The stress tensor σ can be interpreted 

as the sum of two stress tensors, namely the 

hydrostatic stress tensor as the cause of volume 

change in stressed material and the deviatoric 

stress tensor which tends to distort the material.  

 Figure1. rate-independent behavior of stress11 and 
deviatoric σ11 in perfect plasticity 

  

Figure2. Effect of poisson ratio on rate-independent 
behavior of stress11 in perfect plasticity 

Figure3. Effect of poisson ratio on rate-independent 
behavior of deviatoric σ11 in perfect plasticity 

The Von Mises yield condition is independent of hydrostatic stresses and predicts that the yielding of 

material begins exactly when the 2nd deviatoric stress invariant reaches a critical value (which is a 

function of the yield stress of the material in pure shear). So in this study more focus would be on 

the study of deviatoric part of the stress tensor which is predominant in defining the circular cylinder 

yield surface in the J2 model. 

Figure2 and Figure 3 provide the sensitivity analysis on Poisson ratio and as it was supposed by 

increasing the value of nu toward the limit of 0.5 since huge numbers are going to appear in the 

constitutive elastic tensor (since its denominators tend to zero), the stress values blow up in Figure2. 

2.2. Rate Dependent response 

For the rate dependent models, we can observe in Figure4 to Figure7 that as lower the viscosity 

parameter would be or as higher the duration of loading would be (blue line), the closer the results 

would be to the rate independent case (black line) because load is being applied gradually. 
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Figure4. Effect of viscosity on the rate-dependent 

behavior of stress11 in perfect plasticity 
Figure5. Effect of viscosity on the rate-dependent 

behavior of deviatoric σ11 in perfect plasticity 

  

Figure6. Effect of viscosity on the rate-dependent 
behavior of stress11 in perfect plasticity 

Figure7. Effect of viscosity on the rate-dependent 
behavior of deviatoric σ11 in perfect plasticity 

 

3. Linear Isotropic Hardening Plasticity 

3.1. Rate Independent response 

The effect of expansion in yield surface due to the 

isotropic hardening is portrayed in Figure8 and by 

comparing it to Figure1 for the perfect plastic 

case we clearly observe that the max and min 

value of deviatoric and main stress are 

considerably increased. 

Figure9 and Figure10 also deliver a perspective 

related to the effect of Isotropic hardening value 

(K) on the behavior of this model. So, increasing 

the value of K would dramatically affect the 

expansion rate, mainly in deviatoric stress tensor.  

 Figure8. rate-independent behavior of stress11 and 
deviatoric σ11 in linear isotropic hardening plasticity 
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Figure9. Effect of K on the rate-independent behavior 
of stress11 in isotropic hardening plasticity 

Figure10. Effect of K on the rate-dependent behavior 
of deviatoric σ11 in isotropic hardening plasticity 

3.2. Rate Dependent response 

Figure11 to Figure14 prove that as lower the viscosity parameter or as higher the duration of loading 

would be, the closer the results would be to the rate independent case (black line). 

  
Figure11. Effect of viscosity on the rate-independent 
behavior of stress11 in isotropic hardening plasticity 

Figure12. Effect of viscosity on rate-dependent 
behavior of dev σ11 in isotropic hardening plasticity 

  

Figure13. Effect of viscosity on the rate-independent 
behavior of stress11 in isotropic hardening plasticity 

Figure14. Effect of viscosity on rate-dependent 
behavior of dev σ11 in isotropic hardening plasticity 
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4. Nonlinear Isotropic Hardening Plasticity 

4.1. Rate Independent response 

For the nonlinear isotropic hardening a nonlinear 

exponential saturation law + linear part for the 

isotropic hardening is available in the code and 

for this purpose the well-known “Newton-

Raphson” iterative method is considered in order 

to calculate the gamma. Although for the sake of 

observation of exponential effect in all tests K=0 

is chosen and the linear part is omitted. 

Figure15 is comparable with Figure1 and Figure8 

and demonstrates the exponential convergence 

to the asymptotic value of the yield stress.  

 Figure15. rate-independent behavior of stress11 and 
deviatoric σ11 in nonlinear isotropic harden plasticity 

  

Figure16. Effect of delta on the rate-independent 
behavior of stress11 in nonlinear isotropic hardening 

Figure17. Effect of delta on the rate-independent 
behavior of dev σ11 in nonlinear isotropic hardening 

Figure16 and Figure17 describe the effect of exponential coefficient (delta) on models behavior. This 

effect is more visible in deviatoric stress tensor and it is evident that by increasing the delta value the 

rate at which stress-strain curve attain the asymptotic value of the yield stress (sigma infinity) is 

increased dramatically. Delta=20000 is chosen for the rest of this part. An interesting point in 

Figure11 is that by increasing the value of delta, material reaches to the sigma infinity so soon. So, 

the capacity of nonlinear behavior of material goes to end and in next cycles we would witness less 

and less nonlinear effect (red curve), because the asymptotic value of the yield stress is reached so 

early and the threshold is filled. 

4.2. Rate Dependent response 

Figure18 to Figure21 show that the rate independent results (black line) would be achieved if a low 

viscosity parameter or a high duration of loading is chosen (blue line) and they also exhibit the effect 

of increasing viscosity on the shape of stress-time curve, in order to study the increased deviatoric 

stress peaks that are available by the capacity of high rate dependency. 
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Figure18. Effect of viscosity on the rate-independent 
behavior of stress11 in nonlinear isotropic hardening 

Figure19. Effect of viscosity on rate-dependent 
behavior of dev σ11 in nonlinear isotropic hardening 

  

Figure20. Effect of viscosity on the rate-independent 
behavior of stress11 in nonlinear isotropic hardening 

Figure21. Effect of viscosity on rate-dependent 
behavior of dev σ11 in nonlinear isotropic hardening 

 

5. Linear Kinematic Hardening Plasticity 

5.1. Rate Independent response 

The effect of translation in yield surface due to 

the kinematic hardening is portrayed in Figure22. 

We can compare extreme tolerated deviatoric 

stresses by Figure1 for the perfect plastic case 

and see that yield surface is slightly shifted 

upward. 

Figure23 and Figure24 also deliver a perspective 

related to the effect of kinematic hardening value 

(H) on the behavior of this model. So, increasing 

the value of H would dramatically affect the 

translation rate, mainly in deviatoric stress 

tensor, Figure24. 
 

 Figure22. rate-independent behavior of stress11 and 
deviatoric σ11 in liniear kinematic harden plasticity 
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Figure23. Effect of H on the rate-independent 
behavior of stress11 in kinematic hardening plasticity 

Figure24. Effect of H on the rate-independent 
behavior of dev σ11 in kinematic hardening plasticity 

5.2. Rate Dependent response 

For the rate dependent model, we can observe in Figure25 and Figure26 that like previous cases as 

lower the viscosity parameter would be or as higher the duration of loading would be, closer the 

results would be to the rate independent case (black line). 

  
Figure25. Effect of viscosity on the rate-independent 
behavior of stress11 in kinematic hardening plasticity 

Figure26. Effect of viscosity on the rate-independent 
behavior of dev σ11 in kinematic hardening plasticity 

  

Figure27. Effect of viscosity on the rate-independent 
behavior of stress11 in kinematic hardening plasticity 

Figure28. Effect of viscosity on the rate-independent 
behavior of dev σ11 in kinematic hardening plasticity 
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Figure27 and Figure28 plot the stress-time curve for linear kinematic hardening and shows that the 

increased viscosity would case higher peaks in stress capacity in tension and compression and as 

lower the viscosity would be, closer the results would be to the rate independent case (black line). 

6. Nonlinear Isotropic and Linear Kinematic Hardening Plasticity 

6.1. Rate Independent response 

This part includes both isotropic (nonlinear) 

hardening and kinematic (linear) hardening. 

Figure29 has both effects and is comparable with 

Figure15 for the nonlinear isotropic and Figure22 

for the linear kinematic cases. 

Figure30 and Figure31 describe the effect of 

exponential coefficient (delta). As chapter 4.1 it is 

again evident that increase of delta would cause 

increase of the rate at which stress-strain curve 

reaches the asymptotic value of the sigma 

infinity, in both main and deviatoric stress parts.  

 Figure29. rate-independent behavior of stress11 and 
deviatoric σ11 in mixed hardening plasticity 

  
Figure30. Effect of delta on the rate-independent 
behavior of stress11 in mixed hardening plasticity 

Figure31. Effect of delta on the rate-independent 
behavior of dev σ11 in mixed hardening plasticity 

  

Figure32. Effect of H on the rate-independent 
behavior of stress11 in mixed hardening plasticity 

Figure33. Effect of H on the rate-independent 
behavior of dev σ11 in mixed hardening plasticity 
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Moreover, Figure32 and Figure33 clearly show the impact of adding the linear kinematic hardening 

term (H) beside nonlinear isotropic hardening model. 

6.2. Rate Dependent response 

The rate dependent behavior is somehow predictable from chapter4 and 5. Figure34 to Figure35 

show again that as lower the viscosity parameter would be or as higher the duration of loading 

would be (blue line), the closer the results would be to the rate independent case (black line) 

because load is being applied gradually. 

Figure36 and Figure37 also plot the stress-time curve for nonlinear isotropic + linear kinematic 

hardening and show that the increased viscosity would case higher peaks in stress capacity in tension 

and compression, mainly in deviatoric part of stress and as lower the viscosity would be, closer the 

results would be to the rate independent case (black line). 

  
Figure34. Effect of viscosity on the rate-independent 

behavior of stress11 in mixed hardening plasticity 
Figure35. Effect of viscosity on the rate-independent 

behavior of dev σ11 in mixed hardening plasticity 

  

Figure36. Effect of viscosity on the rate-independent 
behavior of stress11 in mixed hardening plasticity 

Figure37. Effect of viscosity on the rate-independent 
behavior of dev σ11 in mixed hardening plasticity 
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 Appendix: Code 

%% 3D Plasticity Model [J2] 

  
%============================================================% 
%            Linear isotropic hardening plasticity           % 
%         Nonlinear isotropic hardening plasticity           % 
%            Linear kinematic hardening plasticity           % 
%============================================================% 
%                                                            % 
%--INPUTS----------------------------------------------------% 
%                                                            % 
%  SIGy         : Yield Stress                               % 
%  SIGu         : Ultimate Stress                            % 
%  E            : Young's Modulus                            % 
%  K            : Isotropic Hardening Modulus                % 
%  H            : Kinematic Hardening Modulus                % 
%  Delta        : Exponential Parameter                      % 
%  Eta          : Viscosity Coefficient                      % 
%  nPath        : Number of Loading path                     % 
%  nStep        : Number of time steps in each path          % 
%  Strain_rate  : Number of time steps in each path          % 
%  nu           : Poisson ratio                              % 
%                                                            % 
%--OUTPUTS---------------------------------------------------% 
%                                                            % 
%  EPS_input    : Strain Cyclic Loading Points [INPUT DATA]  % 
%  EPS          : Strain Evolution                           % 
%  EPS_p        : Plastic Strain Evolution                   % 
%  SIG          : Stress Evolution                           % 
%  EPS_p_tr     : Trial Plastic Strain                       % 
%  EPS_e_tr     : Trial elastic Strain                       % 
%  SIG_tr       : Trial Stress                               % 
%  EPS_Hist     : Strain History                             % 
%  SIG_Hist     : Stress History                             % 
%                                                            % 
%------------------------------------------------------------% 
clc; clear all; %close all; 

  
colors = input('colors = 1:black - 2:blue - 3:green - 4:red '); 
axislimit    = 4; 

  
nu           = 0.3; 
SIGy         = 200; 
SIGu         = 350; 
E            = 200000; 

  
K            = 50000*0; 
H            = 50000*1; 
Delta        = 5000*4; 

  
Eta          = 1000*10; 

  
nPath        = 3; 
nStep        = 50; 
% Strain_rate  = 0.00105;     % for t = 10 sec 
Strain_rate  = 0.01050;       % for t = 1 sec 
% Strain_rate  = 0.02100;     % for t = 0.5 sec 

  
EPS_input(1) =  0.0000;     %Strain Cyclic Loading Points [INPUT DATA] 
EPS_input(2) =  0.0025;     %max number = nPath+1 
EPS_input(3) = -0.0025;      
EPS_input(4) =  0.0005; 

Input data by user 

Cyclic loading Strain points 
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%% DEFINING STRAIN & STRESS ARRAY  

  
TotStep  = nPath*nStep; 
StepTime = zeros(nPath,1); 
dt       = zeros(TotStep,1); 
Timing   = zeros(TotStep,1); 
EPS_Path = zeros(nPath,nStep); 

  
for i=1:nPath 
    StepTime(i) = abs(EPS_input(i+1) - EPS_input(i)) / Strain_rate; 
    dt( (i-1)*nStep+1 : i*nStep ) = StepTime(i) / nStep; 
    EPS_Path(i,:) = linspace( EPS_input(i) , EPS_input(i+1) , nStep ); 
end 
TotTime = sum(StepTime(:)); 

  
for i=2:TotStep 
    Timing(i) = Timing(i-1) + dt(i); 
end 

  
SIG_Hist = zeros(TotStep,1); 
EPS_Hist = EPS_Path(1,:)'; 
for i=2:nPath 
    EPS_Hist = [EPS_Hist ; EPS_Path(i,:)']; 
end 

  
%-------------------------------------------------------------------------- 
EPS{1}   = zeros(TotStep,6);    % { epsilon } 
EPS{2}   = zeros(TotStep,1);    % { 0 } 
EPS{3}   = zeros(TotStep,6);    % { 0 } 

  
EPS_p{1} = zeros(TotStep,6);    % { epsilon plastic } 
EPS_p{2} = zeros(TotStep,1);    % { exi } 
EPS_p{3} = zeros(TotStep,6);    % { exi_bar } 

  
SIG{1}   = zeros(TotStep,6);    % { sigma } 
SIG{2}   = zeros(TotStep,1);    % { q } 
SIG{3}   = zeros(TotStep,6);    % { q_bar } 

  
%-------------------------------------------------------------------------- 
E11 = E * (1-nu) / ( (1+nu) * (1-2*nu) ); 
E12 = E *  nu    / ( (1+nu) * (1-2*nu) ); 
E44 = E          / ( (1+nu) * 2        ); 

  
EE = [  E11 E12 E12 0   0   0; 
        E12 E11 E12 0   0   0; 
        E12 E12 E11 0   0   0; 
        0   0   0   E44 0   0; 
        0   0   0   0   E44 0;  
        0   0   0   0   0   E44]; 
KK = K; 
HH =(2/3) * H * eye(6); 
mu = E44; 

  
  

 

 

 

 

 

 

Building required arrays for 

strain and stress evolution 

Constitutive Elastic Tensor 
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%% The Loading Cycle Loop 

  
EPS{1}(:,1) = EPS_Hist; 

  
for i=2:TotStep 
%---------------------------------------------------------------Trial state 
    EPS_p_tr{1} = EPS_p{1}(i-1,:);  
    EPS_p_tr{2} = EPS_p{2}(i-1,:); 
    EPS_p_tr{3} = EPS_p{3}(i-1,:); 

  
    EPS_e_tr{1} = EPS{1}(i,:) - EPS_p_tr{1}; 
    EPS_e_tr{2} = EPS{2}(i,:) - EPS_p_tr{2}; 
    EPS_e_tr{3} = EPS{3}(i,:) - EPS_p_tr{3}; 

  
    SIG_tr{1}   = (EE * EPS_e_tr{1}')'; 
    SIG_tr{2}   =  KK * EPS_e_tr{2}; 
    SIG_tr{3}   = (HH * EPS_e_tr{3}')'; 

     
    SIG_mean_tr = sum(SIG_tr{1}(1:3))/3; 
    SIG_HYD_tr  = SIG_mean_tr * [1,1,1,0,0,0]; 
    SIG_DEV_tr  = SIG_tr{1} - SIG_HYD_tr; 

     
    n_tr = ( SIG_DEV_tr - SIG_tr{3} ) / norm( SIG_DEV_tr - SIG_tr{3} ); 

     
    F_tr = norm( SIG_DEV_tr - SIG_tr{3} ) - sqrt(2/3)*(SIGy - SIG_tr{2}); 
    if  F_tr <= 0 
    %----------------------------------------------------------Elastic Part 
        EPS_p{1}(i,:) = EPS_p_tr{1}; 
        EPS_p{2}(i,:) = EPS_p_tr{2}; 
        EPS_p{3}(i,:) = EPS_p_tr{3}; 

  
        SIG{1}(i,:) = SIG_tr{1}; 
        SIG{2}(i,:) = SIG_tr{2}; 
        SIG{3}(i,:) = SIG_tr{3}; 

  
        EE_ep = EE; 
        Gam  = 0;     
    else 
    %----------------------------------------------------------Plastic Part 
        if Delta==0       %===== Linear  Hardening =====% 
            Gam = F_tr / ( 2*mu + 2/3*K + 2/3*H + Eta/dt(i) ) / dt(i); 
        else              %==== Nonlinear Hardening ====% 
            tol = 1e-6; 
            g   = 0.01;  
            Gam = 0;  
            while g>=tol 
                X1   = EPS_p{2}(i,:); 
                X2   = EPS_p{2}(i,:) + Gam * dt(i) * sqrt(2/3); 
                Pi1  = ( SIGu - SIGy ) * ( 1 - exp(-Delta * X1) ) + K * X1; 
                Pi2  = ( SIGu - SIGy ) * ( 1 - exp(-Delta * X2) ) + K * X2; 
                Pii2 = ( SIGu - SIGy ) * Delta * exp(-Delta * X2) + K ; 

  
                g    = F_tr - Gam * dt(i) * ( 2*mu + 2/3*H + Eta/dt(i) ) - 

sqrt(2/3)*(Pi2 - Pi1); 
                Dg   = -dt(i) * ( 2*mu + 2/3*Pii2 + 2/3*H + Eta/dt(i) ); 
                DGam = -g / Dg; 
                Gam  = Gam + DGam; 
            end 
        end 

         
        X1  = EPS_p{2}(i,:); 
        X2  = EPS_p{2}(i,:) + Gam * dt(i) * sqrt(2/3); 
        Pi1 = ( SIGu - SIGy ) * ( 1 - exp(-Delta * X1) ) + K * X1; 

Loop for each loading step 

Trial State Stresses 

Linear hardening 

Nonlinear hardening 

Newton-Raphson algorithm 
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        Pi2 = ( SIGu - SIGy ) * ( 1 - exp(-Delta * X2) ) + K * X2; 

         
        SIG{1}(i,:)   = SIG_tr{1} - Gam * dt(i) * 2 * mu * n_tr; 
        SIG{2}(i,:)   = SIG_tr{2} - (Pi2-Pi1); 
        SIG{3}(i,:)   = SIG_tr{3} + Gam * dt(i) * 2/3 * H * n_tr; 

  
        EPS_p{1}(i,:) = EPS_p{1}(i-1,:) + Gam * dt(i) * n_tr; 
        EPS_p{2}(i,:) = EPS_p{2}(i-1,:) + Gam * dt(i) * sqrt(2/3); 
        EPS_p{3}(i,:) = EPS_p{3} (i-1,:) - Gam * dt(i) * n_tr; 

  
    end 

     
    SIG_mean = sum(SIG{1}(i,1:3))/3; 
    SIG_HYD  = SIG_mean * [1,1,1,0,0,0]; 
    SIG_DEV  = SIG{1}(i,:) - SIG_HYD; 

     
    SIG_Hist(i,1) = SIG{1}(i,1); 
    SIG_Hist(i,2) = SIG_DEV(1); 
end 

  
%% Plot 
plotcurves_3D(EPS_Path,EPS_Hist,SIG_Hist,Timing,nStep,colors,axislimit); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final stress and strain value 

at step 

Plotting 
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function plotcurves_3D(EPS_Path,EPS_Hist,SIG_Hist,Timing,nStep,colors,axislimit) 

  
%-------------------------------------------------------------------------- 
figure(1); 
plot(EPS_Path(1,:),SIG_Hist(1         :  nStep,1) 

,'g','LineWidth',1,'Marker','o','MarkerSize',5); grid on; hold on; 
plot(EPS_Path(2,:),SIG_Hist(1+  nStep :2*nStep,1) 

,'m','LineWidth',1,'Marker','^','MarkerSize',5); grid on; hold on; 
plot(EPS_Path(3,:),SIG_Hist(1+2*nStep :3*nStep,1) 

,'r','LineWidth',1,'Marker','d','MarkerSize',5); grid on; hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400])  
    case 3; axis([-0.003,0.003,-500,500]) 
    case 4; 
end 
xlabel('\epsilon_{11}','FontSize',12,'FontWeight','bold')  
ylabel('\sigma_{11}','FontSize',12,'FontWeight','bold')  
set(gca,'GridLineStyle','-'); 

  
%-------------------------------------------------------------------------- 
figure(2); 
plot(EPS_Path(1,:),SIG_Hist(1         :  nStep,2) 

,'g','LineWidth',1,'Marker','o','MarkerSize',5); grid on; hold on; 
plot(EPS_Path(2,:),SIG_Hist(1+  nStep :2*nStep,2) 

,'m','LineWidth',1,'Marker','^','MarkerSize',5); grid on; hold on; 
plot(EPS_Path(3,:),SIG_Hist(1+2*nStep :3*nStep,2) 

,'r','LineWidth',1,'Marker','d','MarkerSize',5); grid on; hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400]) 
    case 3; axis([-0.003,0.003,-500,500])  
    case 4; 
end 
xlabel('\epsilon_{11}','FontSize',12,'FontWeight','bold') 
ylabel('Dev \sigma_{11}','FontSize',12,'FontWeight','bold')  
set(gca,'GridLineStyle','-'); 

  
%-------------------------------------------------------------------------- 
switch colors 
    case 1; cc='k'; mm='o'; 
    case 2; cc='b'; mm='d'; 
    case 3; cc='g'; mm='^'; 
    case 4; cc='r'; mm='.'; 
end 

  
%-------------------------------------------------------------------------- 
figure(3); 
plot(EPS_Hist,SIG_Hist(:,1) ,cc,'LineWidth',1,'Marker','o','MarkerSize',2); grid 

on; hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400]) 
    case 3; axis([-0.003,0.003,-500,500]) 
    case 4; 
end 
xlabel('\epsilon_{11}','FontSize',12,'FontWeight','bold') 
ylabel('\sigma_{11}','FontSize',12,'FontWeight','bold')  
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  
%-------------------------------------------------------------------------- 
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figure(4); 
plot(EPS_Hist,SIG_Hist(:,2) ,cc,'LineWidth',1,'Marker','o','MarkerSize',2); grid 

on; hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400]) 
    case 3; axis([-0.003,0.003,-500,500]) 
    case 4; 
end 
xlabel('\epsilon_{11}','FontSize',12,'FontWeight','bold') 
ylabel('Dev \sigma_{11}','FontSize',12,'FontWeight','bold')  
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  

  
%-------------------------------------------------------------------------- 
figure(5); 
plot(Timing,SIG_Hist(:,1) ,cc,'LineWidth',1,'Marker','o','MarkerSize',2); grid on; 

hold on; 
xlabel('time','FontSize',12,'FontWeight','bold') 
ylabel('\sigma_{11}','FontSize',12,'FontWeight','bold')  
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  
%-------------------------------------------------------------------------- 
figure(6); 
plot(Timing,SIG_Hist(:,2) ,cc,'LineWidth',1,'Marker','o','MarkerSize',2); grid on; 

hold on; 
xlabel('time','FontSize',12,'FontWeight','bold') 
ylabel('Dev \sigma_{11}','FontSize',12,'FontWeight','bold')  
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  

  
%-------------------------------------------------------------------------- 
figure(7); 
plot(EPS_Hist,SIG_Hist(:,1),'b','LineWidth',1,'Marker','o','MarkerSize',2); grid 

on; hold on; 
plot(EPS_Hist,SIG_Hist(:,2),'r','LineWidth',1,'Marker','o','MarkerSize',2); grid 

on; hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400]) 
    case 3; axis([-0.003,0.003,-500,500])  
    case 4; 
end 
xlabel('\epsilon_{11}','FontSize',12,'FontWeight','bold') 
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  
end 
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