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1. Introduction 

This is the first part of the report for Assignment_2, the course “Computational Mechanics in Solids” 

which deals with 1D Plasticity models. The goal in this project is to implement the algorithm of 

constitutive model at gauss integration level in order to check the performance of 1D plastic model, 

so there would be no discretization of continuum model nor mesh procedure for the finite element 

method. 

In this project, data base (Input 

variables) would be strains; so we 

have a strain driven code and 

along this way, backward Euler 

time stepping algorithm for one 

dimensional plasticity is 

implement covering both rate 

independent and rate dependent 

models. However, the code is 

only implemented for the rate 

dependent case and as a 

consequence of choosing zero 

viscosity parameter it would 

behave rate independent. 

Different models for including 

hardening behaviors which are 

exploited in the code are 

introduced in Chart1 and for all 

mentioned scenarios different 

numerical simulation of uniaxial 

cyclic plastic loading/elastic 

unloading examples are performed using the Matlab code which is provided and discussed in the 

Annex. 

For all cases the Young modulus is taken [E = 200,000 

MPa] and the yield stress as [σy = 200 MPa]. These 

material property values are almost in the range of steel. 

For the cyclic loading path, two scenarios are considered 

in Table1. One is the regular three paths loading which is 

the main loading scenario for Chapter2 to Chapter6 and 

captures the Tension-Compression-Tension behavior of 

material. The other one is a full 9 path cyclic loading and 

captures final asymptotical values for some special cases 

which is detailed in Chapter7. 

Models Behavior 
With respect to  

 
Hardening 
Procedure 

 

Models Behavior 
 With respect to 

 
Rate of Loading 

 

 Chart1. Plasticity Models. 

Strain point 
Loading 

scenario 1 
Loading 

scenario 1 

1st point 0 0 

2nd point 0.0025 0.0025 

3rd point -0.0025 -0.0025 

4th point 0.0015 0.0045 

5th point  -0.0065 

6th point  0.0065 

7th point  -0.0085 

8th point  0.0085 

9th point  -0.0105 

No Hardening 

Linear Isotropic 

Non-linear Isotropic 

Linear Kinematic 

Isotropic + Kinematic 

Rate Independent 

Rate Dependent 

Table1. Cyclic Loading Scenarios 
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Based on Table2, 21 loading cases are studied In Chapter2 to Chapter6. In order to explain these 

cases, it is important to note that 5 Hardening type are considered into account and for each 

hardening type, 2 models of rate-independent and rate-dependent are considered. For any of which 

some sensitivity analysis is studied that can be checked in detail in Table2. 

Hardening Type 

RATE INDEPENDENT RATE DEPENDENT 

Main 
case 

Sensitivity 
analysis 1 

Sensitivity 
analysis 2 

Sensitivity 
analysis 1 

Sensitivity 
analysis 2 

Perfect Plasticity Case  1   Case  2 - η Case  3 - t 

Linear Isotropic Case  4 Case  5 - K  Case  6 - η Case  7 - t 

Nonlinear Isotropic Case  8 Case  9 - δ Case 10 - σu Case 11 - η Case 12 - t 

Linear Kinematic Case 13 Case 14 - H  Case 15 - η Case 16 - t 

Nonlinear Isotropic + 
Linear Kinematic 

Case 17 Case 18 - δ Case 19 - H Case 20 - η Case 21 - t 

 

Table3 is related to different values of parameters in the sensitivity analysis done on different cases. 

In this table Main parameters are mentioned in the left column and 3 variants are introduced for 

each one, as well. 

 Main Var_1 Var_2 Var_3 

K 50,000 25,000 50,000 100,000 

H 50,000 25,000 50,000 100,000 

δ 20,000 5,000 20,000 80,000 

σu 350 250 450 550 

η 5,000 1,000 5,000 10,000 

t 1 sec 10 sec 1 sec 0.5 sec 

 

In each part, first of all, the step by step curve is plotted in 3 colors, each color for one path of 

loading. Then the sensitivity analysis results are plotted and discussed. For the rate-dependent 

models, the stress-strain and the stress-time curves are going to show the influence of the viscosity 

parameter and the loading rate. It is evident and also experienced in all cases that the rate-

independent response can be recovered from the rate-dependent results using very small values for 

the viscosity or high values for the loading time (low loading rate).  

Table2. Numerical simulation cases 

Table3. Sensitivity analysis values 
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2. Perfect Plasticity 

For the first case, the perfect plasticity model is considered in which all hardening parameters are set 

to zero. The Stress-strain curve for a rate-

independent elastoplastic model with linear 

elastic and perfect plastic response is provided 

in Figure1. As it is supposed the material yields 

exactly when it reaches the yield stress limit 

(200 MPa) and after this threshold it would not 

experience any kind of hardening. In other 

word, after yielding the material would 

experience more and more strains without any 

increase in bearing capacity. However, it is in 

theory and in fact after reaching some specific 

point which is the ultimate stress point the 

material would break. Here we can clearly 

observe the changes of loading direction which are shown by blue marks and see that material does 

not go further the yield stress (200 MPa) due to the perfect plastic nature. 

  
Figure2. Effect of viscosity parameter on the 

bahavior of rate-dependent perfect plastic model. 
Figure3. Effect of loading duration on the bahavior of 

rate-dependent perfect plastic model. 

For the rate dependent models, we can observe 

in Figure2 to Figure4 that as lower the viscosity 

parameter would be or as higher the duration of 

loading would be (blue line), the closer the results 

would be to the rate independent case (black 

line) because load is being applied gradually. As a 

general rule, one can interpret the behavior of 

rate dependency to an additional hardening 

added to model, but in high strain rates. 
 

 

 
Figure4. Effect of viscosity parameter on the 

bahavior of rate-dependent perfect plastic model. 

 
Figure1. rate-independent perfect plasticity. 
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3. Linear Isotropic Hardening Plasticity 

3.1. Rate Independent response 

The effect of expansion in yield surface due to the isotropic hardening is clearly portrayed in Figure5 

in which the stress data in first blue mark (+250 = end of 1st path) is transferred to the 2nd path and 

material here yields in -250 MPa instead of -200 MPa. This increased capacity is due to the nature of 

this plasticity model and the same rule goes for two orange circle marks where the 3rd path also 

expands and starts to yield in +350MPa instead of +200MPa, because of previous stress history. 

  
Figure5. rate-independent linear Isotropic hardening 

plasticity 
Figure6. Effect of K on the bahavior of rate-
independent Isotropic hardening plasticity 

Figure6 also delivers a good perspective related to the effect of Isotropic hardening value (K) on the 

behavior of this model. So, increasing the value of K would dramatically affect the expansion rate. 

3.2. Rate Dependent response 

For the rate dependent models, we can observe in Figure7 and Figure8 that as lower the viscosity 

parameter would be or as higher the duration of loading would be, the closer the results would be to 

the rate independent case (black line) because load is being applied gradually 

  
Figure7. Effect of viscosity parameter on the 

bahavior of rate-dependent isotropic hardening 
plasticity 

Figure8. Effect of loading duration (strain rate) on 
the bahavior of rate-dependent isotropic hardening 

plasticity 

Expansion of 

yield surface 
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An interesting point in comparing previous 

figures (Figure7 and 8) is that by doubling the 

strain rate from one side and making the 

viscosity parameter half from the other side, 

the behavior of material would not undergo 

any change. This fact is studied by comparing 

red curves in Figure7 and Figure8. 

And finally Figure9 exhibits effect of increasing 

viscosity on the shape of stress-time curve, in 

order to study the increased stress peaks. 

 

4. Nonlinear Isotropic Hardening Plasticity 

4.1. Rate Independent response 

For the nonlinear isotropic hardening a 

nonlinear exponential saturation law + linear 

part for the isotropic hardening is studied in the 

code and for this purpose the well-known 

“Newton-Raphson” iterative method is 

considered in order to calculate the gamma. 

Figure10 shows that in nonlinear isotropic 

models there is no a distinguishable yield point 

and yield procedure does not occur exactly on 

sigma-Y. The blue arrow shows the +200 MPa 

which was supposed to be the yield stress 

point, but we see that stress curve is going 

further and the blue circle describes the nonlinear convergence to the asymptotic value of stress. 

  
Figure11. Effect of delta parameter on the bahavior 

of rate-dependent nonlinear isotropic hardening 
plasticity 

Figure12. Effect of sigma infinity on the bahavior of 
rate-dependent nonlinear isotropic hardening 

plasticity 

 
Figure9. Effect of viscosity parameter on the bahavior 

of rate-dependent isotropic hardening plasticity 

 
Figure10. rate-independent nonlinear isotropic 

hardening plasticity 
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Figure11 describes the effect of exponential coefficient (delta) on models behavior. It is evident that 

by increasing the delta value the rate at which stress-strain curve attain the asymptotic value of the 

yield stress (sigma infinity) is increased dramatically. Delta=20000 is chosen for the rest of this part. 

An interesting point in Figure11 is that by increasing the value of delta, material reaches to the sigma 

infinity so soon. So, the capacity of nonlinear behavior of material goes to end and in next cycles we 

would witness less and less nonlinear effect (red curve), because the asymptotic value of the yield 

stress is reached so early and the threshold is filled. 

On the other hand Figure12 shows the crucial effect of choosing a proper guess for the asymptotic 

value of the yield stress (sigma infinity). It demonstrates that if the difference between yield stress 

and asymptotic value of the yield stress is too low (blue curve) then the nonlinear effect would not 

have any visible effect rather than the linear isotropic hardening plasticity model. So as the 

consequence of this study the proper value of 350 MPa is chosen for this study in order to study the 

effect of nonlinear isotropic hardening plasticity in the rest of this report. 

4.2. Rate Dependent response 

  

Figure13. Effect of viscosity parameter on the 
bahavior of rate-dependent nonlinear isotropic 

hardening plasticity. 

Figure14. Effect of loading duration on the bahavior 
of rate-dependent nonlinear isotropic hardening 

plasticity. 

In this report we use nonlinear model of 

exponential saturation model and drop out the 

term corresponding to the linear part (K) in order 

to capture exactly the exponential gradient. 

 

Figure13 to Figure15 shows that the rate 

independent results (black line) would be 

achieved if a low viscosity parameter or a high 

duration of loading is chosen (blue line). 
 

 

 Figure15. Effect of viscosity parameter on the 
bahavior of rate-dependent nonlinear isotropic 

hardening plasticity. 
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5. Linear Kinematic Hardening Plasticity 

5.1. Rate Independent response 

The kinematic hardening causes translation in yield surface and this effect is portrayed in Figure16 

where the stress data in first blue mark (+250 = end of 1st path) is caused the 2nd path to yield much 

earlier (in -150 MPa instead of -200 MPa). This is due to the nature of this plasticity model and the 

same rule goes for two orange marks which makes the 3rd path also shifts and starts to yield in 

+150MPa instead of +200MPa. 

  
Figure16. rate-independent linear kinematic 

hardening plasticity 
Figure17. Effect of H value on the bahavior of rate-

independent kinematic hardening plasticity 

Figure17 also gives a perspective related to the effect of kinematic hardening value (H) on the 

behavior of this model. So, increasing the value of H would affect the translation rate. 

5.2. Rate Dependent response 

For the rate dependent model, we can observe in Figure18 and Figure19 that like previous cases as 

lower the viscosity parameter would be or as higher the duration of loading would be, closer the 

results would be to the rate independent case (black line) because load is being applied gradually. 

  
Figure18. Effect of viscosity parameter on the 
bahavior of rate-dependent linear kinematic 

hardening plasticity. 

Figure19. Effect of loading duration on the bahavior 
of rate-dependent linear kinematic hardening 

plasticity. 

Translation of 

yield surface 
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Figure20 plots the stress-time curve for the 

linear kinematic hardening and as we can see 

the increase in viscosity parameter would case 

higher peaks in stress capacity both in tension 

and compression and as lower the viscosity 

parameter would be, closer the results would 

be to the rate independent case (black line). 

One of the main reasons of using cyclic loading 

in this report is to compare the isotropic and 

kinematic hardening effect together. 

Comparing Figure16 to Figure5 and Figure18 to 

Figure7 clearly demonstrate the main 

differences between these two models. As for 

the isotropic case we have expansion and in kinematic case we have translation in the yield surface. 

Both are sensitive to viscosity parameter and strain rate in the rate dependent models. 

 

6. Nonlinear Isotropic and Linear Kinematic Hardening Plasticity 

6.1. Rate Independent response 

This is the most complete model studied in this report. It includes both isotropic (nonlinear) 

hardening and kinematic (linear) hardening. Figure21 has both effects and is comparable with 

Figure10 for only nonlinear isotropic and Figure16 for only linear kinematic cases. 

  
Figure21. rate-independent nonlinear isotropic + 

linear kinematic hardening plasticity 
Figure22. Effect of linear term K in the behavoir of 

rate-independent nonlinear isotropic + linear 
kinematic hardening plasticity 

On the other hand, as it was mentioned earlier in this report we use nonlinear model of exponential 

saturation model and drop out the term corresponding to the linear part (K) in order to capture 

exactly the exponential gradient. However, Figure22 clearly shows the huge impact of adding the 

linear term (K) in nonlinear isotropic hardening model. Comparing to Figure24 in next page we can 

observe that the effect of K is completely meaningful in relation with the effect of H parameter. 

 
Figure20. Effect of viscosity parameter on the 
bahavior of rate-dependent linear kinematic 

hardening plasticity. 
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And finally, Figure23 describes the effect of exponential coefficient (delta). Like chapter 4.1 it is again 

obvious that by increasing the value of delta the rate at which stress-strain curve reaches the 

asymptotic value of the yield stress (sigma infinity) is increased dramatically.  

  
Figure23. Effect of delta on the bahavior of rate-

dependent nonlinear isotropic hardening plasticity 
Figure24. Effect of H value on the bahavior of rate-

independent kinematic hardening plasticity 

6.2. Rate Dependent response 

  
Figure25. Effect of viscosity parameter on the 

bahavior of mixed perfect plastic model. 
Figure26. Effect of loading duration on the bahavior 

of rate-dependent mixed plastic model. 

The rate dependent behavior is somehow 

predictable from chapter4 and 5. Figure25 to 

Figure26 shows again that as lower the viscosity 

parameter would be or as higher the duration of 

loading would be (blue line), the closer the results 

would be to the rate independent case (black 

line) because load is being applied gradually. 
 

 

 
Figure27. Effect of viscosity parameter on the 

bahavior of rate-dependent mixed plastic model. 
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7. Full Cyclic Loading 

As mentioned in the introduction, here the 2nd loading scenario as a full 9 path cyclic loading is 

considered. Figure28 and Figure29 studies the effect of expansion of linear isotropic hardening 

model and translation of linear kinematic hardening model compared to the perfect plastic model 

(black line). In this special case K and H is chosen equally as 25000. And no rate dependency is 

considered for the comparison. 

  
Figure28. stress-strain comparison of hardenig 

plasticity models in  full cyclic load 
Figure29. stress-time comparison of hardenig 

plasticity models in  full cyclic load 

Moreover, to study the behavior of nonlinear isotropic hardening model and in order to captures the 

convergence of model to final asymptotical stress value, Figure30 and Figure31 are provided. 

Here delta is chosen 2000 (K=0) and as we see, the value of sigma infinity (350MPa) is almost 

reached after 2 complete cycles and from there the value of tolerated stress would not go above 

more. This fact is the opposite point of linear hardening models in which there is no theoretical limit 

for maintaining the final stress. 

  
Figure30. Effect of nonlinear isotropic hardening 

plasticity on the stress-strain curve 
Figure31. Effect of nonlinear isotropic hardening 

plasticity on the stress-time curve 
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 Appendix: Code 

 
%% 1D Plasticity Model 

  
%============================================================% 
%            Linear isotropic hardening plasticity           % 
%         Nonlinear isotropic hardening plasticity           % 
%            Linear kinematic hardening plasticity           % 
%============================================================% 
%                                                            % 
%--INPUTS----------------------------------------------------% 
%                                                            % 
%  SIGy         : Yield Stress                               % 
%  SIGu         : Ultimate Stress                            % 
%  E            : Young's Modulus                            % 
%  K            : Isotropic Hardening Modulus                % 
%  H            : Kinematic Hardening Modulus                % 
%  Delta        : Exponential Parameter                      % 
%  Eta          : Viscosity Coefficient                      % 
%  nPath        : Number of Loading path                     % 
%  nStep        : Number of time steps in each path          % 
%  Strain_rate  : Number of time steps in each path          % 
%  EPS_input    : Strain Cyclic Loading [INPUT DATA]         % 
%                                                            % 
%--OUTPUTS---------------------------------------------------% 
%                                                            % 
%  EPS          : Strain Evolution                           % 
%                 {epsilon , 0 , 0 }                         % 
%  EPS_p        : Plastic Strain Evolution                   % 
%                 {epsilon plastic , exi , exi_bar}          % 
%  SIG          : Stress Evolution                           % 
%                 {sigma , q , q_bar }                       % 
%  EPS_p_tr     : Trial Plastic Strain                       % 
%  EPS_e_tr     : Trial Elastic Strain                       % 
%  SIG_tr       : Trial Stress                               % 
%  EPS_Hist     : Strain History                             % 
%  SIG_Hist     : Stress History                             % 
%                                                            % 
%------------------------------------------------------------% 
clc; clear all; %close all; 

  
colors = input('colors = 1:black - 2:blue - 3:green - 4:red '); 
axislimit    = 4; 

  
SIGy         = 200;  
SIGu         = 350; 
E            = 200000; 
K            = 50000*0; 
H            = 50000*0; 
Delta        = 20000*0; 
Eta          = 1000*0; 
nPath        = 9; 
nStep        = 50; 
% Strain_rate  = 0.00115;     % for t = 10 sec 
Strain_rate  = 0.01150;       % for t = 1 sec 
% Strain_rate  = 0.02300;     % for t = 0.5 sec 

  
EPS_input(1) =  0.0000;     %Strain Cyclic Loading Points [INPUT DATA] 
EPS_input(2) =  0.0025;     %max number = nPath+1 
EPS_input(3) = -0.0025;      
EPS_input(4) =  0.0035; 
EPS_input(5) = -0.0035;  

Input data by user 

Cyclic loading Strain points 
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EPS_input(6) =  0.0045; 
EPS_input(7) = -0.0045; 
EPS_input(8) =  0.0055; 
EPS_input(9) = -0.0055; 
EPS_input(10)=  0.0065; 

  

  
%% DEFINING STRAIN & STRESS ARRAY  

  
TotStep  = nPath*nStep;         % Total number of steps after full cycle 
StepTime = zeros(nPath,1);      % Time of loading in each path 
dt       = zeros(TotStep,1);    % Delta t in each loading step 
Timing   = zeros(TotStep,1);    % Time Step Evolutions 
EPS_Path = zeros(nPath,nStep);  % Evolution of strain in each path 

  
for i=1:nPath 
    StepTime(i) = abs(EPS_input(i+1) - EPS_input(i)) / Strain_rate; 
    dt( (i-1)*nStep+1 : i*nStep ) = StepTime(i) / nStep; 
    EPS_Path(i,:) = linspace( EPS_input(i) , EPS_input(i+1) , nStep ); 
end 
TotTime = sum(StepTime(:));     % Time of loading after full cycle 

  
for i=2:TotStep 
    Timing(i) = Timing(i-1) + dt(i); 
end 

  
SIG_Hist = zeros(TotStep,1);    % Strain History 
EPS_Hist = EPS_Path(1,:)';      % Stress History 
for i=2:nPath 
    EPS_Hist = [EPS_Hist ; EPS_Path(i,:)']; 
end 

  
%-------------------------------------------------------------------------- 
EPS   = zeros(TotStep,3);       % Strain Evolution 
EPS_p = zeros(TotStep,3);       % Plastic Strain Evolution 
SIG   = zeros(TotStep,3);       % Stress Evolution 

  
  

 

 

 
% The Loading Cycle Loop 

  
EPS(:,1) = EPS_Hist; 

  
for i=2:TotStep 
%---------------------------------------------------------------Trial State 
    EPS_p_tr = EPS_p(i-1,:); 
    EPS_e_tr = EPS(i,:) - EPS_p_tr; 
    SIG_tr   = [E * EPS_e_tr(1) , K * EPS_e_tr(2) , H * EPS_e_tr(3)]; 

     
    F_tr     = abs( SIG_tr(1) - SIG_tr(3) ) - (SIGy - SIG_tr(2)); 
    if  F_tr <= 0 
    %----------------------------------------------------------Elastic Part 
        EPS_p(i,:) = EPS_p_tr; 
        SIG(i,:)   = SIG_tr; 
        E_ep = E; 
        Gam  = 0;     
    else 
    %----------------------------------------------------------Plastic Part 
        if Delta==0       %===== Linear  Hardening =====% 
            Gam = F_tr / ( E + K + H + Eta/dt(i) ) / dt(i); 

Loop for each loading step 

Building required arrays for 

strain and stress evolution 

Linear hardening 
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        else              %==== Nonlinear Hardening ====% 
            tol = 1e-6; 
            g   = 0.01; 
            Gam = 0;  
            while g>=tol 
                X1   = EPS_p(i,2); 
                X2   = EPS_p(i,2) + Gam * dt(i); 
                Pi1  = ( SIGu-SIGy ) * ( 1 - exp(-Delta * X1) ) + K * X1; 
                Pi2  = ( SIGu-SIGy ) * ( 1 - exp(-Delta * X2) ) + K * X2; 
                Pii2 = ( SIGu-SIGy ) * Delta * exp(-Delta * X2) + K ; 

  
                g    = F_tr - Gam*dt(i) * ( E+H+Eta/dt(i) ) - (Pi2-Pi1); 
                Dg   = -dt(i) * ( E + Pii2 + H + Eta/dt(i) );  
                DGam = -g / Dg; 
                Gam  = Gam + DGam; 
            end 
        end 

         
        X1  = EPS_p(i,2); 
        X2  = EPS_p(i,2) + Gam * dt(i); 
        Pi1 = ( SIGu - SIGy ) * ( 1 - exp(-Delta * X1) ) + K * X1; 
        Pi2 = ( SIGu - SIGy ) * ( 1 - exp(-Delta * X2) ) + K * X2; 

         
        SIG(i,1)   = SIG_tr(1) - Gam*dt(i) *E * sign(SIG_tr(1)-SIG_tr(3)); 
        SIG(i,2)   = SIG_tr(2) - (Pi2-Pi1); 
        SIG(i,3)   = SIG_tr(3) + Gam*dt(i) *H * sign(SIG_tr(1)-SIG_tr(3)); 

         
        EPS_p(i,1) = EPS_p(i-1,1) + Gam*dt(i) * sign(SIG_tr(1)-SIG_tr(3)); 
        EPS_p(i,2) = EPS_p(i-1,2) + Gam*dt(i); 
        EPS_p(i,3) = EPS_p(i-1,3) - Gam*dt(i) * sign(SIG_tr(1)-SIG_tr(3)); 

         
        E_ep=E*(1 - E * (E-(SIGu-SIGy)*Delta*exp(-Delta* (EPS_p(i-1,2)+Gam*dt(i)) 

)+ H + Eta/dt(i))^(-1) ); 

  
    end 

     
    SIG_Hist(i,1) = SIG(i,1); 
end 

  
%% Plot 
plotcurves_1D(EPS_Path,EPS_Hist,SIG_Hist,Timing,nStep,colors,axislimit); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear hardening 

Newton-Raphson algorithm 

Final stress and strain value 

at step 

Plotting 
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function plotcurves_1D(EPS_Path,EPS_Hist,SIG_Hist,Timing,nStep,colors,axislimit) 

  
%-------------------------------------------------------------------------- 
figure(1); 
plot(EPS_Path(1,:),SIG_Hist(1         :  nStep,1) 

,'g','LineWidth',1,'Marker','o','MarkerSize',5); grid on; hold on; 
plot(EPS_Path(2,:),SIG_Hist(1+  nStep :2*nStep,1) 

,'m','LineWidth',1,'Marker','^','MarkerSize',5); grid on; hold on; 
plot(EPS_Path(3,:),SIG_Hist(1+2*nStep :3*nStep,1) 

,'r','LineWidth',1,'Marker','d','MarkerSize',5); grid on; hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400]) 
    case 3; axis([-0.003,0.003,-500,500]) 
    case 4;  
end 
xlabel('\epsilon_{1}','FontSize',12,'FontWeight','bold') 
ylabel('\sigma_{1}','FontSize',12,'FontWeight','bold')  
set(gca,'GridLineStyle','-'); 

  
%-------------------------------------------------------------------------- 
switch colors 
    case 1; cc='k'; mm='o'; 
    case 2; cc='b'; mm='d'; 
    case 3; cc='g'; mm='^';  
    case 4; cc='r'; mm='.'; 
end 

  
%-------------------------------------------------------------------------- 
figure(2); 
plot(EPS_Hist,SIG_Hist ,cc,'LineWidth',1,'Marker','o','MarkerSize',2); grid on; 

hold on; 
switch axislimit 
    case 1; axis([-0.003,0.003,-300,300]) 
    case 2; axis([-0.003,0.003,-400,400]) 
    case 3; axis([-0.003,0.003,-500,500]) 
    case 4; 
end 
xlabel('\epsilon_{1}','FontSize',12,'FontWeight','bold') 
ylabel('\sigma_{1}','FontSize',12,'FontWeight','bold')  
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  
%-------------------------------------------------------------------------- 
figure(3); 
plot(Timing,SIG_Hist ,cc,'LineWidth',1,'Marker','o','MarkerSize',2); grid on; hold 

on; 
xlabel('time','FontSize',12,'FontWeight','bold') 
ylabel('\sigma_{1}','FontSize',12,'FontWeight','bold')  
legend('bbb'); 
set(gca,'GridLineStyle','-'); 

  
end 
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