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1 Rate Independent Damage Models - Part I

1.1 Characterization of the Elastic Domain

In addition to the symmetric tension compression model, the tension only model and the non
symmetric tension compression model were implemented. All the models are representative in
the High-Westergaard stress space. The models vary in their respective definitions of the damage
surface.

Figure 1a: Symmetric model Figure 1b: Tension only model

Figure 1c: Non Symmetric Tension Compression model

The elastic region in the first quadrant fo the tension only model and the non symmetric tension
compression model are exactly the same as the symmetric case. In the tension only model
the second and fourth quadrant behave asymptotically while in the third quadrant is elastic
under any biaxial compressive stresses. In the non symmetric tension compression model, it is
postulated that the damage happens at much higher stresses in compressive loading compared
to tensile loading which can be observed in materials such as concrete etc. This leads to a bigger
elastic domain in the third quadrant compared to the first quadrant.

1.2 Characterization of the Hardening / Softening Law

The exponential hardening law was implemented in which there is an exponential response of the
hardening variable q with respect to the internal variable r in contrast to the linear hardening
law which has a linear response of hardening variable q with respect to the internal variable r.
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Figure 2a: Linear and Exponential Hardening q vs r Figure 2b: Linear and Exponential Softening q vs r

Figure 2c: Linear and Exponential Hardening Figure 2d: Linear and Exponential Softening

The exponential and linear hardening / softening is observed by plotting the hardening variable
q vs internal variable r for a uniaxial tensile loading case.
It was also observed that the evolution of the damage variable with time was slower in the
exponential case compared to the linear case.

1.3 Case 1 - Uniaxial Tension Compression Loading

The correctness of code implementation was rigorously verified by subjecting it into several load-
ing conditions. All cases have been analyzed with the exponential hardening softening law using
a particular hardening modulus H as the linear case was already implemented.

The loading path of the first case is given by

∆σ̄
(1)
1 = 250 : ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = −600 : ∆σ̄

(2)
2 = 0

∆σ̄
(3)
1 = 350 : ∆σ̄

(3)
2 = 0

Exponential Hardening of H = −1 and poisson ratio ν = 0.3 was chosen to illustrate
all cases in this section.
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Figure 3a: Symmetric model Loading path and damage surface Figure 3b: Damage variable evolution

Figure 3c: Stress 1 vs. Strain 1

Appropriate loading paths were chosen to illustrate the effects of tensile and compressive dam-
age. An elastic response is observed in the first loading path until the yield point and damage
under tensile loading starts to occur following an exponential softening law. During the second
step of tensile unloading and compressive loading an elastic response is observed with a deteri-
orated ”young modulus” followed by damage due to compressive loading which further softens
under the exponential softening law. The third step of compressive unloading exhibits a linear
elastic response under an even more deteriorated ”young modulus” until there is no loading. The
evolution of the damage variable with time is also plotted which illustrates the evolution of the
damage variable only during the tensile damage in the first step and the compressive damage in
the second step

Next, the same loading path and exponential hardening of H = -1 is considered for the tension
only model and the non symmetric tension compression model.
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Figure 4a: Tension only model Loading path and damage surface Figure 4b: Non symmetric model damage surface

Figure 4c: Stress 1 vs. Strain 1 Figure 4d: Damage variable evolution

In accordance to theory, both the Tension only model and the non symmetric tension compres-
sion model behave the exact same way under these loading conditions.

In the first load step the same behavior that was seen in the symmetric model of elastic
response followed by damage under tensile conditions is observed. In the second tensile unloading
and compressive loading load step damage does not occur as we never encounter the damage
surface during the compression. Hence an elastic response is observed throughout with the
deteriorated ”young modulus”. The third step of compressive unloading also just provides an
elastic response. It is also apparent that the evolution of the damage variable happens during
the first step of tensile damage.

1.4 Case 2 - Biaxial Tension Compression Loading

The loading path of the second case of Biaxial tension compression loading is given by

∆σ̄
(1)
1 = 250 : ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = −250 : ∆σ̄

(2)
2 = −250

∆σ̄
(3)
1 = 100 : ∆σ̄

(3)
2 = 100

Exponential Hardening of H = −1 and poisson ratio ν = 0.3 was chosen to illustrate
all cases in this section.
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Figure 5a: Symmetric model Loading and damage surface Figure 5b: tension only model Loading and damage surface

Figure 5c: Non symmetric model Loading path and damage surface Figure 5d: Damage variable evolution

Figure 5e: Stress 1 vs. Strain 1

In accordance to theory, the symmetric model, the Tension only model and the non symmetric
tension compression model behave the exact same way under these loading conditions.
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The first load step is straightforward uniaxial tensile loading which causes damage and due
to the negative hardening modulus causes the contraction of the damage surface in the stress
space. Due to this contraction of the damage surface, the second and third load step of biaxial
loading elicits an elastic response with a deteriorated constitutive matrix.

It is also interesting to observe the behavior at the end of the second load step when the load
in the first principle direction is zero, the strain in the first principle direction is not zero (but
small) due to poisson effects of the loading in the other direction. Hence a plastic like behavior
is seen in the stress 1 vs strain 1 graph which has nothing to do with plasticity. Also, the damage
happens only in the first load step, we can observe the evolution of the damage variable during
the first load step and then remaining constant.

1.5 Case 3 - Biaxial Tension Compression Loading

The loading path of the second case of Biaxial tension compression loading is given by

∆σ̄
(1)
1 = 250 : ∆σ̄

(1)
2 = 250

∆σ̄
(2)
1 = −600 : ∆σ̄

(2)
2 = −600

∆σ̄
(3)
1 = 350 : ∆σ̄

(3)
2 = 350

Exponential Hardening of H = −1 and poisson ratio ν = 0.3 was chosen to illustrate
all cases in this section.

Figure 6a: Symmetric model Loading path and damage surface Figure 6b: Damage variable evolution
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Figure 6c: norm Stress vs. norm Strain

In this loading scenario, a biaxial tensile and compressive load is subjected and the behavior be-
tween the norm of the stress and the norm of the strain is plotted. In the first load step, a biaxial
tensile load is applied which initially causes elastic behavior following the constitutive tensor un-
til it reaches the damage surface and causes damage under tensile loading conditions. Because
if the negative hardening modulus the damage surface contracts until the second load step of
biaxial compressive unloading followed by loading begins. During the biaxial unloading, elastic
behavior is observed with a deteriorated constitutive tensor because of the damage occurred. It
is then followed by compressive biaxial loading which initially shows elastic behavior and then
proceeds towards damage under biaxial compressive loading. The third load step shows elastic
behavior under biaxial loading with an even further deteriorated constitutive tensor caused due
to damage in the two previous stages. The evolution of the damage variable can be observed
where damage variable changes first under tensile biaxial loading in the first step and then under
compressive biaxial loading.

Next, the same loading path and exponential hardening of H = -1 is considered for the tension
only model and the non symmetric tension compression model.

Figure 7a: Tension only model Loading path and damage surface Figure 7b: Non symmetric model damage surface
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Figure 7c: Stress 1 vs. Strain 1 Figure 7d: Damage variable evolution

In accordance to theory, both the Tension only model and the non symmetric tension compres-
sion model behave the exact same way under these loading conditions.

The first load step behavior is similar to the symmetric case where an elastic behavior is
observed until the damage surface is reached and then damage occurs. Due to the negative
hardening modulus the elastic domain shrinks. The second step of biaxial unloading followed by
biaxial compressive loading exhibits elastic behavior unlike the symmetric case where damage
under compressive biaxial loading was observed as the loading never reaches the damage surface
in these cases. Hence they exhibit elastic behavior with a deteriorated constitutive tensor due
to damage in the first loading step. The damage variable evolution can also be observed where
the damage variable changes only during damage of the first step of tensile biaxial loading.

2 Rate Dependent Damage Models - Part II

2.1 Effects of variation of viscosity parameters

The continuum isotropic visco-damage model was implemented for the plane strain symmetric
tension compression model. In this subsection the problem is subjected to uniaxial tension with
the following loading paths and parameters.

∆σ̄
(1)
1 = 100 : ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = 100 : ∆σ̄

(2)
2 = 0

∆σ̄
(3)
1 = 300 : ∆σ̄

(3)
2 = 0

H = 0 , Time Interval = 1

ν = 0.3 , η = 0, 0.1, 1, 10

This choice of hardening modulus H = 0 was made to illustrate the phenomenon easily without
having to zoom in. The same phenomenon occurs for any H.
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Figure 8: Stress vs. Strain for different viscosities

Figure 9: Damage variable evolution for different viscosities

With the variation of the viscosity parameter η the stress strain behavior and the damage variable
evolution behavior was plotted. We know that the evolution of the internal variable r is given by
an evolution law which is inversely dependent on the viscosity parameter η. Since we assumed
that the hardening modulus H = 0 and q̇ = H(r)ṙ and d = 1 − q

r , the inverse proportionality
of the viscosity parameter η is manifested very clearly as expected with theory in the evolution
of the damage variable d. The stress vs strain behavior is also consistent which shows how the
most viscous case offers more elastic behavior due to lesser damage as compared to the inviscid
case.
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2.2 Effects of variation of strain rate

The problem is subjected to uniaxial tensile loading and the strain rates are varied to analyze
the behavior of strain rate on the stress strain curve. The strain rate is inversely proportional
to the time interval in which the problem is being solved. I this subsection we vary the time
interval keeping all the other parameters same. In this subsection the problem is subjected to
uniaxial tension with the following loading paths and parameters.

∆σ̄
(1)
1 = 100 : ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = 100 : ∆σ̄

(2)
2 = 0

∆σ̄
(3)
1 = 300 : ∆σ̄

(3)
2 = 0

H = 0 , Time Interval = 0.1, 1, 10, 100

ν = 0.3 , η = 1 α = 0.5

This choice of hardening modulus H = 0 was made to illustrate the phenomenon easily without
having to zoom in. The same phenomenon occurs for any H.

Figure 10: Stress vs. Strain for different strain rates

According to rheological model law F = ηδ̇, we know that the force is directly proportional to
the velocity and the viscosity. Since we have the viscosity parameter constant, we can observe
that the stress response is proportional to the strain rate.

2.3 Effects of variation of α

In this subsection we vary the parameter α involved in the integration algorithm and analyze
the effects on the stress strain curve and the evolution of the first component of the Calg and
Ctang constitutive tensors keeping all the other parameters same. The problem is subjected to
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uniaxial tension with the following loading paths and parameters.

∆σ̄
(1)
1 = 100 : ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = 100 : ∆σ̄

(2)
2 = 0

∆σ̄
(3)
1 = 300 : ∆σ̄

(3)
2 = 0

Exponential Hardening -H = −0.1 , Time Interval = 100

ν = 0.3 , η = 1 α = 0, 0.25, 0.5, 0.75, 1

Figure 11: Stress vs. Strain for different α

Figure 12: Stress vs. Strain for different α
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A large time interval was taken so that the delta t is higher to show the effects of the parameter
alpha on the integration algorithm. It can be observed that for α < 0.5 oscillatory solutions are
produced in accordance to the theory which guarantees unconditional stability for α ∈ [0.5, 1]
and only conditional stability for α ∈ [0, 0.5) . We also know that α = 0 corresponds to the
forward euler method and α = 1 corresponds to the backward euler method which both first
order accurate methods. α = 0.5 corresponds to the Crank Nicolson method which is a second
order accurate method.

Figure 13: Calg
11 vs Time for different α

Figure 14: Ctang
11 vs Time for different α
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Figure 15: Ctang
11 vs Time for different α

With variation of α, similar behavior of unstable oscillatory solutions were observed for
α = 0, 0.25 in the evolution of the first component of the Algorithmic constitutive tensor as well
as the tangent constitutive tensor. An expected discontinuity is observed in the Calg

11 vs Time

graph. It was also observed that for α = 0 the Calg
11 and Ctang

11 were same as expected. It was
also observed that for α = 1 and η = 0 the inviscid case was recovered.
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3 APPENDIX

3.1 dibujar criterio dano1.m

1 f unc t i on hplot = d i b u j a r c r i t e r i o d a n o 1 ( ce , nu , q , t i p o l i n e a , MDtype , n)
2 c e i n v=inv ( ce ) ;
3 c11=c e i n v (1 , 1 ) ;
4 c22=c e i n v (2 , 2 ) ;
5 c12=c e i n v (1 , 2 ) ;
6 c21=c12 ;
7 c14=c e i n v (1 , 4 ) ;
8 c24=c e i n v (2 , 4 ) ;
9

10 % POLAR COORDINATES
11 i f MDtype==1
12 te tha = [ 0 : 0 . 0 1 : 2∗ pi ] ;
13 D=s i z e ( tetha ) ;
14 m1=cos ( tetha ) ;
15 m2=s i n ( tetha ) ;
16 Contador=D(1 , 2 ) ;
17

18

19 rad io = ze ro s (1 , Contador ) ;
20 s1 = ze ro s (1 , Contador ) ;
21 s2 = ze ro s (1 , Contador ) ;
22

23 f o r i =1:Contador
24 rad io ( i )= q/ s q r t ( [m1( i ) m2( i ) 0 nu∗(m1( i )+m2( i ) ) ]∗ c e i n v ∗ [m1(

i ) m2( i ) 0 . . .
25 nu∗(m1( i )+m2( i ) ) ] ’ ) ;
26

27 s1 ( i )=rad io ( i ) ∗m1( i ) ;
28 s2 ( i )=rad io ( i ) ∗m2( i ) ;
29

30 end
31 hplot =p lo t ( s1 , s2 , t i p o l i n e a ) ;
32

33

34 e l s e i f MDtype==2
35

36 te tha=[−pi /2 + 0 . 0 1 : 0 .01 : p i − 0 . 0 1 ] ;
37 m1=cos ( tetha ) ;
38 m2=s i n ( tetha ) ;
39 m3=m1+m2;
40 Contador=s i z e ( tetha , 2 ) ;
41

42 rad io = ze ro s (1 , Contador ) ;
43 s1 = ze ro s (1 , Contador ) ;
44 s2 = ze ro s (1 , Contador ) ;
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45 m1plus = m1 ( : ) . ∗ (m1 ( : ) >0) ;
46 m2plus = m2 ( : ) . ∗ (m2 ( : ) >0) ;
47 m3plus = m3 ( : ) . ∗ (m3 ( : ) >0) ;
48 f o r i = 1 : Contador
49 rad io ( i )=q/ s q r t ( [ m1plus ( i ) m2plus ( i ) 0 nu∗m3plus ( i ) ]∗ c e i n v ∗ [

m1( i ) m2( i ) 0 nu∗m3( i ) ] ’ ) ;
50 s1 ( i )=rad io ( i ) ∗m1( i ) ;
51 s2 ( i )=rad io ( i ) ∗m2( i ) ;
52 end
53 hplot =p lo t ( s1 , s2 , t i p o l i n e a ) ;
54

55

56 e l s e i f MDtype==3
57 te tha = [ 0 : 0 . 0 1 : 2∗ pi ] ;
58 m1=cos ( tetha ) ;
59 m2=s i n ( tetha ) ;
60 m3=m1+m2;
61 Contador=s i z e ( tetha , 2 ) ;
62

63 rad io = ze ro s (1 , Contador ) ;
64 s1 = ze ro s (1 , Contador ) ;
65 s2 = ze ro s (1 , Contador ) ;
66 m1plus = m1 ( : ) . ∗ (m1 ( : ) >0) ;
67 m2plus = m2 ( : ) . ∗ (m2 ( : ) >0) ;
68 f o r i = 1 : Contador
69 r a t i o = sum ( [ m1plus ( i ) m2plus ( i ) ] ) /sum( abs ( [m1( i ) m2( i ) ] ) ) ;
70 rad io ( i )=q /( ( r a t i o + (1− r a t i o ) /n) ∗ s q r t ( [m1( i ) m2( i ) 0 nu∗m3( i

) ]∗ c e i n v ∗ [m1( i ) m2( i ) 0 nu∗m3( i ) ] ’ ) ) ;
71 s1 ( i )=rad io ( i ) ∗m1( i ) ;
72 s2 ( i )=rad io ( i ) ∗m2( i ) ;
73 end
74 hplot =p lo t ( s1 , s2 , t i p o l i n e a ) ;
75 end
76

77 re turn

3.2 Modelos de dano1.m

1 f unc t i on [ r t r i a l ] = Modelos de dano1 (MDtype , ce , eps n1 , n)
2

3 i f (MDtype==1) %∗ Symmetric
4 r t r i a l= s q r t ( eps n1 ∗ ce ∗ eps n1 ’ ) ;
5

6 e l s e i f (MDtype==2) %∗ Tension only
7 sigma b = ce ∗ eps n1 ’ ;
8 s i gma b p lus ( : ) = sigma b ( : ) . ∗ ( sigma b ( : ) >0) ;
9 r t r i a l= s q r t ( s i gma b p lus ∗ eps n1 ’ ) ;

10

11 e l s e i f (MDtype==3) %∗ Non symmetric t en s i on compress ion
12 sigma b = ce ∗ eps n1 ’ ;
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13 s i gma b p lus ( : ) = sigma b ( : ) . ∗ ( sigma b ( : ) >0) ;
14 r a t i o = ( s igma b p lus (1 )+s igma b p lus (2 ) ) /( abs ( sigma b (1) )+abs (

sigma b (2) ) ) ;
15 r t r i a l= ( r a t i o +(1− r a t i o ) /n) ∗ s q r t ( eps n1 ∗ ce ∗ eps n1 ’ ) ;
16

17 end
18 re turn

3.3 rmap dano1.m

1 f unc t i on [ sigma n1 , hvar n1 , aux var ] = rmap dano1 ( eps n1 , eps n , hvar n
, Eprop , ce , MDtype , n , v i s cpr , d e l t a t )

2

3 hvar n1 = hvar n ;
4 r n = hvar n (5 ) ;
5 q n = hvar n (6 ) ;
6 E = Eprop (1) ;
7 nu = Eprop (2 ) ;
8 H = Eprop (3 ) ;
9 sigma u = Eprop (4 ) ;

10 hard type = Eprop (5 ) ;
11 eta = Eprop (7) ;
12 ALPHA = Eprop (8) ;
13

14 %∗ i n i t i a l i z i n g
15 r0 = sigma u / s q r t (E) ;
16 ze ro q =1.d−6∗r0 ;
17

18 %∗ Damage s u r f a c e
19 [ r t r i a l ] = Modelos de dano1 (MDtype , ce , eps n1 , n) ;
20 [ r t r i a l n ] = Modelos de dano1 (MDtype , ce , eps n , n) ;
21 r t r i a l n a l p h a = (1−ALPHA) ∗ r t r i a l n + ALPHA∗ r t r i a l ;
22

23 f l o a d =0;
24

25 i f v i s c p r == 1
26 i f ( r t r i a l n a l p h a > r n )
27 %∗ Loading
28

29 f l o a d =1;
30 d e l t a r=r t r i a l n a l p h a−r n ;
31 r n1= ( ( eta − d e l t a t ∗(1−ALPHA) ) /( eta + ALPHA∗ d e l t a t ) ) ∗ r n +

. . .
32 ( ( d e l t a t ) /( eta + ALPHA∗ d e l t a t ) ) ∗ r t r i a l n a l p h a ;
33 i f hard type == 0
34 % Linear
35 q n1= q n+ H∗ d e l t a r ;
36 H n1 = H;
37 e l s e
38 %Exponent ia l
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39 q i n f=r0+(r0−ze ro q ) ;
40 i f H>0
41 q n1=q n +((H∗( q i n f−r0 ) / r0 ) ∗exp (H∗(1− r t r i a l / r0 ) ) ) ∗

d e l t a r ;
42 H n1 = ( (H∗( q i n f−r0 ) / r0 ) ∗exp (H∗(1− r t r i a l / r0 ) ) ) ;
43 e l s e
44 q n1=q n +((H∗( q i n f−r0 ) / r0 ) ∗(1/ exp (H∗(1− r t r i a l / r0 ) ) ) )

∗ d e l t a r ;
45 H n1 = ( (H∗( q i n f−r0 ) / r0 ) ∗(1/ exp (H∗(1− r t r i a l / r0 ) ) ) ) ;
46

47 end
48 end
49

50 i f ( q n1<ze ro q )
51 q n1=zero q ;
52 end
53

54

55 e l s e
56

57 %∗ E l a s t i c load / unload
58 f l o a d =0;
59 r n1= r n ;
60 q n1= q n ;
61

62

63 end
64

65 e l s e
66 i f ( r t r i a l > r n )
67 %∗ Loading
68

69 f l o a d =1;
70 d e l t a r=r t r i a l −r n ;
71 r n1= r t r i a l ;
72 i f hard type == 0
73 % Linear
74 q n1= q n+ H∗ d e l t a r ;
75 H n1 = H;
76 e l s e
77 %Exponent ia l
78 q i n f=r0+(r0−ze ro q ) ;
79 i f H>0
80 q n1=q n +((H∗( q i n f−r0 ) / r0 ) ∗exp (H∗(1− r t r i a l / r0 ) ) ) ∗

d e l t a r ;
81 H n1 = ( (H∗( q i n f−r0 ) / r0 ) ∗exp (H∗(1− r t r i a l / r0 ) ) ) ;
82 e l s e
83 q n1=q n +((H∗( q i n f−r0 ) / r0 ) ∗(1/ exp (H∗(1− r t r i a l / r0 ) ) ) )

∗ d e l t a r ;

18



84 H n1 = ( (H∗( q i n f−r0 ) / r0 ) ∗(1/ exp (H∗(1− r t r i a l / r0 ) ) ) ) ;
85 end
86 end
87

88 i f ( q n1<ze ro q )
89 q n1=zero q ;
90 end
91

92

93 e l s e
94

95 %∗ E l a s t i c load / unload
96 f l o a d =0;
97 r n1= r n ;
98 q n1= q n ;
99

100

101 end
102 end
103 % Damage v a r i a b l e
104 % −−−−−−−−−−−−−−−
105 dano n1 = 1 . d0−(q n1 / r n1 ) ;
106 % Computing s t r e s s
107 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
108 sigma n1 =(1.d0−dano n1 ) ∗ ce ∗ eps n1 ’ ;
109

110 % c a l c u l a t i o n o f the Ce tang n1
111 i f v i s c p r == 1
112 i f r t r i a l n a l p h a > r n
113 %Algorithm Cons t i tu t i v e Tangent Matrix
114 Ce alg n1 = ( 1 . d0−dano n1 ) ∗ ce +((ALPHA∗ d e l t a t ) /( eta+ALPHA∗

d e l t a t ) ) ∗ . . .
115 (1/ r t r i a l n a l p h a ) ∗ ( ( H n1∗ r n1−q n1 ) /( r n1 ˆ2) ) ∗ ( ( ce ∗ eps n1

’ ) ’∗ ( ce ∗ eps n1 ’ ) ) ;
116 C alg = Ce alg n1 (1 , 1 ) ;
117 %Cons t i tu t i v e Tangent Matrix
118 Ce tan n1 =(1.d0−dano n1 ) ∗ ce ;
119 C tan = Ce tan n1 (1 , 1 ) ;
120

121 e l s e
122 %Algorithm Cons t i tu t i v e Tangent Matrix
123 Ce alg n1 = ( 1 . d0−dano n1 ) ∗ ce ;
124 C alg = Ce alg n1 (1 , 1 ) ;
125 %Cons t i tu t i v e Tangent Matrix
126 Ce tan n1 = Ce alg n1 ;
127 C tan = C alg ;
128 end
129 e l s e
130 i f r t r i a l > r n
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131 Ce tan n1= ( 1 . d0−dano n1 ) ∗ ce+ . . .
132 (1/ r t r i a l ) ∗ ( ( H n1∗ r n1−q n1 ) /( r n1 ˆ2) ) ∗ ( ( ce ∗ eps n1 ’ ) ’∗ ( ce

∗ eps n1 ’ ) ) ;
133 C tan = Ce tan n1 (1 , 1 ) ;
134 e l s e
135 Ce tan n1 = ( 1 . d0−dano n1 ) ∗ ce ;
136 C tan = Ce tan n1 (1 , 1 ) ;
137 end
138 end
139

140 hvar n1 (5 )= r n1 ;
141 hvar n1 (6 )= q n1 ;
142 hvar n1 (7 )= dano n1 ;
143 i f v i s c p r == 1
144 hvar n1 (8 )= C alg ;
145 hvar n1 (9 )= C tan ;
146 end
147 %∗ Aux i l i a r v a r i a b l e s
148 aux var (1 ) = f l o a d ;
149 aux var (2 ) = q n1 / r n1 ;
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