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1. PART I  
1.1. Part I_a 

The aim of this part of the assignment is to implement the rate dependent models. We have three 

types of damage model. The first type, symmetric model, has already been implemented, the second and 

third type, only-tension and non-symmetric damage models, are to be coded according to the theory and 

formulations provided in the slides. 

In order to implement the “Tension-only” and “Non-symmetric” case, we have to define the model 

parameters in the corresponding codes. 

The first function to change is “Modelos_de_dano1.m” in which we can define the models equations. 

For all cases, the parameter “eps_n1” defined in this function is the strain tensor at time step n+1 which 

we have to use in order to define �̅�+ for only-tension and non-symmetric cases. This variable is defined 

in time step n+1 as “sigma_e_n1” as the following: 

 

The McCauley brackets is defined using the aforementioned notion in MATLAB. In this function, “rtrial” 

is the so-called 𝜏𝑛+1 in the formulation of each model and is defined based on the formulas provided by 

the slides.  

After implementing all the formulas in “Modelos_de_dano1.m” function, we have to modify 

“dibujar_criterio_dano1.m” in order to get the plots for only-tension and non-symmetric cases. For this 

purpose, a parameter called “radio” is defined which represents the radial distance of each point of the 

curves from the (0,0) coordinates as it is defined based on the formula provided in the slides. This value 

differs from one damage model to another because of the changes in 𝜏𝑛+1 for each model. Then, the x 

and y coordinate of this curve which are basically 𝜎1 and 𝜎2 are computed by changing the coordinated 

from radial to Cartesian. The figures are then plotted by changing the values of theta from 0 to 2π and 

computing the principle stresses for each angle. 

 

Figure 1 Only-tension damage model 
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Figure 2 Non-symmetric damage model 

Figure 1 and Figure 2above are the results of the implementation which look similar to the ones 

provided by the theory. 

1.2. Part I_b 

The aim of this part is to implement linear and exponential hardening/softening for each of those 

models. In order to implement the linear and exponential hardening and softening case, we have to 

modify the function called “rmap_dano1.m”. In this function, we define the variable “r_n1” and “q_n1” 

which are the so-called internal variable and hardening variable at step n+1. The internal variable r is equal 

to the rtrial found from function “modelos_de_dano1” in case of inviscid model, and the hardening 

variable q is found from the following formula: 

𝑞𝑛+1 = 𝑞𝑛 + 𝐻(𝑟𝑛+1 − 𝑟𝑛) 

In this formula H is defined based on if we have linear or exponential case. In linear case, H is directly 

equal to the hardening coefficient which is entered in the function as input. In case of exponential, H is 

found based on the formula provided in the slides. In the formula, we need to define 𝑞∞ which is the 

upper bound in q-t curve for hardening. This value is found as: 

𝑞∞  =  𝑟0 + (𝑟0 − 𝑞0) 

It should also be noted that hardening or softening only happens in case of loading. However, when 

we have unloading case or elastic loading, the internal and hardening variables of step n+1 are equal to 

the ones from the previous step because basically in unloading or in elastic loading no hardening or 

softening in applied to the material.  

1.3. Part I_c 

In this part we have to run the code that we already implemented for each of the three cases provided 

in Table 1. The following cases are defined based on different values set for stress increments for 

evaluation of inviscid case. The stress is applied to the specimen linearly by the passing of time from the 

value equal to zero to the values provided in the table through stress increments. For all cases, the 

material is set to have a yield stress equal to 200 and Young modulus equal to 20000. 
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Table 1 stress increments for each load path 

Case Point 1 Point 2 Point 3 

1 
𝛥𝜎1

(1)
= 400 

𝛥𝜎2
(1)

= 0 

𝛥𝜎1
(2)

= −450 

𝛥𝜎2
(2)

= 0 

𝛥𝜎1
(3)

= 600 

𝛥𝜎2
(3)

= 0 

2 
𝛥𝜎1

(1)
= 400 

𝛥𝜎2
(1)

= 0 

𝛥𝜎1
(2)

= −700 

𝛥𝜎2
(2)

= −300 

𝛥𝜎1
(3)

= 300 

𝛥𝜎2
(3)

= 300 

3 
𝛥𝜎1

(1)
= 400 

𝛥𝜎2
(1)

= 400 

𝛥𝜎1
(2)

= −700 

𝛥𝜎2
(2)

= −700 

𝛥𝜎1
(3)

= 300 

𝛥𝜎2
(3)

= 300 

The results for each case include the figure of load path and the stress-strain curve. All cases are 

studied for both hardening and softening case which can be found in the following: 

1.3.1. Part I_c_Case 1 

The load path for this case is defined in three steps. The first step is tensile loading which crosses the 

damage surface. The 2nd step is compression or tensile unloading and the third step is again tensile 

loading. All steps are uniaxial loading which means the second component of stress is equal to zero. The 

load path for only-tension model is shown in Figure 3. 

 

Figure 3 Load path for only-tension case after computing the results 

The following figures show the stress-strain curve for hardening and softening cases. 

 

Figure 4 Only-tension H=0.1, linear hardening, inviscid 
case 

 

Figure 5 Only-tension H= -0.5, linear softening, inviscid 
case 
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Figure 4 shows the results in terms of stress against strain curve for linear hardening case with H=0.1. 

As it is seen, the black line which is related to the tensile loading step is changing in its slope. The transition 

point is where we are crossing the damage surface. The blue line is related to the elastic unloading which 

keeps the same slope through the whole unloading. And since we have the hardening case (H>0), the yield 

stress increases in value, at N=6 we have the yield stress from step 1 and at N=28 we have the yield stress 

for step 3 which is higher. 

Figure 5 shows the results for linear softening case with H= -0.5. The trend is the same as the hardening 

case for each step but the difference is that because it is a softening case (H<0), the slope of the line 

decreases when crossing the damage surface.  

The load path for non-symmetric model is shown in Figure 6 

 

Figure 6  Load path for non-symmetric case after computing the results 

 

Figure 7 Non-symmetric H=0.1, linear hardening, inviscid 
case 

 

Figure 8 Non-symmetric H=-0.5, linear softening, inviscid 
case 

Figure 7 and Figure 8 show the results for non-symmetric hardening and softening case. The same 

trend as the only-tension case is obtained for non-symmetric case for linear hardening and softening. 

The hardening coefficient is assumed to be 0.1 for all cases. As this coefficient becomes larger, the 

material obtains higher values for the yield stress as the damage surface is crossed. The following graph 

is provided to make a comparison between results of two different hardening coefficients. For softening 

case, the same trend is followed. 
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Figure 9 Hardening case for H=0.1 and H=0.5 

 

Figure 10 Softening case for H= -0.1 and H= -0.5 

1.3.2. Part I_c_Case 2 

The load path for this case is also defined in three steps. The first step is uniaxial tensile loading which 

crosses the damage surface. The 2nd step is biaxial compression or tensile unloading and the third step is 

again biaxial tensile loading. The load path for only-tension model is shown in Figure 11. 

 

Figure 11 Load path for only-tension after computing the results 

 
Figure 12 Only-tension H=0.1, linear, inviscid case 

 
Figure 13 Only-tension H= -0.5, linear, inviscid case 

Figure 12 shows the only-tension model stress versus strain curve the second loading case. In the first 

step for uniaxial loading the material has an elastic behavior until it crosses the damage surface and starts 
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the transition. In the second step the material undergoes biaxial compression which is totally elastic. In 

the third step we are applying tension on the material until the stress components are zero. So the 

material starts to go back to zero in compression region.  

Figure 13 shows the result for softening of only-tension case. It behaves the same as explained before 

for each loading step and since the hardening coefficient is negative the curve goes down as we cross the 

damage surface which means the yield stress in the next curve starts to decrease. 

The load path for non-symmetric model is shown in Figure 14 for this case.  

 

Figure 14 Load path for non-symmetric after computing the results 

 
Figure 15 non-symmetric H=0.1, linear hardening, 

inviscid case 

 

Figure 16 non-symmetric H= -0.5, linear softening, inviscid 
case 

The trend for this model is the same as only-tension case for hardening and softening for each load 

step. 

1.3.3. Part I_c_Case 3 

In this case the load path is defined to be biaxial tensile loading for the first step which crosses the 

damage surface, biaxial compression or tensile unloading for the 2nd step and is again biaxial tensile 

loading for the third step. The load path for only-tension model is shown in Figure 17. 
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Figure 17 Load path for only-tension after computing the results 

Figure 18 only tension H=0.1, linear hardening, inviscid case Figure 19 only-tension H= -0.5, linear softening, inviscid case 
 

 

Figure 20 Load path for non-symmetric after computing the results 
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Figure 21 non-symmetric H=0.1, linear hardening, inviscid 

case 

 
Figure 22 non symmetric H= -0.5, linear softening, inviscid 

case 

As it is obvious from the graphs provided, the material has an elastic behavior as far as we are staying 

in elastic region and the curve has a transition of slope as it goes further the damage surface. Changing 

the load path yields to different behavior of the curve and different value for damage variable but at the 

end the whole logic behind the interpretation of the graphs stays the same. 

 

Figure 23 Comparison between linear and exponential hardening 

In order to study the linear and exponential hardening/softening case, a sample load path as case 1 is 

applied to only-tension inviscid model. Figure 23 shows this difference when choosing the option linear 

or exponential hardening for a hardening coefficient of H=2. As it can be seen the material behaves 

differently, in linear case the stress-strain curve remains linear as the damage surface is reached and in 

exponential case we are observing exponential behavior. In addition, depending on the hardening 

coefficient, in exponential case the damage zone grows rapidly. It should be mentioned that linear and 

exponential case only have difference when increasing the hardening and softening coefficient. 
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2. Part II 
2.1. Part II_d 

In this part of the assignment we are supposed to implement the viscous model for symmetric type. 

According to the theory provided by the slides, to implement the viscous model we need the strain tensor 

at type step n apart from the strain tensor at time step n+1 which we already had. So, we have to create 

this tensor in function “damage_main.m” and then extract it as the input of the function “rmap_dano1.m” 

and “modelos_de_dano1.m”. we also have to define the corresponding constants that we need which 

hasn’t already been defined. In each of the functions, we have to define the condition of viscosity setting 

the variable “viscpr” equal to one and for inviscid case equal to zero.  

After implementing the formulation of viscous model, we shall compare the viscous and inviscid 

behavior for a simple load path as uniaxial tension. The results are shown below: 

 
Figure 24 Sample load path 

 
Figure 25 Comparison between viscous and inviscid case for 

symmetric model 

 

As it can be seen from Figure 25, both viscous and inviscid models have the same behavior as far as we 

are in the elastic region. But when we cross the damage surface, viscous model has a steeper slope which 

means a higher value for
𝜕𝜎

𝜕𝜀
. This can be justified through the formulas provided for �̇� in the slides since in 

viscous case, for 
𝜕𝜎

𝜕𝜀
 we have one extra positive term added to �̇� which doesn’t exist in case of inviscid. 

2.2. Part II_e 

In this part, we are going to study the behavior of the viscous model through stress-strain keeping the 

Poisson ratio constant equal to 0.3 and the hardening coefficient equal to -0.5 for the sample load path 

of Figure 24. The study has been done by changing the value of viscous coefficient, strain rate and constant 

of time integration method. The results can be found below: 
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Figure 26 stress-strain curve for viscous case for different viscous coefficients 

Figure 26 shows how the stress-strain curve is changing for different viscous coefficients (η). As it can 

be seen, as η increases the graphs shows higher values. This is in agreement with the theory since we 

know that the stress rate is directly related to the increase or decrease of the viscous coefficient. 

 

Figure 27 stress-strain curve for viscous case for different strain rates 

Figure 27 shows the changes in stress-strain curve for different values of strain rate. In order to change 

the value of strain rate we have to change the variable “time_int”. As this variable decreases, the strain 

rate increases and the curve goes higher in value, which is in agreement with the theory since the stress 

rate is directly related to strain rate. 
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Figure 28 stress-strain curve for viscous case for different alpha 

Figure 28 shows the stress-strain graph for different values of time integration constant (α) keeping 

the viscous coefficient equal to 0.3 and time interval equal to 1000. As it can be see, the method starts to 

have instabilities as α decreases. In fact, this method is stable in interval of [0.5,1] in which α=1 

corresponds to Backward Euler (implicit) and α=0.5 corresponds to Crank-Nicolson. As we move away 

from this interval to zero, we have instabilities. This fact can easily be observed from the graph. 

 

 

Figure 29 C_tangent for viscous model for different values of alpha 

Figure 29 shows the variation in the first component of tangent constitutive matrix for different values 

of integration constant, α. As it can be seen from the figure, increasing the value of α yields a decrease in 

the first component of tangent constitutive matrix. This matrix depends on the value of the damage 
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variable, d, at each time step. Therefore, in order to justify this behavior, we shall study how the damage 

variable changes by changing α. 

 

Figure 30 variation of damage variable by changing alpha 

Figure 30 shows that the damage variable increases by increasing the value of α. According to the 

formula provided, the tangent constitutive matrix is related to minus of the damage variable. Therefore, 

increase in damage variable results in decrease in the constitutive tangent matrix, which is in agreement 

with the results shown in Figure 29. 

 

Figure 31 C_algorithm for viscous model for different values of alpha 

Figure 31 shows the variation of the first component of algorithmic constitutive matrix with respect to 

time by changing the value of α. The formula provided for algorithmic constitutive matrix is the summation 

of two terms. The first term is the tangent constitutive matrix and the second term is a function of α. In 
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Figure 29 we have seen that by increasing the value of α, the value of first component of tangent 

constitutive matrix decreases. The second term in algorithmic constitutive matrix also decreases by 

increasing α. Therefore, the algorithmic matrix, in total, decreases by increasing α, which is in accordance 

by the results obtained. 

In addition, we can observe that for value of α=0 both the algorithmic and the tangent constitutive 

matrices obtain same results as it is said in the theory as well. 
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3. Conclusion 
The aim of this assignment is to study different damage models for inviscid and viscous case and 

evaluate how these models behave under different conditions corresponding to different load path, 

viscosity parameters, strain rates and constant of time integration method. 

The models for inviscid case have been evaluated under different load path including uniaxial and 

biaxial tensile and compression load. The behavior of the model for each of these load path depends on 

different parameters such as yield stress of the material, Poisson ratio and young modulus. However, in 

this study all parameters are kept the same and different load path is applied for different models in order 

to provide the context for better comparison. 

A comparison has been done for linear and exponential hardening and softening. As the results show, 

in case of higher hardening/softening coefficients, exponential formulation yields to fast growth/shrink of 

damage zone apart from the exponential behavior of stress-strain curve.  

After studying the inviscid model, viscous model has been implemented for all damage types. The 

influence of different parameters of viscous case on the behavior of the model has been evaluated 

keeping other parameters as a constant. In detail, the stress-strain curve, the tangent and algorithmic 

constitutive model and the damage variable have been observed for different values of viscosity 

parameter, strain rate and time-integration constant. The results for each case has been included in the 

report. The code has been added as the appendix to give more details on implementation. 
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4. Appendix 
4.1. Function dibujar_criterio_dano1 

function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 
%************************************************************************************* 
%*                 PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL                             

%* 
%*                                                                                  %* 
%*      function [ce] = tensor_elastico (Eprop, ntype)                    %* 
%*                                                                                  %* 
%*      INPUTS                                                       %* 
%*                                                                                  %* 
%*                    Eprop(4)    vector de propiedades de material                 %* 
%*                                      Eprop(1)=  E------>modulo de Young          %* 
%*                                      Eprop(2)=  nu----->modulo de Poisson        %* 
%*                                      Eprop(3)=  H----->modulo de Softening/hard. %* 
%*                                      Eprop(4)=sigma_u----->tensiï¿½n ï¿½ltima        %* 
%*                     ntype                                 %* 
%*                                 ntype=1  plane stress                            %* 
%*                                 ntype=2  plane strain                            %* 
%*                                 ntype=3  3D                                      %* 
%*                     ce(4,4)     Constitutive elastic tensor  (PLANE S.       )    %* 
%*                     ce(6,6)                                  ( 3D)                %* 
%************************************************************************************* 

 

 
%************************************************************************************* 
%*        Inverse ce                                                                %* 
ce_inv=inv(ce); 
c11=ce_inv(1,1); 
c22=ce_inv(2,2); 
c12=ce_inv(1,2); 
c21=c12; 
c14=ce_inv(1,4); 
c24=ce_inv(2,4); 
%************************************************************************************** 

 

 
%************************************************************************************** 
% POLAR COORDINATES 
if MDtype==1      %%first type:symmetric damage model 
tetha=[0:0.01:2*pi]; 
%************************************************************************************** 
%* RADIUS 
D=size(tetha);                       %*  Range 
m1=cos(tetha);                       %* 
m2=sin(tetha);                       %* 
Contador=D(1,2);                     %* 

 

 
radio = zeros(1,Contador) ; 
s1    = zeros(1,Contador) ; 
s2    = zeros(1,Contador) ; 

 
for i=1:Contador 
radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 
nu*(m1(i)+m2(i))]'); 

 
s1(i)=radio(i)*m1(i); 
s2(i)=radio(i)*m2(i); 

 
end 
hplot =plot(s1,s2,tipo_linea); 

 

 
elseif MDtype==2         %%second type:only-tension damage model 
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tetha=[-pi/2+0.01:0.01:pi-0.01]; 
D=size(tetha);                       %*  Range 
m1=cos(tetha);                       %* 
m2=sin(tetha);                       %* 
Contador=D(1,2);                     %* 

 

 
radio = zeros(1,Contador) ; 
s1    = zeros(1,Contador) ; 
s2    = zeros(1,Contador) ; 

 
for i=1:Contador 
% McAuly Braket x*(x>0) if x>0 I obtain 1, Otherwise I obtain a 0 
A = m1(i)*(m1(i)>0); 
B = m2(i)*(m2(i)>0); 

 
radio(i)= q/sqrt([A B 0 nu*(A+B)]*ce_inv*[m1(i) m2(i) 0 ... 
nu*(m1(i)+m2(i))]'); 

 
s1(i)=radio(i)*m1(i); 
s2(i)=radio(i)*m2(i); 

 
end 
hplot =plot(s1,s2,tipo_linea); 

 

 

 

 
elseif MDtype==3    %%third type:non_symmetric damage model 

 
tetha=[0:0.01:2*pi]; 
%************************************************************************************** 
%* RADIUS 
D=size(tetha);                       %*  Range 
m1=cos(tetha);                       %* 
m2=sin(tetha);                       %* 
Contador=D(1,2);                     %* 

 

 
radio = zeros(1,Contador) ; 
s1    = zeros(1,Contador) ; 
s2    = zeros(1,Contador) ; 

 
for i=1:Contador 
% McAuly Braket x*(x>0) if x>0 I obtain 1, Otherwise I obtain a 0 
A = m1(i)*(m1(i)>0); 
B = m2(i)*(m2(i)>0); 
alpha_N =A+B; 
alpha_D =abs(m1(i))+abs(m2(i)); 
alpha = alpha_N/alpha_D; 
radio(i)= q/((alpha+(1-alpha)/n)*(sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 

... 
nu*(m1(i)+m2(i))]'))); 
s1(i)=radio(i)*m1(i); 
s2(i)=radio(i)*m2(i); 

 
end 
hplot =plot(s1,s2,tipo_linea); 

 

 
end 
%************************************************************************************** 

 
%************************************************************************************** 
return 
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4.2. Function modelos_de_dano1 

function [rtrial,taw_n1] = Modelos_de_dano1 (MDtype,ce,eps_n1,n,eps_n,viscpr,ALPHA) 
%************************************************************************************** 
%*          Defining damage criterion surface                                        %* 
%*                                                                                   %* 
%* 
%*                          MDtype=  1      : SYMMETRIC                              %* 
%*                          MDtype=  2      : ONLY TENSION                           %* 
%*                          MDtype=  3      : NON-SYMMETRIC                          %* 
%*                                                                                   %* 
%*                                                                                   %* 
%* OUTPUT:                                                                           %* 
%*                          rtrial                                                   %*                
%************************************************************************************** 

  

  
%************************************************************************************** 
if (MDtype==1)      %* Symmetric 
    taw_n = sqrt(eps_n*ce*eps_n') ; 
    taw_n1 = sqrt(eps_n1*ce*eps_n1') ; 

     
    if viscpr == 0    %%Inviscid 
        rtrial= sqrt(eps_n1*ce*eps_n1') ; 
    elseif viscpr == 1    %%Viscous 
        rtrial = (1-ALPHA)*taw_n + ALPHA*taw_n1; 
    end 

     
elseif (MDtype==2)  %* Only tension 

     
    sigma_e_n = eps_n*ce; 
    sigma_e_plus_n(:) = sigma_e_n(:).*(sigma_e_n(:)>0); 
    taw_n = sqrt(sigma_e_plus_n*eps_n') ; 

     
    sigma_e_n1 = ce*eps_n1'; 
    sigma_e_plus_n1(:) = sigma_e_n1(:).*(sigma_e_n1(:)>0); 
    taw_n1 = sqrt(sigma_e_plus_n1*eps_n1') ; 

     
    if viscpr == 0   %%inviscid 
        rtrial= sqrt(sigma_e_plus_n1*eps_n1'); 
    elseif viscpr == 1   %%viscous 
        rtrial = (1-ALPHA)*taw_n + ALPHA*taw_n1; 
    end 

         
elseif (MDtype==3)  %*Non-symmetric 

     
    sigma_e_n = eps_n*ce; 
    sigma_e_plus_n(:) = sigma_e_n(:).*(sigma_e_n(:)>0); 
    theta_n = (sigma_e_plus_n(1)+sigma_e_plus_n(2))/(abs(sigma_e_n(1))+abs(sigma_e_n(2))); 
    taw_n= (theta_n+(1-theta_n)/n)*sqrt(eps_n*ce*eps_n'); 

     
    sigma_e_n1 = eps_n1*ce; 
    sigma_e_plus_n1(:) = sigma_e_n1(:).*(sigma_e_n1(:)>0); 
    theta_n1 = 

(sigma_e_plus_n1(1)+sigma_e_plus_n1(2))/(abs(sigma_e_n1(1))+abs(sigma_e_n1(2))); 
    taw_n1= (theta_n1+(1-theta_n1)/n)*sqrt(eps_n1*ce*eps_n1'); 

     
    if viscpr == 0    %%inviscid 
        rtrial= (theta_n1+(1-theta_n1)/n)*sqrt(eps_n1*ce*eps_n1'); 
    elseif viscpr == 1     %%viscous 
        rtrial = (1-ALPHA)*taw_n + ALPHA*taw_n1; 
    end 

     
end 
%************************************************************************************** 
return 
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4.3. Function damage_main 

function 

[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,istep,strain,MDtype,n,TimeTo

tal) 
global hplotSURF 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
% CONTINUUM DAMAGE MODEL 
% ---------------------- 
% Given the almansi strain evolution ("strain(totalstep,mstrain)") and a set of 
% parameters and properties, it returns the evolution of the cauchy stress and other  

variables 
% that are listed below. 
% 
% INPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
% ---------------------------------------------------------------- 
% Eprop(1) = Young's modulus  (E) 
% Eprop(2) = Poisson's coefficient (nu) 
% Eprop(3) = Hardening(+)/Softening(-) modulus (H) 
% Eprop(4) = Yield stress (sigma_y) 
% Eprop(5) = Type of Hardening/Softening law  (hard_type) 
%            0 --> LINEAR 
%            1 --> Exponential 
% Eprop(6) = Rate behavior (viscpr) 
%            0 --> Rate-independent (inviscid) 
%            1 --> Rate-dependent   (viscous) 
% 
% Eprop(7) = Viscosity coefficient (eta)  (dummy if inviscid) 
% Eprop(8) = ALPHA coefficient (for time integration), (ALPHA) 
%             0<=ALPHA<=1 , ALPHA = 1.0 --> Implicit 
%                           ALPHA = 0.0 --> Explicit 
%            (dummy if inviscid) 
% 
% ntype    = PROBLEM TYPE 
%            1 : plane stress 
%            2 : plane strain 
%            3 : 3D 
% 
% istep = steps for each load state (istep1,istep2,istep3) 
% 
% strain(i,j) = j-th component of the linearized strain vector at the i-th 
%               step, i = 1:totalstep+1 
% 
% MDtype      = Damage surface criterion % 
%            1 : SYMMETRIC 
%            2 : ONLY-TENSION 
%            3 : NON-SYMMETRIC 
% 
% 
% n          = Ratio compression/tension strength (dummy if MDtype is different from 3) 
% 
% TimeTotal  = Interval length 
% 
%  OUTPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
%  ------------------------------------------------------------------ 
%  1) sigma_v{itime}(icomp,jcomp)  --> Component (icomp,jcomp) of the cauchy 
%                                   stress tensor at step "itime" 
%                                   REMARK: sigma_v is a type of 
%                                   variable called "cell array". 
% 
% 
%  2) vartoplot{itime}              --> Cell array containing variables one wishes to plot 
%                                    -------------------------------------- 
%   vartoplot{itime}(1) =   Hardening variable (q) 
%   vartoplot{itime}(2) =   Internal variable (r)% 

  
% 
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%  3) LABELPLOT{ivar}              --> Cell array with the label string for 
%                                    variables of "varplot" 
% 
%          LABELPLOT{1} => 'hardening variable (q)' 
%          LABELPLOT{2} => 'internal variable' 
% 
% 
%  4) TIME VECTOR  - > 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

  
% SET LABEL OF "vartoplot" variables  (it may be defined also outside this function) 
% ---------------------------------- 
LABELPLOT = {'hardening variable (q)','internal variable','damage 

variable(d)','C_alg_11','C_tg_11'}; 

  
E      = Eprop(1) ; nu = Eprop(2) ; 
viscpr = Eprop(6) ; 
sigma_u = Eprop(4); 

  

  

  
if ntype == 1 
    menu('PLANE STRESS has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
elseif ntype == 3 
    menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
else 
    mstrain = 4    ; 
    mhist   = 6    ; 
end 

  

  

  
totalstep = sum(istep) ; 

  

  
% INITIALIZING GLOBAL CELL ARRAYS 
% ------------------------------- 
sigma_v = cell(totalstep+1,1) ; 
TIMEVECTOR = zeros(totalstep+1,1) ; 
delta_t = TimeTotal./istep/length(istep) ; 

  

  
% Elastic constitutive tensor 
% ---------------------------- 
[ce]    = tensor_elastico1 (Eprop, ntype); 
% Initz. 
% ----- 
% Strain vector 
% ------------- 
eps_n1  = zeros(mstrain,1); 
eps_n  = zeros(mstrain,1); 

  
% Historic variables 
% hvar_n(1:4) --> empty 
% hvar_n(5) = q --> Hardening variable 
% hvar_n(6) = r --> Internal variable 
hvar_n  = zeros(mhist,1)  ; 

  
% INITIALIZING  (i = 1) !!!! 
% ***********i* 
i = 1 ; 
r0 = sigma_u/sqrt(E); 
hvar_n(5) = r0; % r_n 
hvar_n(6) = r0; % q_n 
hvar_n(7) = 0; % d 
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hvar_n(8) = ce(1,1); % C_alg_11 
hvar_n(9) = ce(1,1); % C_tg_11 

  
eps_n1 = strain(i,:) ; 
sigma_n1 =ce*eps_n1'; % Elastic 
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  sigma_n1(4)]; 

  
nplot = 5 ; 
vartoplot = cell(1,totalstep+1) ; 
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
vartoplot{i}(3) = hvar_n(7)  ; %  Damage variable (d) 
vartoplot{i}(4) = hvar_n(8) ; % Internal variable (r) 
vartoplot{i}(5) = hvar_n(9) ; % Internal variable (r) 

  
for  iload = 1:length(istep) 
    % Load states 
    for iloc = 1:istep(iload) 
        i = i + 1 ; 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 
        % Total strain at step "i" 
        % ------------------------ 
        eps_n1 = strain(i,:) ; 
        eps_n = strain(i-1,:) ; 

         
        

%************************************************************************************** 
        %*      DAMAGE MODEL 
        % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        [sigma_n1,hvar_n,aux_var] = 

rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t); 
        % PLOTTING DAMAGE SURFACE 
        if(aux_var(1)>0) 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 'r:',MDtype,n ); 
            set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)                         ; 
        elseif (aux_var(1)<=0) 
        end 

         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %********************************************************************** 
        % GLOBAL VARIABLES 
        % *************** 
        % Stress 
        % ------ 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  sigma_n1(4)]; 
        sigma_v{i} =  m_sigma ; 

         
        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 
        % ---------------- 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
        vartoplot{i}(3) = hvar_n(7); %  Damage variable (d) 
        vartoplot{i}(4) = hvar_n(8); 
        vartoplot{i}(5) = hvar_n(9); 
    end 
end 

 

4.4. Function rmap_dano1 

function [sigma_n1,hvar_n1,aux_var] = rmap_dano1 

(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t) 

  
%************************************************************************************** 
%*                                         * 
%*           Integration Algorithm for a isotropic damage model 
%* 
%*                                                                                    * 
%*            [sigma_n1,hvar_n1,aux_var] = rmap_dano1 (eps_n1,hvar_n,Eprop,ce)        * 
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%*                                                                                    * 
%* INPUTS              eps_n1(4)   strain (almansi)    step n+1                       * 
%*                                 vector R4    (exx eyy exy ezz)                     * 
%*                     hvar_n(6)   internal variables , step n                        * 
%*                                 hvar_n(1:4) (empty)                          * 
%*                                 hvar_n(5) = r  ; hvar_n(6)=q                       * 
%*                     Eprop(:)    Material parameters                                * 
%* 
%*                     ce(4,4)     Constitutive elastic tensor                        * 
%*                                                                                    * 
%* OUTPUTS:            sigma_n1(4) Cauchy stress  , step n+1                          * 
%*                     hvar_n(6)   Internal variables , step n+1                           * 
%*                     aux_var(3)  Auxiliar variables for computing const. tangent tensor  * 
%*************************************************************************************** 

  

  
hvar_n1 = hvar_n; 
r_n     = hvar_n(5); 
q_n     = hvar_n(6); 
E       = Eprop(1); 
nu      = Eprop(2); 
H       = Eprop(3); 
sigma_u = Eprop(4); 
hard_type = Eprop(5) ; 
viscpr = Eprop(6) ; 
eta = Eprop(7); 
ALPHA = Eprop(8); 
%************************************************************************************* 

  

  
%************************************************************************************* 
%*       initializing                                                %* 
 r0 = sigma_u/sqrt(E); 
 zero_q=1.d-6*r0; 
% if(r_n<=0.d0) 
%     r_n=r0; 
%     q_n=r0; 
% end 
%************************************************************************************* 

  

  
%************************************************************************************* 
%*       Damage surface                                                              %* 
[rtrial,taw_n1] = Modelos_de_dano1 (MDtype,ce,eps_n1,n,eps_n,viscpr,ALPHA); 
%************************************************************************************* 

  

  
%************************************************************************************* 
%*   Ver el Estado de Carga                                                           %* 
%*   --------->    fload=0 : elastic unload                                           %* 
%*   --------->    fload=1 : damage (compute algorithmic constitutive tensor)         %* 
%% implementing exponential hardening for inviscid and viscous case 

  
fload=0; 

  
if(rtrial > r_n) 
%     *   Loading 
    fload=1; 
    delta_r = rtrial-r_n; 

     
    if viscpr == 0  %inviscid case 
        r_n1= rtrial  ; 
    elseif viscpr == 1 %viscous case 
        Z = (eta-(1-ALPHA)*delta_t)/(eta+ALPHA*delta_t); 
        Y = delta_t/(eta+ALPHA*delta_t); 
        r_n1 = Z*r_n + Y*rtrial; 
    end 
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    if hard_type == 0 
%          Linear 
        H_n1 = H; 
        q_n1= q_n+ H*delta_r; 
    elseif hard_type == 1 
        q_inf = r0+(r0-zero_q); 
%         exponential 
        if H>0 
            H_n1 = H*((q_inf-r0)/r0)*exp(H*(1-rtrial/r0)); 
            q_n1= q_n+ ((H*(q_inf-r0)/r0)*exp(H*(1-rtrial/r0)))*delta_r; 
        elseif H<0 
            H_n1 = H*((q_inf-r0)/r0)*(1/exp(H*(1-rtrial/r0))); 
            q_n1 = q_n+ ((H*(q_inf-r0)/r0)*(1/exp(H*(1-rtrial/r0))))*delta_r; 
        end 
    end 

     
    if(q_n1<zero_q) 
        q_n1=zero_q; 
    end 
else 
%     *     Elastic load/unload 
    fload=0; 
    r_n1= r_n  ; 
    q_n1= q_n  ; 
end 

  
%% 
% Damage variable 
% --------------- 
dano_n1 = 1-(q_n1/r_n1);  %damage parameter 
sigma_n1  =(1-dano_n1)*ce*eps_n1'; 

  
%hold on  
%plot(sigma_n1(1),sigma_n1(2),'bx') 

  

  
%% tangent constitutive equation 
if viscpr == 1 
   if rtrial > r_n 
       Ce_alg_n1 = (1-dano_n1)*ce+((ALPHA*delta_t)/(eta+ALPHA*delta_t))*... 
           (1/taw_n1)*((H_n1*r_n1-q_n1)/(r_n1^2))*((ce*eps_n1')'*(ce*eps_n1')); 
       C_alg = Ce_alg_n1(1,1); 

        
       Ce_tan_n1=(1-dano_n1)*ce; 
       C_tan = Ce_tan_n1(1,1); 
       hvar_n1(8)= C_alg; 
       hvar_n1(9)= C_tan; 
   elseif rtrial <= r_n 

  
       Ce_alg_n1 = (1-dano_n1)*ce; 
       C_alg = Ce_alg_n1(1,1); 

  
       Ce_tan_n1 = Ce_alg_n1; 
       C_tan = Ce_tan_n1(1,1); 
       hvar_n1(8)= C_alg; 
       hvar_n1(9)= C_tan; 
   end 
end 

  
%% 
%************************************************************************************* 

  
%  Computing stress 
%  **************** 
%sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 
%hold on 
%plot(sigma_n1(1),sigma_n1(2),'bx') 
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%************************************************************************************* 

  

  
%************************************************************************************* 
%* Updating historic variables                                            %* 
%  hvar_n1(1:4)  = eps_n1p; 

  
hvar_n1(5)= r_n1; 
hvar_n1(6)= q_n1 ; 
hvar_n1(7)=dano_n1; 

  

  
%************************************************************************************* 
%* Updating historic variables                                            %* 
%  hvar_n1(1:4)  = eps_n1p; 
hvar_n1(5)= r_n1 ; 
hvar_n1(6)= q_n1 ; 
%************************************************************************************* 

  

  
%************************************************************************************* 
%* Auxiliar variables                                                               %* 
aux_var(1) = fload; 
aux_var(2) = q_n1/r_n1; 
%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 
%************************************************************************************* 

  
end 

  

  

  

  

  

  

  

  

  

 

 


