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Solution of Homework 1_b 

Consider the homogeneous deformation of a hinged rigid truss: 

 

Figure 1. Hinged rigid truss considered for the homework. 

For α = 0, the rigid truss encloses a square with side length L. Considering that 
the deformation map ϕ (X) is parametrized by the angle α, find: 

1) The deformation map ϕ (X) is terms of α: 

There is a shift in the X1 direction and a change in the area within the hinged rigid 
truss.  

ϕ (X) = [ X1 + sin(α)X2    cos(α)X2 ]T 

 

2) The deformation gradient F and the right Cauchy-Green deformation tensor C: 

�	 � 	�����φ	�
��	 
�	 � 	 �1 sin�α�0 cos�α�� 

�	 � 	��� 

�	 � 	 � 1 sin�α�sin�α� sin²�α� 	� 	cos²�α�� 
 



3) The variation in area of the solid as a function of alpha. Plot the variation: 

Calculating the area enclosed by the hinged rigid truss (Figure 1): 

A	 � 	2 �L²cos�α�sin�α�2 �	� 	Lcos�α��L	 � 	Lsin�α�� 
A	 � 	L²cos	�α� 

Considering L = 1 unit of length: 

 

Figure 2. Variation in area of solid as a function of alpha. 

According to Figure 2, the area values below the black dashed line are 
negative. Therefore, for the values of α which result in a negative area, the 
jacobian J is smaller than zero and such range of α is physically inacceptable. 

 

4) The point which the deformation ceases to be acceptable. Interpret 
geometrically. 

For a deformation to be acceptable, the jacobian J must be positive (J>0) 

 	 J²	 � 	det��� 
J²	 � 	sin²�α� 	� 	cos²�α� 	� 	sin²�α�	 

J	 � 	cos�α� 	$ 	0	 ∴ 	�π2 ' α	 ' π2 

 

If the jacobian J is negative, the area of the solid would be negative, which 
is physically impossible. In such case, the negative area means that parts of the 
structure would collapse, and the structure would turn “inside out”.  



 

 

5) Compute the change in length of the internal diagonals and the subtended 
angle β in terms of alpha. Plot their variations in terms of alpha. Interpret 
geometrically. 

Considering that the edges of the truss structure have constant size L 
(Figure 1), the length of diagonal AC as a function of the angle α was calculated 
as the hypotenuse of the following triangle (highlighted in thick black lines): 

 

Figure 1. Triangle (in thick black lines) considered to calculate the length of 
diagonal AC as a function of angle α. 

Following the same idea, the length of the diagonal BD was calculated 
considering the following triangle (in black thick lines): 



 

Figure 2. Triangle (highlighted in thick black lines) considered to calculate the 
length of diagonal BD as a function of angle α. 

Considering the triangles highlighted in Figures 3 and 4, the length of the 
diagonals AC and BD are the defined as follows: 

AC 	� 	L)2�1 � sin�α�� 
BD 	� 	L)2�1	 � 	sin�α�� 

Since the hinged truss will always have a rhombic shape, the angle 
subtended by the internal diagonals will remain π/2. Therefore, the angle β is 
independent of the angle α and will always have the value of π/2. 

β	 � 	π2 

For the plot, it was considered L =1. 



 

Figure 3. Variation of length of diagonals AC and BD (in blue) and subtended 
angle β (in red) for acceptable values of alpha. 

 According to Figure 5, if the angle alpha → π/2, rotating the structure to 
the right, the length of the diagonal AC tends to the value 2L and the length of 
the diagonal BD tends to zero. The same opposite behavior is obtained if the 
angle alpha → - π/2. Both behaviors are in agreement, since as alpha 
approaches either π/2 or -π/2, the structure tends to a linear shape with length 
2L. If the angle alpha → - π/2, the linear shape coincides with the diagonal BD. If 
the angle alpha →  π/2, the linear shape coincides with the diagonal AC. 

Solution of Homework 1_a 

Consider the following deformation of a rubber matrix (in green) with a reinforced 
wire grid, which is inextensible:  

 

Figure 4. Deformation of rubber block with a reinforced wire grid. 



 The wire grid is inextensible and rigidly attached to the rubber matrix. 
Therefore, the wire grid follows the deformation of the rubber matrix. The angle β 
is the bisection between the grid wires, defining the angle α, and it is measured 
from the axis X1. 

1)  Define the right Cauchy-Green deformation tensor C as a function of stretches 
a/B, b/B and angle θ. 

To obtain the stretch in a certain direction, we can use the following equation: 

																																																																								λ. � 	/�/                                               (1) 

For the stretch in X1 direction: 

0aA2. 	� 	 [1	0]	�C55 C5.C.5 C..� 6107 
Yielding:  

0aA2. 	� 	C55 

For the stretch in X2 direction: 

8bB:. 	� 	 [0	1]	;0aA2. C5.C.5 C..
< 6017 

Yielding: 

8bB:. 	� 	 C.. 

Since the right Cauchy-Green tensor C is symmetric, C12 = C21 = C. 
Therefore, we can use the following relationship to define the term C: 

                                           			cos�θ� 	� 	 λ>5?5λ>.?5	/>5	�	/>.                                     (2) 

 Replacing the known values in the Equation 2, the following is obtained: 

cos�θ� 	� 	Aa Bb [1	0]	
@A
AB0

aA2. C
C 8bB:.

CD
DE 6017 

Solving for C: 

 	
C	 � 	C5. 	� 	 C.5 	� 	 abAB cos�θ� 

Writing the tensor C with its components: 



�	 � 		
@A
AB 0aA2. abAB cos�θ�
abAB cos�θ� 8bB:.

CD
DE 

2)  For what values of β the sides of rubber matrix remain at 90◦? 

 In this case, since the sides of the block remain at 90 degrees, the 
components C21 and C12 are equal to zero and the components C11 and C22 
remain the same. Also, since the reinforced grid is inextensible, the stretch λ in 
the direction of the wires is 1. Therefore, we can find a relationship for β through 
the following Equation 1. Considering the two directions of the wires, we can 
define the normal vector N in each direction: 

/5 	� 	 [cos�β	-	α�			sin�β	-	α�]� 

/. 	� 	 [cos�β � α�			sin�β � α�]� 

 Replacing both normal vectors in Equation 1, and considering that λ = 1 in 
both directions and C12 = C21 = 0, the following system of equations is obtained: 

1	 � 	 0aA2. cos.�β	-	α� 	� 	8bB:. sin.�β	-	α�	 
1	 � 	 0aA2. cos.�β � α� 	�	8bB:. sin.�β � α� 

 After applying trigonometric identities and further manipulations, the 
following relationship for values of β to guarantee θ = 90° is obtained: 

G	 � 	nH2 ,						for	n	 �	. . . -3, -2, -1, 0, 1, 2, 3. .. 
 It is important to mention that I could not manipulate the system of 
equations to arrive in such relationship for β. 

3)  Compute the stretch ratios a/A and b/B as a function of the angles α, β and θ. 

Considering the right Cauchy-Green tensor C defined in exercise 1: 

N	 � 		
@A
AB 0aA2. abAB cos�θ�
abAB cos�θ� 8bB:.

CD
DE 

Considering the normal vectors N1 and N2 in the direction the wires: 

O5 	� 	 [cos�β	-	α�			sin�β	-	α�]� 

O. 	� 	 [cos�β � α�			sin�β � α�]� 

And considering that the stretches along the wires are equal to 1, we can 
employ Equation 1 for directions N1 and N2 to obtain the following nonlinear 
system of equations: 



1	 � 	 0aA2. cos.�β � α� 	�	8bB:. sin.�β � α� 	� 	2cos�θ� 0aA2 8bB: cos�β � α�sin�β
� α� 

1	 � 	 0aA2. cos.�β	-	α� 	� 	8bB:. sin.�β	-	α� 	� 	2cos�θ� 0aA2 8bB: cos�β	-	α�sin�β	-	α� 
  

After manipulations and employing trigonometric identities, it is possible to 
describe a/A and b/B ratios in terms of α, β and θ. Unfortunately, I was not able 
to find such relationship.  

4)  Considering β = 0, and that the rubber matrix is stretched in X1 direction and 
compressed in the direction X2, define a nonlinear poisson ratio ν in terms of α. 

As only stretches (elongation and compression) are applied to the rubber 
matrix, the terms C12 and C21 are equal to zero. Therefore, the following 
relationship can be employed to calculate the Lagrangian strain tensor E: 

																																																																						P � 	 5
. ��	-	Q�                                               (3) 

 Replacing the known values in Equation (3), the following Lagrangian 
strain tensor is obtained: 

P	 � 	12	
@A
AB0

aA2. -	1 0
0 8bB:. -	1CD

DE 

 To obtain a relationship between the components of the Lagrangian strain 
tensor E and the angle α, the following relationship can be employed: 

																																																																									R. � 	1	 � 	2OPO                                       (4) 

 Considering that the stretch is 1 in the direction of the wires and 
considering the definition of normal vectors N1 and N2, Equation (4) can be written 
for both N1 and N2. The output is the following system of equations: 

1	 � 	 cos.�β	-	α� �0aA2. -1	� 	� 	sin.�β	-	α� S8bB:. -1	T	 
1	 � 	 cos.�β � α� �0aA2. -1	� 	� 	sin.�β	 � 	α� S8bB:. -1	T 

 After manipulation and employing trigonometric identities, a relationship 
can be found for poisson ν as a function of α. Unfortunately, I was not able to find 
such relationship. 

5)  For what values of α, the poisson ν = 0.5? 

 Unfortunately, I was not able to find such the relationship.  


