$$
H W 1 b
$$

Diego Roldan Uhrien

1. Deformation mappuing in terms a

Peferance lanfofuration

Spatual Conjicuration

$$
\left\{\begin{array}{l}
x_{1}=x_{1}+\sin \alpha x_{2} \\
x_{2}=\cos \alpha x_{2}
\end{array}\right.
$$

* Deformatien map:

$$
\left[\underline{x}=\underline{\varphi}(x, t)=\left[\begin{array}{l}
x_{1}+\sin \alpha x_{2} \\
\cos a x_{2}
\end{array}\right]\right]
$$

2. Deformation gradent E and laucky-Creen deformation C.

* Deformation gradeent F:

$$
\begin{aligned}
& \underline{F}(X, t)=\operatorname{Crad} \underline{\varphi}(x, t) \\
& \underset{-}{F}=\left(\begin{array}{ll}
\frac{\partial \varphi_{x_{1}}}{\partial x_{1}} & \frac{\partial \varphi_{x_{1}}}{\partial x_{2}} \\
\frac{\partial \varphi_{x_{2}}}{\partial x_{1}} & \frac{\partial \varphi_{x_{2}}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 & \sin \alpha \\
0 & \cos \alpha
\end{array}\right)
\end{aligned}
$$

* Right lavchy-breen deformation tensor \subseteq :

$$
\begin{aligned}
& C=F^{\top} F=\left(\begin{array}{cc}
1 & 0 \\
\sin \alpha & \cos \alpha
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & \sin \alpha \\
0 & \cos \alpha
\end{array}\right)= \\
&=\left(\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{array}\right)=\left(\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right)
\end{aligned}
$$

3. Corapute and plot the variation of volume as a function of α.

* Differential Volume Map:

$$
d v=J d V
$$

- Volumetric deformation:

$$
e=\frac{d v-d V}{d V}=\frac{d x}{d V}-1=J-1
$$

where I is the Jacobian defined al,

$$
J=\operatorname{det} E=\cos \alpha
$$

So, the vasiateran of volume is:

$$
[e=\cos \alpha-1]
$$

4. At what point do the deformations cease to be admissible?

The deform trans cease to be admesible when:

$$
[J \leq 0]
$$

So, when.

$$
J=\operatorname{det} E=\cos \alpha \leq 0
$$

$[\alpha \geq \pm \pi / 2$ the deformation is not admissible $]$
[Only admissible in the range: $-\pi / 2<\alpha<\pi / 2]$

* Geometrically:

Finally when $\alpha=\pi / 2$, all corners (A, B, C, D) would be in the same line, defornating the solid un an impose physical way.

5. Change in length of diagonals $A C$ and $B D$ and change in angle β subtended by them. Plot the reals.

- Reference configuraticen:

* Material sketch vector:
$\lambda=\sqrt{(T \cdot C T)}$, bung T the unit vectors.

$$
T_{1}=\frac{1}{\sqrt{2}}(1,1) \quad ; \quad T_{2}=\frac{1}{2}(-1,1)
$$

\rightarrow For AC diagonal $\quad \rightarrow$ For BD diagonal

- For diagonal AC

$$
\lambda_{1}=\left(\frac{1}{\sqrt{2}}(1,1) \cdot\left(\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\binom{1}{1}=\sqrt{1+\sin \alpha}\right.
$$

+ For diagonal BD:

$$
\lambda_{2}=\frac{1}{\sqrt{2}}(-1,1) \cdot\left(\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\binom{-1}{1}=\sqrt{1-\sin \alpha}
$$

From,

$$
\left.\left.d s=\lambda d S \quad ; \quad \lambda=\frac{d s}{d S}\right] \Rightarrow s=\lambda S\right]
$$

Se,

$$
\begin{aligned}
& s_{1}=\lambda_{1} S_{1}=\sqrt{(1+\sin \alpha)} S_{1} \\
& s_{2}=\lambda_{2} S_{2}=\sqrt{(1-\sin \alpha)} S_{2}
\end{aligned}
$$

being S_{1} and S_{2}, the initial of the diagonals.

* Geometrically.

When a increases.
$A_{1}=$ Diagonal $A C$ increases, because $\sqrt{1+\sin a} S_{1}$
$A_{2}=\operatorname{diag} D B$ decreases, because $\sqrt{1-\sin a} S_{2}$

Io it is possible to appreciate geometrically.

* Change of angle B.
- Reference configuraticen:
$x_{2} \uparrow$

$$
\beta=\pi / 2 \mathrm{rad}
$$

* Spatial configurati en.

* Variation of angle:

$$
\cos \theta=\frac{T^{(1)} \cdot(1+2 E) T^{(2)}}{\sqrt{1+2 T^{(1)} \cdot E T^{(1)}} \cdot \sqrt{1+2 T^{(2)} E T^{(2)}}}
$$

Being E the breen-lagrange Strain Tensor:

$$
E=\frac{1}{2}(C-1)=\frac{1}{2}\left(\begin{array}{cc}
0 & \sin \alpha \\
\sin \alpha & 0
\end{array}\right)
$$

* Numerator part

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(1,1) \cdot\left(1+\frac{2}{2}\left(\begin{array}{cc}
0 & \sin \alpha \\
\sin \alpha & 0
\end{array}\right)\right) \cdot \frac{1}{\sqrt{2}}\binom{-1}{1}= \\
& \frac{1}{2}(\sin \alpha-1+1-\sin \alpha)=0
\end{aligned}
$$

So,

$$
[\cos \theta=0 \quad \forall \alpha] ;\left[\theta=\frac{\pi}{2} \mathrm{rad}\right]
$$

* Gecantrcally in spatial configuration.

3. Compute and plot the variation in volume of the solid as a function of α.

Next, it presented the plot of the variation in volume of the solid as a function of α.

Remark that the only feasible and physical solution is between $-\pi / 2$ and $\pi / 2$ rad as it is mentioned before. It is plotted the rest to show the behaviour of the curve.

5. Compute the change in length of the diagonals AC and BD, and the change in the angle β subtended by them. Interpret geometrically. Plot the change of lengths and the change of angle β as a function of α.

Next, it presented the plot of the change of lengths and the change of angle β as a function of α.

Remark that the only feasible and physical solution is between $-\pi / 2$ and $\pi / 2$ rad as it is mentioned before. It is plotted the rest to show the behaviour of the curve.

Deformation mapping:

$$
\varphi_{1}=x^{1} ; \varphi_{2}=x^{2} ; \quad \varphi_{3}=x^{3}+w\left(x^{1}, x^{2}\right)
$$

Cylindrical solid referred to an orthonormal Cartesian reference frame $\left\{x^{1}, x^{2}, x^{3}\right\}$
1.
a) Compute F, C and J in terms of W.

* Deformation gradient fold E:

$$
F=\left(\begin{array}{ccc}
\frac{\partial \varphi_{1}}{\partial x^{1}} & \frac{\partial \varphi_{1}}{\partial x^{2}} & \frac{\partial \varphi_{1}}{\partial x^{3}} \\
\frac{\partial \varphi_{2}}{\partial X_{1}} & \frac{\partial \varphi_{2}}{\partial X_{2}} & \frac{\partial \varphi_{2}}{\partial x_{3}} \\
\frac{\partial \varphi_{3}}{\partial x_{1}} & \frac{\partial \varphi_{3}}{\partial X_{2}} & \frac{\partial \varphi_{3}}{\partial x_{3}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{\partial \omega}{\partial x_{1}} & \frac{\delta \omega}{\partial X_{2}} & 1
\end{array}\right)
$$

\Rightarrow Right Candy-Creen ofloumation tensor \subseteq :

$$
\begin{aligned}
& C=E^{\top} E \\
& C=\left(\begin{array}{ccc}
1 & 0 & \frac{\partial \omega}{\partial x_{1}} \\
0 & 1 & \frac{\partial \omega}{\partial X_{2}} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{\partial \omega}{\partial X_{1}} & \frac{\partial \omega}{\partial X_{2}} & 1
\end{array}\right)=\left(\begin{array}{cc}
1+\left(\frac{\partial \omega}{\partial x_{1}}\right)^{2} & \frac{\partial \omega}{\partial X_{1}} \cdot \frac{\partial \omega}{\partial X_{2}} \\
\frac{\partial \omega}{\partial X_{2}} \cdot \frac{\partial \omega}{\partial X_{1}} & \left.1+\frac{\partial \omega}{\partial X_{2}}\right)^{2} \\
\frac{\partial \omega}{\partial X_{2}} \\
\frac{\partial \omega}{\partial X_{1}} & \frac{\partial \omega}{\partial X_{2}}
\end{array}\right)
\end{aligned}
$$

Note that C is symmetric, as it was expected from definition.

* Jacobean (J)

$$
J=\operatorname{det}(F)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{\partial \omega}{\partial X_{1}} & \frac{d \omega}{\partial X_{2}} & 1
\end{array}\right|=1 / /
$$

b) Does the solid change volume during deformation?

By definition, the incompressibility condition (zero volumetric deformation), takes the form

$$
[J=1]
$$

Therefore, as it is shown previcunly, this soled does not change volume during deformation because it fulfils the condition. So,

$$
[d v=d V] \Rightarrow[v=V]
$$

c) Are the local impenetrability conditions satisfied? Due to the fact $J>0$, it exists an immerse mapping deformation. This means that there is a spatial point related to a material point with an unique transformation.
2. Consider the unit vectors

$$
A=\frac{w_{1} E_{1}+w_{2} E_{2}}{\sqrt{w_{1}^{2}+w_{2}^{2}}} \quad B=\frac{-w_{2} E_{1}+w_{1} E_{2}}{\sqrt{w_{1}^{2}+w_{2}^{2}}}
$$

a) How are A and B related to the level contours of $w\left(x_{1}, x_{2}\right)$.
assuming that $\omega\left(X_{1}, X_{2}\right)$ is a contour bevel, then is constant by definition: $\omega\left(X_{1}, X_{2}\right)=$ constant Therefore, its gradient can be defined as:

$$
\underline{\nabla}=\omega_{1} E_{1}+\omega_{2} E_{2}
$$

with the module:

$$
\left\|w_{-}\right\|=\sqrt{\left(w_{1} E_{1}\right)^{2}+\left(w_{2} E_{2}\right)^{2}}
$$

Then vector A is the unit normal vector over the contour

$$
\left[\underline{A}=\frac{\nabla \underline{\omega}}{\|\underline{\omega}\|}\right]
$$

level. $w\left(X_{1}, X_{2}\right)=d e$.

Finally,

$$
A \cdot B=0
$$

So, A and B are orthogonal.
1 is a unit tangent vector of $w\left(x_{1}, x_{2}\right)=t$.
b) Compute the change in length of A and B and the angle subtended by A and B.
Sketch ratio/ change in length:

$$
\frac{d s}{d S}=\lambda=\sqrt{T \cdot C T} \text {, where } T \text { are the unset vectors. }
$$

* For veda l $A: \quad\left(T=A=\frac{1}{\sqrt{\left(\frac{d w}{d x_{1}}\right)^{2}+\left(\frac{d w}{d x_{2}}\right)^{2}}}\left(\frac{d w}{d X_{1}}, \frac{d w}{d X_{2}}, 0\right)\right)$

$$
\left[\frac{d \Delta A}{d S_{A}}=\lambda_{A}=\sqrt{A \cdot C A}=\sqrt{\left(\frac{d \omega}{d x_{1}}\right)^{2}+\left(\frac{d \omega}{d x_{2}}\right)^{2}+1}\right]
$$

- For vector $B: T=B=\frac{1}{\sqrt{\left(\frac{d \omega}{d x_{1}}\right)^{2}+\left(\frac{d \omega}{d x_{2}}\right)^{2}} \cdot\left(\frac{-d \omega}{d X_{2}}, \frac{-d \omega}{d X_{1}}, 0\right)}$

$$
\left[\frac{d D_{B}}{d S_{B}}=\lambda_{B}=\sqrt{B \cdot C B}=1\right]
$$

- To work out the angle: $\theta=$ angle subtended by A and B

$$
\cos \theta=\frac{A \cdot(1+2 E) B}{\sqrt{1+2 A \cdot E A} \cdot \sqrt{1+2 B E B}}
$$

Where E is the Green-laglaige Strain Tensor.

$$
E=\frac{1}{2}(C-1)=\frac{1}{2}\left(\frac{\partial \omega}{\partial x_{1}}\right)^{2} \frac{\partial w}{\frac{\partial w}{\partial x_{1}} \frac{\partial x_{2}}{\partial x_{1}}} \frac{\frac{\partial w}{\partial x_{1}}}{} \begin{array}{r}
\left(\frac{\partial w}{\partial x_{2}}\right)^{2} \\
\frac{\partial w}{\partial x_{2}} \\
\end{array}
$$

* The numerator:

$$
A \cdot(1+2 E) B=0
$$

Then,

$$
\cos \theta=0 \Rightarrow\left[\theta=\frac{\pi}{2} \mathrm{rad}\right]
$$

* all calculations done with calculator, it is only shown the results.
c) Interpret the results
- as $\theta=90^{\circ}$, angle subtended by A and B, the se vectors are orthogonal in material and spatial references.
- as $\left\|\lambda_{A}\right\|>1$, the rector A increases in length in spatial configuration.
as $\left\|\lambda_{B}\right\|=1$; the vector B does not change in length in spatial configuration.
- So, the nounal vector (A) charges in length, whereas the tangent vector (B) remains const ant.
Thus is related to antiplane shear which consorts of having Odesplacement in the body in the plane studied and having moen-jero displacement in the perpendicular direction to the plane.

3. Using Piola transformation, compute choonge of cella.

* The change of area is defined as:

$$
\operatorname{dq} \cdot n=J \cdot E^{-T} N d A
$$

where I is the Jacobian and E^{-T} the inverse of the transpose of the deformation gladuet.
$J=1$, as it was computed before (incomplessbbe body)
I is the nounal vector $N:[0,0,1]$

$$
\left[\frac{d a}{d A}=1\left[\begin{array}{ccc}
1 & 0 & -\frac{d w}{d x_{1}} \\
0 & 1 & -\frac{d w}{d x_{2}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{d w}{d x_{1}} \\
-\frac{d \omega}{d x_{2}} \\
1
\end{array}\right]\right]
$$

5. Integral expression for the deformed area of the domain Ω

From previous expression:

$$
\begin{aligned}
& d_{\underline{a}} \underline{m}=J \cdot \underline{F}^{-T} \underline{N} d A \\
& \int_{\Omega} d \underline{a} n=\int_{\Omega}\left\|J F^{-T} \underline{N} d A\right\| d \Omega= \\
& =\int_{\Omega} d \underline{\underline{m}}=\int_{\Omega} \| 1 \cdot F^{-T}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] d A=\int_{-2} \sqrt{\left(\frac{d \omega}{d x_{1}}\right)^{2}+\left(\frac{d \omega}{d x_{2}}\right)^{2}+1} d A
\end{aligned}
$$

6.

Boundary $d \Omega$ of Ω

$$
\begin{gathered}
X_{1}=X_{1}(S), X_{2}=X_{2}(S) \\
0 \leq S \leq L \left\lvert\, \frac{E_{1} X_{2}(S)}{d S}+\frac{E_{2} X_{2}(S)}{d S}=\begin{array}{c}
\text { una vector tangent } \\
\text { to } d \Omega .
\end{array}\right.
\end{gathered}
$$

* The are-length is defined as:

$$
\int_{d L_{R}} d l=\int_{L_{R_{0}}} \lambda d L=\int_{d_{r_{0}}} \sqrt{1+2 T E \pm} d L
$$

where T is the una vector along maternal direction.

$$
I=\left[\frac{x_{1}(S)}{d S} \quad \frac{x_{2}(S)}{d s} \quad 0\right]
$$

And the matrix E is defined previously.

$$
\sqrt{1+2 T E T}=\sqrt{\left(\frac{x_{1}(S)}{d S} \frac{d w}{d X_{1}}+\frac{X_{2}(S)}{d S} \frac{d w}{d X_{2}}\right)^{2}+1}
$$

- Dore by calculator

Then the perimeter of the deformed boundary is;

$$
\int_{d \Omega_{0}} d l=\int_{d l_{0}} \sqrt{1+2 T E T}=\int_{d S_{0}} \sqrt{\left(\frac{x_{1}(S)}{d S} \frac{\partial w}{\partial x_{1}}+\frac{x_{2}(S)}{d S} \frac{d w}{\partial x_{2}}\right)^{2}+1} d S
$$

