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Part -1 (Rate Independent Models) 

a) (Implementation of Non symmetric tension compression model and tension  only model) 

An inviscid damage model is considered. In the supplied MATLAB code the integration algorithms 

(rate independent and plane strain case) are implemented for ‘non symmetric tension compression 

model ‘and ‘tension only model’.  The major part of the modified (added) MATLAB code is attached 

in annex 1.  

Consider, Non symmetric model Tension Compression model. An arbitrary loading path with 

arbitrary material properties is considered. The plot of damage surface is shown in figure A1.  The 

ratio of compressive strength to tensile strength, n= 2 for the current plot.  The Elastic domain is 

larger in the negative quadrant.  The corresponding of evolution of damage variable over time is 

shown in figure A2. As shown in figure, the  damage variable never decreases. 

 

      Figure A1: Damage Surface of Non symmetric Model 

 

 Figure A2: Plot of damage variable vs. time for Non symmetric Model 

Consider, Tension only model. A sample loading path is considered in shown in figure A3 and A4. As 

we are considering the positive counterpart of stresses, the size of elastic domain is normal in pure 

tensile region, where as its infinite in pure compressive region. If we compare this model with non 

symmetric case, here the ratio of compressive strength to tensile strength is infinite. Hence, pure 

compressive state is always elastic.  The corresponding of evolution of damage variable over time is 

shown in figure A5.  



 

                         Figure A3: Damage Surface of Tension only Model 

 

     Figure A4: Damage Surface of Tension only Model (Maximized near loading path) 

 

Figure A5: Plot of damage variable vs. time for Tension only Model             

 

b) (linear and exponential hardening/softening (H<0 and H>0)) 

The effect of hardening and softening is illustrated in this part. MATLAB code is implemented for 

Exponential hardening and softening.  The added code is attached in Annexure 2. 



The previous implemented models (in section a) ) are studied for Linear and exponential hardening / 

softening cases.  The variations of hardening variable q(r) versus internal variable r are similar for all 

three models. They are as shown in following figures.  

 

Figure B1: Graph of q(r) vs. r for Linear Hardening / Softening 

 

Figure B2: Graph of q(r) vs. r for Exponential Hardening / Softening 

The plots of damage surfaces for Linear Hardening for Tension only model and Non symmetric 

Tension Compression models are shown in following figures. An arbitrary loading path is considered. 

The Hardness Modulus considered is, H=0.1 for hardening and H=-0.1 for softening.   It’s clear from 

the graph that, on pure loading the damage surface expands in case of hardening and shrinks in case 

of softening. 

 

   Figure B3: Linear Hardening in Tension only model 

 



                                                   Figure B4: Linear Softening in Tension only model 

                                     Figure B5: Linear Hardening in Non symmetric tension compression model 

                              Figure B6: Linear Softening in Non symmetric tension compression model 

The plots of damage surfaces for Exponential Hardening/Softening of three models are shown in 

following figures. An arbitrary loading path is considered. The Hardness Modulus considered is, 

H=0.1 for hardening and H=-0.1 for softening. Exponential hardening behaves similar to that of linear 

case. 



                             Figure B7: Exponential Hardening in Symmetric tension compression model 

                                  Figure B8: Exponential softening in Symmetric tension compression model 

                    

Figure B9: Exponential Hardening in tension only model 



                

Figure B10: Exponential softening in tension only model 

               Figure B11: Exponential Hardening in Non symmetric tension compression model 

                             Figure B12: Exponential softening in Non symmetric tension compression model 

 

 

 



c) (Assessment of  correctness of the implementation) 

The models in section a), Non symmetric tension compression model and Tension only model 

are loaded along appropriate paths as per given increments.  To assess the correctness of 

implementation the path at the stress space and the stress-strain curve are analysed.   The given 

loading paths are as follows. 

1. Δσ1
(1)= α ; Δσ2 

(1) = 0 (uniaxial tensile loading) 

Δσ1
(2)= β; Δσ2 

(2) = 0 (uniaxial tensile unloading/compressive loading) 

Δσ1
(3)= γ ; Δσ2 

(3) = 0 (uniaxial compressive unloading/ tensile loading) 

 

2. Δσ1
(1)= α ; Δσ2 

(1) = 0 (uniaxial tensile loading) 

Δσ1
(2)= -β; Δσ2 

(2) =-β (biaxial tensile unloading/compressive loading) 

Δσ1
(3)= γ ; Δσ2 

(3) = γ (biaxial compressive unloading/ tensile loading) 

 

3. Δσ1
(1)= α ; Δσ2 

(1) = α (biaxial tensile loading) 

   Δσ1
(2)= -β; Δσ2 

(2) =-β (biaxial tensile unloading/compressive loading) 

Δσ1
(3)= γ ; Δσ2 

(3) = γ (biaxial compressive unloading/ tensile loading) 

 

Consider, α=200, β= 100, γ=200.  

The following plots (Figure C1-C6) are obtained for Tensile only model. For easier visualization of 

plots, only two time steps are considered for each linear stage of loading path. Linear Hardening 

is considered with H=0.1. Arbitrary material properties are considered and they are kept 

constant. Only stress loading is being changed according given three loading paths. 

                                                          Figure C1:  Stress norm path in given loading path 1 

                                                             Figure C2: Plot of  Stress vs. Strain   for loading path 1 



In figure C1, stress loading is done in three stages. In first linear stage uniaxial tensile load of 200 

units is applied. The stress loaded  just  reaches the damage surface. Hence, there is no evolution of 

damage surface. In second stage uniaxial compressive load of 100 units is applied. Now, the stress 

moves inside the elastic domain. Hence, there is no evolution of elastic domain. In third stage 

uniaxial tensile load of 200 units is applied. Now the stress goes out of the elastic domain for one 

time step. Hence there is evolution of damage surface to cover that stress norm.  The tensile model 

correctly satisfies the load path 1. This can also be verified in stress strain curve in figure C2. For first 

stage the stress is linear and elastic. For second stage the stress is elastically decreasing. Where as in 

third stage the stresses are non linear, indicates that the stress is outside elastic domain. 

Similarly, tensile model satisfies other two given loading conditions (paths). Hence we can conclude 

that the tension only model is correctly implemented.  

                                               Figure C3:  Stress norm path in loading path 2

                                              Figure C4:  Plot of Stress vs. Strain   for loading path 2

                                                     Figure C5:  Stress norm path in loading path 3. 



                                                            Figure C6:  Stress -Strain curve for loading path 3 

Now, for same values of α, β and γ, the corresponding graphs (Figures C7 to 12) are plotted for Non 

symmetric Tension Compression model. For easier visualization of plots only two time steps are 

considered for each line of loading path. 

                                                    Figure C7:  Stress norm path in loading path 1 

                                                           Figure C8: Plot of Stress vs. Strain   for loading path 1 



                                                  Figure C9:  Stress norm path in loading path 2 

                                                          Figure C10:  Stress vs. Strain   for loading path 2 

                                                         Figure C11:  Stress norm path in loading path 3   

                                                    Figure C11:  Stress vs. Strain   for loading path 3 



Similar to ‘tensile only model’, the ‘non symmetric tension compression model’ satisfies the theory 

of continuum damage model in the given load paths.  Hence correct implementation of non 

symmetric model is assessed. 

 

 

PART II (rate dependent models) 

 

d) (Visco-damage model) 

MATLAB code  is implemented  for the integration algorithm (plane strain case) of  the continuum 

isotropic visco-damage “symmetric tension compression “ model . The implemented code is 

attached in Annexure 3. 

For an arbitrary loading path and material properties, viscosity parameter, η =0.3, the following plots 

are obtained (linear hardening with H=0.1 is considered).  Damage surface is shown in figure D1 (for 

better visualisation, only four time steps are considered). The damage surface is expanding during 

pure loading. The corresponding Stress norm vs. strain norm plot is shown in figure D2. The viscous 

effect can be seen in non linear region. 

                            Figure D1: Damage surface for Viscous-Symmetric tension compression model 

                                                Figure D2: Stress vs. strain graph for Viscous-Symmetric model 



e) (Assessing  the correctness of the implementation) 

1) The strain rate and the viscosity, show similar effects on the stress-strain curve. This is illustrated 

in figure E1 and figure E2 (for a fixed Poisson ratio of 0.3 and linear hardening with H=0.1). Viscosity 

rate is changed by varying the total time. The stress in non linear region of stress-strain curves 

increase with increase in strain rate or the viscosity parameter ‘η’. 

 

                                                        Figure E1: Effect of viscosity parameter (η) 

                                                          Figure E2: Effect of strain rate on Stress-strain curve 

 

The effect of values of ‘α’ on stress-strain plots is displayed in following figure E3. The implicit 

methods give better results. The stress-strain curve is smoother in Backward Euler (Implicit, α=1) 

method. The Crank-Nicholson (midpoint rule, α=0.5) scheme gives the best result as it’s a second 

order method. The Forward Euler (explicit, α=0) gives highest fluctuations. It is conditionally stable.  

                                         Figure E3: Effect of α (Time integration method) on stress-strain curves  

 

From analysis of effect of strain rate, viscosity parameter (η) and α on stress-strain curves, confirms 

the correctness of the implementation of code for continuum isotropic visco-damage “symmetric 

tension compression” model. 



2)  MATLAB code is implemented to study the effect of ‘α’ values on the on the evolution along time 

of the C11 component of the tangent and algorithmic constitutive operators. The code is attached in 

Annexure 4.  

                                    Figure E4: Evolution of Tangent Constitutive operator (C11
tang) for different  α 

 

          Figure E4: Evolution of Tangent Constitutive operator (C11
alg) different α 

Tangent Constitutive operator remains constant for different values of α as shown in figure E4, 

whereas algorithmic Constitutive operator decreases as α increases (Figure E5).  From the above 

plots, we can make out that for α=0,  C11
tang =  C

11
alg.  We can conclude that  Cvd

tang =  C
vd

alg  for α=0.  



 

Annexure 1  

 Main part of MATLAB codes for implementation of Non symmetric tension compression model and 

tension only model (rate independent case) are listed in this annexure. 

Predictor step:  Evaluation of τǫ = τ(εn+1) (subroutine Modelos_de_dano1.m) is coded as follows for 

non symmetric case. 

%**********************************start***********************************

elseif (MDtype==3) %*Non-symmetric 

sigma_n = ce*eps_n1'; 
theeta1= (sigma_n(1).*(sigma_n(1)>0) + sigma_n(2).*(sigma_n(2)>0)) 
/(abs(sigma_n(1))+abs(sigma_n(2)));%Defining Theeta 
rtrial= [theeta1+(1-theeta1)/n]*sqrt(eps_n1*ce*eps_n1')  ; 

%*********************************end************************************** 

In the function hplot (subroutine dibujar_criterio_dano1.m) the following code is added for Non 
symmetric model Tension Compression model. 
%**********************************start***********************************

elseif MDtype==3 %*Non-symmetric 

    tetha=[0:0.01:2*pi];     
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 
    
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
     
    for i=1:Contador    

theeta(i)=((m1(i).*(m1(i)>0) + m2(i).*(m2(i)>0))/(abs(m1(i))                                 
+abs(m2(i)))); % Defining Theeta 

radio(i)= q/(theeta(i)+(1-theeta(i))/n)/sqrt([m1(i) m2(i) 0       
nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 

            nu*(m1(i)+m2(i))]');   
         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   
         
    end 
    hplot =plot(s1,s2,tipo_linea); 
%**********************************end*************************************    
 

Predictor step: Evaluation of τǫ = τ(εn+1) (subroutine Modelos_de_dano1.m) is coded as follows for 

tension only case. 

%**********************************start***********************************

elseif (MDtype==2)  %*tension only model  



rtrial= sqrt(eps_n1.*(eps_n1>0)*ce*eps_n1')  ;  

%**********************************end*************************************   
 

In the function hplot (subroutine dibujar_criterio_dano1.m) the following code is added for Tension 
only model.  
%**********************************start***********************************

elseif MDtype==2  %*tension only model       

    tetha=[0:0.01:2*pi];     
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 
       
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
     
    for i=1:Contador 

radio(i)= q/sqrt([m1(i).*(m1(i)>0) m2(i).*(m2(i)>0) 0        
nu*(m1(i)+m2(i)).*(nu*(m1(i)+m2(i))>0)]*ce_inv*[m1(i) m2(i) 0 
... 

            nu*(m1(i)+m2(i))]'); % Considered positive stresses 
         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   
         
    end 
    hplot =plot(s1,s2,tipo_linea);      
%**********************************end************************************* 

          

Annexure-2 

The added code for Exponential Hardening/ Softening  (subroutine rmap_dano1.m) is as follows. 
%**********************************start***********************************

else 

        % Exponential Hardenig 
        A=abs(H);  
        if H>0  
        q_inf=r0+(r0-zero_q);           
        q_n1= q_inf-(q_inf-q_n)*exp(A*(1-r_n1/r_n)); 
        elseif H<0 
        q_inf=zero_q;           
        q_n1= q_inf-(q_inf-q_n)*exp(A*(1-r_n1/r_n)); 
        end 
     end 
%**********************************end************************************* 
 

 

 



Annexure -3 

Main part of added MATLAB code for implementation of integration algorithm (plane strain case) for 

the continuum isotropic visco-damage “symmetric tension compression” model is mentioned in this 

annexure.  

  Predictor step: Evaluation of τn+ α = (1- α )*τ(εn) + α *τ(εn+1) (subroutine Modelos_de_dano1.m) is 

coded as follows for symmetric tension compression  case. 

%***********************************start********************************* 
if (MDtype==1)      %* Symmetric 
rtrial= sqrt(eps_n1*ce*eps_n1')  ; 
te_n = sqrt(eps_n*ce*eps_n');   % strain (tau epslilon) at time step n   
te_n_alpha = ((1-ALPHA_COEFF).*te_n) + (ALPHA_COEFF.*rtrial) ; % strain 
(tau epslilon n plus aplha) at time ,n plus aplha  
%***********************************end********************************* 
The important part of added code is as follows (in the file rmap_dano1.m).  

%***********************************start********************************* 
 elseif vis == 1 %viscous model      
    if (te_n_alpha > r_n)    %*   Loading  
    fload=1; 

r_n1= ((eta-delta_t*(1-ALPHA_COEFF))*r_n + delta_t*te_n_alpha)         
/(eta+ALPHA_COEFF*delta_t); 

      delta_r=r_n1-r_n;    
     
    if hard_type == 0 
        %  Linear 
        q_n1= q_n+ H*delta_r; 
    else 
        % Exponential 
        A=abs(H);  
        if H>0  
        q_inf=r0+(r0-zero_q);           
        q_n1= q_inf-(q_inf-q_n)*exp(A*(1-r_n1/r_n)); 
        elseif H<0 
        q_inf=zero_q;           
        q_n1= q_inf-(q_inf-q_n)*exp(A*(1-r_n1/r_n)); 
        end 
    End 
%***********************************end********************************* 

 

Annexure 4 

The code for computation of tangent and algorithmic constitutive operators is as follows. 
%***********************************start********************************* 
%  Computing tangent operators  
%  **************** 
sigmab = ce*eps_n1'; % stress 
C_tang_n1 =(1-dano_n1)*ce ; % tanget constitutive operator 
C_tang_n1_11 = C_tang_n1(1,1); 
% algorithmic constitutive operator 
C_alg_n1 = C_tang_n1+(ALPHA_COEFF*delta_t*(H*r_n1-q_n1) 
/(eta+(ALPHA_COEFF*delta_t))/rtrial/(r_n1^2)*(sigmab*sigmab')); 
C_alg_n1_11 = C_alg_n1(1,1);  
%***********************************end********************************* 
 


