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Assumed mechanical properties common to plots:

E = 200GPa

ν = 0.3

σy = 200MPa

σ∞ = 300MPa

1. Perfect Plasticity
Cyclic Step loading in x-direction : [0 1.5σY 0 − 1.5σY 0 1.5σY ] with each step active for 5 seconds.
Strain history is generated for above loading assuming linear elasticity. Loading is zero in y & z
directions.
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Figure 1: Strain history for perfect plasticity
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Figure 2: Stress vs. Strain for perfect plasticity

Observations:

� The deviatoric stress dev(σ11) in Figure 2 has zero slope as expected on the yield surface.

� The total stress σ has a non-zero slope because stress point moves along the yield surface, i.e.
n · (σn+1 − σn) = 0

� Maximum deviatoric stress to yield stress ||dev(σ)||/σy has a ratio of
√

2
3 w.r.t yield stress as

expected.
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For Rate Dependent model, with η = 1011, the following behaviour is obtained:
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Figure 3: Strain history for Rate dependent per-
fect plasticity
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Figure 4: Stress vs. Strain for Rate dependent
perfect plasticity
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Figure 5: Stress vs. Time for Rate dependent
perfect plasticity

Observations:

� Elastic and plastic strain curves have a non-zero settling time after each step, a clear indication
of viscous effects.

� Stress vs. strain curve (Figure 4) show a near vertical behaviour during dwell time. This is
corresponding to elastic strain reducing and plastic strain increasing during the dwell period.
This can also be seen in Stress vs. time curve (Figure 5)

� Maximum deviatoric stress ||dev(σ)||/σy has a ratio more than >
√

2
3 which indicates that the

stress point moves outside the viscous domain.
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2. Linear Hardening
The same loading applied in this case as well.
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Figure 6: Stress vs. Strain for Linear Hardening
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Figure 7: Stress vs. Strain for various K

Observations:

� The slope of deviatoric stress ||dev(σ)||/σy is same as 2
3 of linear hardening modulus

� For various hardening modulii, it is observed that stress has higher values for higher modulus.
(Figure 6)

� This gap between the curves of the two increases with each cycle, since each cycle has increases
the size of yield surface. (Figure 7)

3. Exponential Hardening (Saturationa law)
Cyclic loading in x-direction : [0 5σY 0 − 8σY ].

Here the coefficient δ of the exponential hardening law is calculated such that initial slope when
hardening starts is same as that of Hardening modulus H. Figure 8 shows the response under such
loading.
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Figure 8: Stress vs. Strain for Non-linear Hard-
ening with saturation law
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Figure 9: Stress vs. Strain for Non-linear Hard-
ening with saturation law
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Observations:

� The slope of deviatoric stress dev(σ) saturates because of the exponential saturation law.

� However, the slope of σ11 is doesn’t saturate because the stress point is free to move on the yield
surface.

� On compression loading, the behaviour is similar to perfect plasticity. This is because of the yield
surface is already saturated and cannot increase beyond this size.

� The above observation implies: closer σY is to σ∞, more is the behaviour like perfect plasticity.

� For higher values of δ, the yield surface saturates for a lower strain.

4. Kinematic Hardening
Cyclic loading in x-direction : [0 3σY 0 − 2σY 0 2σY ].
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Figure 10: Stress vs. Strain for Kinematic Hard-
ening
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Figure 11: Stress vs. Strain for different Kine-
matic Hardening modulii

Observations:

� Loss of symmetry is observed clearly in Figure 10. Upon compressive loading, the stress vs. strain
curve changes curve much earlier than the value of yield strength.

� When hardening starts in compression, the deviatoric stress dev(σ)11 is negative, but the σ11 is
still positive. This extreme behaviour is due to the fact that the value of kinematic hardening is
comparable to that of Young’s modulus and the isotropic hardening modulus is zero.

5. Linear Kinematic Hardening + Non-Linear Isotropic Hardening
Cyclic loading in x-direction : [0 3σY 0 − 2σY 0 2σY ].

Observations:

� It is hard to identify the individual effects of non-linear hardening Hardening and Rate depen-
dency.
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Figure 12: Stress vs. Time for Linear Kinematic
+ Non-Linear Isotropic Hardening + Viscosity

-1.5 -1 -0.5 0 0.5 1 1.5
Strain #10-3

-4

-3

-2

-1

0

1

2

3

4

S
tr

es
s 11

#108

Stress
11

Dev Stress
11

K = 100 MPa
H = 50 MPa
2 = 1e+11

Figure 13: Stress vs. Strain for Linear Kinematic
+ Non-Linear Isotropic Hardening + Viscosity
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Figure 14: Strain vs. Time for Linear Kinematic
+ Non-Linear Isotropic Hardening + Viscosity

6. Recovery of Rate Independent from Rate Dependent Model
The below Figures 15 and 16 shows the recovery of rate independent model from rate dependent model.
The figures are almost the same.
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Figure 15: Stress vs. Time for Small value of
Viscosity
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Figure 16: Stress vs. Strain for Rate Indepen-
dent Model
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Appendix
MATLAB codes on J2 Plasticity

1. Function to generate yield surface parameters yield surface J2.m

%% Material Properties
YOUNG = 200e9 ; NU = 0.3 ;
ISO HARD MOD = 100e9 ; KIN HARD MOD = 50e9 ;
YS = 200e6 ; YS SAT = 300e6 ;
HARD TYPE = 1 ; % 1 for linear, 2 for exponential
VISCOSITY = 1e1 ;

% Constitutive Matrix
Cd = YOUNG*(1-NU)/(1+NU)/(1-2*NU) ;
Cs = YOUNG*NU/(1+NU)/(1-2*NU) ;
C = Cd*eye(3,3)+ Cs*(ones(3,3)-eye(3,3)) ;

Mat.young = YOUNG ; Mat.nu = NU ;
Mat.isomod = ISO HARD MOD ; Mat.kinmod = KIN HARD MOD ;
Mat.ys = YS ; Mat.ys sat = YS SAT ;
Mat.htype = HARD TYPE ; Mat.eta = VISCOSITY ;
Mat.C = C ; Mat.mu = (Cd-Cs)/2 ;

%% Load steps, time steps and Strain History

% Step loading - for perfect plasticity
Load X = [0 1 1.5 1.5 0 -1 -1.5 -1.5 1.5 1.5]*YS ;
Load Y = [0 1 1.5 1.5 0 -1 -1.5 -1.5 1.5 1.5]*YS*0 ;
Load Z = [0 1 1.5 1.5 0 -1 -1.5 -1.5 1.5 1.5 ]*YS*0 ;
steps pls = 20*ones(1,length(Load X)-1) ;
steps time = [0 0.01 0.02 5 5.01 5.02 5.03 10 10.02 15] ;

%% Generate strain history
Strain = [] ;
time = [] ;
nsteps = sum(steps pls)+1 ;
for i = 1:length(Load X)-1

time = time(1:end-1);
Strain = Strain(:,1:end-1);
Strain = [Strain [linspace(Load X(i),Load X(i+1),steps pls(i)+1) ;

linspace(Load Y(i),Load Y(i+1),steps pls(i)+1) ;
linspace(Load Z(i),Load Z(i+1),steps pls(i)+1)] ] ;

time = [time linspace(steps time(i),steps time(i+1),steps pls(i)+1)] ;
end
Strain = C\Strain;

%% Creating structure for storage
History = struct( 'sigma', cell(1,nsteps),'eps', num2cell(Strain(:,1:nsteps),1), ...

'eps vp', cell(1,nsteps), 'alpha', cell(1,nsteps), ...
'q', cell(1,nsteps), 'f', cell(1,nsteps) ) ;

History(1).sigma = zeros(3,1) ; History(1).eps vp = zeros(3,1) ;
History(1).alpha = 0 ; History(1).q = zeros(3,1) ;
History(1).f = 0 ;

%% Time marching
for n = 1:nsteps-1

del t = time(n+1)-time(n) ;
History(n+1) = eval state RD J2(History(n),Strain(:,n+1),del t,Mat) ;

end
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2. Function to generate yield surface parameters yield surface J2.m

function [ys,d pi,dd pi] = yield surf J2(Mat,alpha)
switch Mat.htype

case 1
ys = (Mat.ys + Mat.isomod*alpha) ;
d pi = Mat.isomod ;
dd pi = 0 ;

case 2
A = Mat.isomod/(Mat.ys sat- Mat.ys) ;
ys = Mat.ys sat - (Mat.ys sat- Mat.ys)*exp(-A*alpha) ;
d pi = A*(Mat.ys sat- Mat.ys)*exp(-A*alpha) ;
dd pi = -Aˆ2*(Mat.ys sat- Mat.ys)*exp(-A*alpha) ;

end
end

3. Function to generate data on next time step eval state RD J2.m. Includes the return mapping algo-
rithm.

function [new state] = eval state RD J2(state,eps n1,del t,Mat)

alpha = state.alpha ; q = state.q ;
eps vp = state.eps vp ;
% Creating trial state
tr state.sigma = Mat.C*(eps n1 - eps vp) ;
tr state.eps = eps n1 ; tr state.eps vp = state.eps vp ;
tr state.alpha = alpha ; tr state.q = q ;
tr state.f = norm(dev(tr state.sigma) - q) - sqrt(2/3)*yield surf J2(Mat,alpha ) ;

if tr state.f <= 0
new state = tr state ;

else
sigma = tr state.sigma ;
n = (dev(sigma)-q) / norm( (dev(sigma)-q) ) ;
% creating a guess for alpha
[~,d pi,~] = yield surf J2(Mat,alpha);
del alpha = tr state.f/ (2*Mat.mu + 2/3*Mat.kinmod+ 2/3*d pi + Mat.eta/del t) ;
[~,d pi,~] = yield surf J2(Mat,alpha+del alpha);
del alpha = tr state.f/ (2*Mat.mu + 2/3*Mat.kinmod +2/3*d pi + Mat.eta/del t) ;
% Newton-Raphson iteration
iter = 0 ;
del alpha old = 0;
while abs((del alpha old - del alpha)/del alpha)>1e-3 | | iter == 0

[~,d pi,dd pi] = yield surf J2(Mat,alpha+del alpha);
g = tr state.f-(2*Mat.mu + 2/3*d pi + 2/3*Mat.kinmod + Mat.eta/del t)*del alpha ;
gp = (2*Mat.mu + 2/3*d pi + 2/3*Mat.kinmod + Mat.eta/del t) - dd pi*del alpha ;
del alpha old = del alpha ;
del alpha = del alpha - g/gp ;
iter = iter+1 ;

end
alpha n1 = alpha+del alpha ; del eps vp = del alpha * n ;
eps vp n1 = state.eps vp + del eps vp ; sigma = Mat.C*(eps n1 - eps vp n1) ;
q = state.q + sqrt(2/3)*del alpha*Mat.kinmod*n ;
[new ys] = yield surf J2(Mat,alpha n1) ;
% creating output structure
new state.sigma = sigma ; new state.eps = eps n1 ;
new state.eps vp = eps vp n1 ; new state.alpha = alpha n1 ;
new state.q = q ; new state.f = norm(dev(sigma) - q) - sqrt(2/3)*new ys ;

end
end
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