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1 Continuum Damage Models

The science of Continuum Damage Mechanics it is used to model materials behaviour taking into
account mathematically the change on its macroscopic mechanical behaviour due to changes that takes
place at a microscopic scale, more precisely in the material micro-structure. Likewise, micro-cracks
and micro-pores appears internally in the material which make the area of tension application smaller
inside it, whereas at the macroscopic scale the area is considered to be the total one disregarding
the before-mentioned effects. The response to damage of some material it may be through a loose
of stiffness, as it occurs with rocks and concrete, on the other side, ductile materials like low-middle
carbon content steels, by means of a visco-plastic dissipation whilst maintaining the magnitude of its
stiffness modulus constant, in case an unload event would take place.

1.1 Description of the Isotropic Damage Model

A consideration between two different types of stresses has to be made in a continuum damage model:
apparent stresses (σ) and effective stresses (σ).

The apparent stresses are external and they act on the whole section (S ) whilst the effective stresses
act on the undamaged regions (S).

Damage variable, denoted by d(r), relates the apparent stresses and the effective stresses. Likewise,
for a completely damaged section, the damage variable takes the value of 1, whereas for a not damaged
section its value is equal to zero. The variable d(r) depends on internal variables and its magnitude
never decreases, a fact that is explained trough the explanation of the second principle of thermody-
namics which establish that the mechanical dissipation in a material is always greater or equal to zero.
The constitutive equation for isotropic damage model is stated as:

σ = (1− d(r))C : ε (1)

Where C is the elastic isotropic tensor (4th order definite positive tensor).
It is necessary to define a spatial domain whose boundary represents the damage surface. This

domain can be presented in two ways as:

f(σ, r) = τσ − q(r) (2)

g(ε, r) = τε − r (3)

Where equation 2 is related to the stress space and equation 3 is related to the strain space. The
value of τσ in the equation 2 corresponds to the stress norm while the value of τσ in the equation 3
corresponds to the strain norm.

q(r) is the hardening/softening variable; a scalar function defined in the stress space which depends
on the magnitude of stresses and it controls the size of the elastic domain. Likewise, when the stress
state lies inside f , the material behaves elastically (f < 0). The damage criterion requires that the
current stress state must be on (f = 0) or inside the damage surface, taking into account an inviscid
model.
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In the case of the stress space definition, the elastic domain increases or decreases accordingly
to the change of q(r) On the other side, the strain space domain it always increases or remains
constant, this is due to the fact that physically a softening is directly related to a decrease in the
stregnth of the material to resist stresses, this is why q(r) is also referred as stress-like variable. The
hardening/softening parameter H which is the rate of change of the hardening/softening variable, is
characterized by:

• Damage with Hardening H(r) > 0
• Perfect Damage H(r) = 0
• Damage with Softening H(r) < 0

Linear Hardening/Softening Law assuming a linear variation of q with r is stated as:

q(r) = r0 +H(r − r0) (4)

H = dq(r)/dr (5)

The Exponential Hardening/Softening Law can expressed as:

q(r) = q∞ − (q∞ − r0)eA(1−r/r0) (6)

H = dq(r)/dr = A
(q∞ − r0)

r0
eA(1−r/r0) (7)

2 Continuum Damage Code

In order to execute the simulation, certain material properties must be given as an input in Matlab
routines, these properties are the following:

• Young Modulus (E)
• Poisson coefficient (ν)
• Hardening/softening modulus (H)
• Uniaxial elastic limit( σu)
• Ratio compression/tension (n)
• Viscosity parameter (η)
• Alpha coefficient (α)

Furthermore, the user can also choose in between the different options that exists within the code:

• Type of analysis (plane stress, plane strain or 3D)
• Type of damage surface (symmetric model, tensile-damage-only or non-symmetric model)
• Type of Hardening/Softening Law (Linear or Exponential)
• Viscous/Inviscid
• Length of the interval of time (T )

3 Assignment

3.1 Rate independent models

In this part two algorithms have to be implemented; the continuum isotropic damage “non-symmetric
tension-compression damage” model and the “tension-only” damage model. The first model it is based
on the fact that the domain of the elastic region is greater when compression occurs, and the transition
between tension to compression zones is linearly controlled by means of two parameters which are the
weight factor θ and the ratio between compression and tension n. The second model it takes in account
only tensile loads whereas the compressive loads are made 0, this is achieved by using the so-called
Macaulay Brackets.
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Once the previous models are implemented, Linear Law, equation 4, and Exponential Harden-
ing/Softening Law (H < 0 and H > 0), equation 6, are needed. For the linear case the Hard-
ening/Softening Parameter (H) is constant value, while for the exponential case it depends of the
internal variable (equation 7).

Likewise, it is proceeded by obtaining the path at the stress space and the stress-strain curve,
corresponding to appropriate loading paths starting at the point σ1 = 0 ; σ2 = 0 and described by
three-segment paths in the strain space ∆ε1 → ∆ε2 → ∆ε3.
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Inviscid Model (Tension only damage model)

Case 1
∆σ1 =α; ∆σ2 = 0 Uniaxial tensile loading
∆σ1 = −β; ∆σ2 = 0 Uniaxial tensile unloading/compressive loading
∆σ1 =γ; ∆σ2 = 0 Uniaxial compressive unloading/tensile loading

Figure 1: Inviscid Model - Tension only damage model (Case 1)

Figure 12 shows how the material behaves elastically as the tensile load is less then the yield stress,
which is fixed up to 100 N/m2 for all the next simulations. As the the limit is exceed the elastic
domain increases and the material experience damage. During the next stage (compressive loading)
the material experiments compression with no changes of the domain. For the last stress path the
elastic domain is exceeded again.

Case 2
∆σ1 =α; ∆σ2 = 0 Uniaxial tensile loading
∆σ1 = −β; ∆σ2 = −β Biaxial tensile unloading/compressive loading
∆σ1 =γ; ∆σ2 =γ Biaxial compressive unloading/tensile loading

Case 3
∆σ1 =α; ∆σ2 =α Biaxial tensile loading
∆σ1 = −β; ∆σ2 = −β Biaxial tensile unloading/compressive loading
∆σ1 =γ; ∆σ2 =γ Biaxial compressive unloading/tensile loading

Where for the all cases α=250, β=300 and γ=350, with linear Hardening Modulus of 0.1.
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((a)) Case 2 ((b)) Case 3

Figure 2: Inviscid Model - Tension only damage model

Figure 2(a) and Figure 2(b) show the same behaviour for all stages, so that the only stress path
where no damage occurs is when compression takes place.

Inviscid Model (Non Symmetric tension compression damage model)

Case 1
∆σ1 = −α; ∆σ2 = 0 Uniaxial tensile loading
∆σ1 =β; ∆σ2 = 0 Uniaxial tensile unloading/compressive loading
∆σ1 =γ; ∆σ2 = 0 Uniaxial compressive unloading/tensile loading

Figure 3: Inviscid Model - Non Symmetric tension compression damage model (Case 1)

Figure 3 shows as for the Case 1 (Tension only damage model) that the material behaves elastically
as the tensile load is less then the yield stress. As the the limit is exceed the elastic domain increases
and the material experiment deformation. During the next stage (compressive loading) the material
experience compression with no domain size changes and at the last stage elastic domain grows again
because yield stress is exceeded again.
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Case 2
∆σ1 =α; ∆σ2 = 0 Uniaxial tensile loading
∆σ1 = −β; ∆σ2 = −β Biaxial tensile unloading/compressive loading
∆σ1 =γ; ∆σ2 =γ Biaxial compressive unloading/tensile loading

((a)) Stress vs Strain ((b)) Exponential Hardening Behaviour

Figure 4: Inviscid Model - Non Symmetric tension compression damage model (Case 2)

Figure 4(a) shows a deformation of the domain during the first stage (Uniaxial tensile loading and
also during the last stage (Biaxial tensile loading).
Figure 4(b) shows an Exponential Hardening Behaviour which relates the Damage variable (q) with
the Internal Variable (r). We can see that the function is bounded as the Internal Variable goes to
infinity.

Case 3
∆σ1 =α; ∆σ2 =α Biaxial tensile loading
∆σ1 = −β; ∆σ2 = −β Biaxial tensile unloading/compressive loading
∆σ1 =γ; ∆σ2 =γ Biaxial compressive unloading/tensile loading

((a)) Stress vs Strain ((b)) Linear Hardening Behaviour

Figure 5: Inviscid Model - Non Symmetric tension compression damage model (Case 3)

Figure 5(a) and Figure 5(b) show a Linear Hardening Behaviour which relates the Damage vari-
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able (q) with the Internal Variable (r), which means that the material experiment hardening and the
domain increase.

Where for the all cases α=250, β=300 and γ=350, with linear Hardening Modulus of 0.5.

3.2 Part 2 (rate dependent models)

The second part of the assignment include the integration algorithm (plane strain case) for the contin-
uum isotropic visco-damage “symmetric tension-compression” model. Once the previous implemen-
tation is done the following cases (for a specific given Poisson ratio and linear hardening/softening
parameter) are considered:

• Different viscosity parameters η: [0 ,0.8]
• Different strain rate ε̇
• Different α values: α = [0, 1/4, 1/2, 3/4, 1] (for the time-integration method)

And the next results are obtained:

• The effects of the previous values on the obtained stress-strain curves in appropriate loading
paths

• The effects of the α values, on the evolution along time of the C11 component of the tangent and
algorithmic constitutive operators

Results

For the viscosity parameters η=0 and for different values of α we get:

(a) α=0 (b) α=0.25 (c) α=0.5

(d) α=0.75 (e) α=1

Figure 6: Results for different values α coefficient and η=0
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And for the viscosity parameters η=0.8 and for different values of α we get:

(a) α=0 (b) α=0.25 (c) α=0.5

(d) α=0.75 (e) α=1

Figure 7: Results for different values α coefficient and η=0.8

Figure 6 and Figure 7, compared with the inviscid case, shown how η and α determine the be-
haviour of the numerical simulation. As we know from the theory α is important in order to prevent
instabilities. For α=[1/2,1] the solution should not produce instability. Small values η also produce
instability. For η=0 and α=1 the inviscid case is recovered with implicit integration.

In order to obtain results for different strain rate values we just need to change the total time in
the main code. The simulations has be done for the next total time values (s): [20,50,100].

(a) Total time = 10 s (b) Total time = 20 s (c) Total time = 50 s

Figure 8: Results for α=0.5 coefficient and η=0.4

Figure 8, compared with the inviscid case, shows that as the total time increases, the viscous
solution tends to the inviscid one, which means the small velocity of the applied load.
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3.3 Annexes

Implementation of the continuum isotropic damage “non-symmetric tension-compression damage”
model and he “tension-only” damage model.

Figure 9

Implementation of the linear and Exponential Hardening/Softening Law (H<0 and H>0)

Figure 10
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Implementation of the Viscous case

Figure 11

Implementation of the Consistent (algorithmic) tangent operator:

Figure 12
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