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Part 1: Rate Independent Model

Three types of Model are analysed in Rate independent case (namely: Symmetric model,
Tension only model and Non-symmetric model). The algorithm for the symmetric model is
already implemented in the given Matlab Code. The algorithm for the tension only model
and non-symmetric model are now implemented (Matlab code can be found in the
appendix) and the damage surface for both the models are retrieved and can be seen in the
following diagrams below:
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Fig 1: Damage surface for tension-only model.
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Fig2: Damage surface for Non-symmetric model.

It can be seen In the tension-only damage surface (Figure 1) that, it has the same ellipsoidal
surface as the symmetric case in the positive part of the stress-space. But in the negative
part of the stress-space(compression), the domain is open to infinity. This is because when
the stress is compressive, the Macaulay bracket is zero. This implies that the norm is zero.
Thus the 1y is always negative and never approaches zero. On the other sides, the graph
behaves asymptotically to infinity.



In the non-symmetric model (Figure 2), the positive stress-space part has the same
ellipsoidal as symmetric model as before but in the negative (compression) part the
ellipsoidal is further away than the usual. This is because the norm is amplified with the
factor (1/n) where, "n” being the ratio of the uniaxial stress in compression and tension. In
the other two sides, the graph shows linear variation of stresses.

Next, the linear and exponential hardening/softening code (matlab code in the appendix) is
implemented for both the above models. The results obtained are presented in the figures

below:
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Fig3: Linear Hardening of Tension-only model
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Fig4: Linear softening Tension-only model
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Fig5: Linear hardening non-symmetric model

Damage surface (principal stresses axes)

w

hardening variable (q)

N
o

14 16 18 2 22 24 26 28 3 32 34
internal variable (r)

Figb: Linear softening non-symmetric model

In the above 4 figures (figure2 to figure6), the linear hardening and softening for tension
only and non-symmetric models are shown. The graphs show the variation of hardening
variable g as internal variable increases. When H>0, hardening occurs and graphs has linear
positive variation. When H<O0, softening occurs and graphs has linear negative variation. For
both the model the graphs shows similar pattern.



Fig7: exponential hardening Tension-only model

Fig8: exponential softening Tension-only model
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Fig9: exponential hardening non-symmetric model
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Fig10: exponential softening non-symmetric model

In the above 4 figures (figure7 to figure10), the exponential hardening and softening for
tension only and non-symmetric models are shown. When H>0, hardening occurs and
graphs has exponential positive variation. When H<0, softening occurs and graphs has

exponential negative variation.



The last thing that has to be done in this rate independent model is to obtain the path at the
stress space and stress strain curve for each of the model at appropriate loading paths. For
the loading path, the value of alpha=400, beta= -200 and gamma=300 is considered in each
case of uniaxial and biaxial loading/unloading. Only linear hardening/softening type is
considered. The results obtained are displayed below:

For the first case: Uniaxial tensile loading, uniaxial tensile unloading, and uniaxial
compressive unloading.
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Figll: path at the stress space and strain stress -curve for the first case load path.(Tension-

only Model)
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Figl2: path at the stress space and strain stress -curve for the first case load path. (Non-
symmetric Model)

For the second case: Uniaxial tensile loading, biaxial tensile unloading, and biaxial
compressive unloading.
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Figl13: path at the stress space and strain stress -curve for the second case load path.
(Tension-only Model)



Damage surface (principal stresses axes)
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Figl4: path at the stress space and strain stress -curve for the second case load path. (Non-
symmetric Model)

For the 3rd case: biaxial tensile loading, biaxial tensile unloading, and biaxial compressive
unloading
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Figl5: path at the stress space and strain stress -curve for the second case load path.
(Tension only Model)



Damage surface (principal stresses axes)
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Figl6: path at the stress space and strain stress -curve for the 3rd case load path. (Non-
symmetric Model)

From all the graphs above (Fig 11 to fig 16), it can be seen that initially there is elastic
loading. Then it undergoes hardening for some time after which unloading happens. After
unloading it starts to load elastically once again till certain point in the graph after which it
starts to harden again. Similar pattern of behaviour can be seen in all the other cases of load
path.

In all the three cases, the graph behaved coherently and all the possible loading unloading
and hardening are visible at each stage. Therefore, it can be concluded that the
implementation is correct.



Part 2: Rate Dependent Model

For the rate dependent case, only symmetric tension compression model is considered. The
algorithm is implemented in Matlab for the viscous model and the resulting plot can be seen
below:
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Figl7: Visco-damage model for symmetric tension-compression.

The correctness of the implementation of the algorithm can be verified from the above
figure where it can be seen that the point can leave the elastic domain and reach the
inelastic domain as viscosity increases. This is indeed expected from a Visco-damage model.

Also the correctness of the implementation can be assessed by varying the viscosity
parameter, strain rate and alpha values and obtaining the result in stress-strain curve. For
each of the cases, Poisson ratio of 0.3 and hardening/softening parameter of 0.1 is
considered.



Different Viscosity parameter
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Fig18: stress-strain curve for different values of viscosity

Three different viscosity values (Eta= 0.3, 0.5, 0.7) are used to see the effect on the stress. It
can be seen that the larger are the viscosity, the larger are the stresses. In the elastic part of
the graph, there is no difference. But in the inelastic part, for the same strain value, the
stresses are higher as viscosity increases.

Different strain rate
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Fig19: stress-strain curve for different values of strain rate.

Here also, three different strain rates are used (0.0041, 0.0082, 0.0137). Similar behaviour



of graphs can be noticed when compare to previous graphs for viscosity. The larger the
strain rates, larger are the stresses. The elastic part has no differences. But when the
damage is triggered, the inelastic zone, the stresses increases as the rate of the strain
increases. So, this shows that the stresses not only depend on the strain but also to the rate
of the strain.

If we consider the viscosity to be 0, all the curves collapse to give one curve which is shown
in the figure below.
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Fig20: collapsing of all the curves when viscosity is zero.
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Fig21: stress strain curve for different value of alpha

Five different alpha value are considered in this case (alpha=0, 0.25, 0.5, 0.75, 1). It can be
seen that for all the alpha values the graph is quite similar. It is expected to behave like that
as alpha value represents which integration method is being carried out. In between 0 to



0.5, there are some instability in the plot as the methods used are conditionally stable
(forward Euler for example). But between alpha values of 0.5 to 1 the graphs are
unconditionally stable (Crank Nickelson or Backward Euler for example).

Finally, the effect of alpha values on the evolution along time of the C;; component of the
tangent and algorithmic constitutive operator is measured. The results are displayed in the
following two figures:
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Fig22: effect of alpha on C;;component of algorithmic constitutive operator.
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Fig21: effect of alpha on C;;component of tangent constitutive operator.



APPENDIX

For tension only and non- symmetric model.

if (MDtype==1) £* Symmetric
rtrial= sqrt(eps_nl*ce*eps nl'):;

elseif (MDtype==2) %% Only tension
rtrial = sqrt(eps_nl.* (eps_nl>0)*ce*eps_nl'):;

elseif (MDtype==3) $*Non-symmetric

sigmal =eps nl*ce;

thet = ((sigmal(l).*(sigmal(1)>0))+(sigmal(2).*(sigmal(2)>0)))/(abs(sigmal (1))+abs(sigmal(2))):
rtrial = (chet+(1—thet)/n).*sqrc(eps_nl*ce*eps_nl');

$rtrial= sqrt(eps_ni*ce¥eps ni')

end
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elseif MDtype==2
tetha=[0:0.01:2%pi];
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$* RADIUS

D=gize(tetha); $* Range
ml=cos(tetha); $*
m2=gin(tetha); i*
Contador=D(1,2); $*

radio = zeros(1,Contador) ;
sl zeros(1,Contador) ;
82 zeros(1,Contador) ;

for i=1:Contador
radio(i)= q/sqre(([ml(i) m2(i) O nu*(ml(i)+m2(1))]).*(([ml(1) m2(i) O nu(ml(i)+m2(i))])>0)*ce inv*[ml(i) m2(i) O ...
nu* (ml (i)+m2(i))]'):

81(i)=radio(i)*mi(i);
82 (i)=radio(i)*m2(i);

end
hplot =plot(sl,s2,tipo linea);



elseif MDtype==3
tetha=[0:0.01:2%pi];
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%* RADIUS

D=size(tetha): %* Range
ml=cos (tetha); 3=
m2=sin(tetha); 3*
Contador=D(1,2); g

radio = zeros(1,Contador) ;

sl = zeros(1,Contador) ;
32 = zeros(1l,Contador) :
| for i=1:Contador

nu* (ml(i)+m2(i))]")):

sl(i)=radio(i)*ml(i);
82 (i)=radio(i)*m2 (i)
- end
hplot =plot(sl,s2,tipo_linea);

%!ﬁ*ﬁﬂ*i#*i*ii*iﬂ*i**i*ﬁi*i#*i*ﬁi*iﬂt!'(**i*ﬁ!'V*i**i*ii*i#*i**i*ﬂi*i**i*ﬁi*iﬂti**i*iﬂ*i**i

end

For hardening/softening

if(rtrial > r n)
T Loadin

fioad=1;
delta r=rtrial-r n;
r nl= rtrial ;
if hard type == 0
£ Linear

qg_nl= g n+ H*delta r;
else

A = abs(H):

if H>O0
gmax = r0+r0-zero_g:;
g nl = gmax- (gmax-gq n)*exp(A*(1-r nl/r n))
elseif H<O

gmin = zero_q;

q nl gmin- (qmin-q_n) *exp (A* (1-r nl/r n)) ;
end

end




For implementing Visco-model

function [sigma nl,hvar _nl,aux var] = rmap danol (eps_nl, hvar n,Eprop,ce,MDtype,n,delta t,eps)
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%* ®

E 14 Integration Algorithm for a isotropic damage model

%x

%ﬁ L

$* [sigma_nl,hvar nl,aux_var] = rmap danol (eps_nl,hvar_n,Eprop,ce) *

%x -

$* INPUTS eps_nl (4) strain (almansi) step n+l -

L 3o vector R4 (exx eyy exy ezz) w

£= hvar n(6) internal variables , step n *

3$* hvar n(1:4) (empty) *

$* hvar n(5) = r ; hvar n(6)=g *

g¥ Eprop(:) Material parameters *

%w

g ce(4,4) Constitutive elastic tensor *

%t -

$* OUTPUTS: sigma ni(4) Cauchy stress , step n+l *

$* hvar n(6) Internal variables , step n+l *
g¥* aux_var(3) Auxiliar variables for computing const. tangent tensor *
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hvar_nl = hvar_n;

rn = hvar_n(5);
qn = hvar n(6);
E = Eprop(l):
nu = Eprop(2);
H = Eprop(3):

sigma_u = Eprop(4):
hard type = Eprop(S5):
Eta = Eprop(7):
Alpha = Eprop(8):

%ﬂl‘!#!"!!!tﬂﬂl‘!xu"!ﬂ!!l(!!!’l‘!X!"!ﬂ!!t!!’l‘!X!"!ﬂ!!l!!’l‘!X!"!ﬂ!!l(!!’(l‘!’(!”!ﬂ!!l(!’(!!!tﬁ’!ﬂ!’(!!t!t#’!ﬂt’(!!t!tﬂ
¥ initializing g*

r0 = sigma_u/sqrt(E);

zero_g=1.d-6*r0;

% if (r n<=0.d0)

$ r_n=r0;

3 q_n=r0;

% end

%kzk*tk:kxkkkwktk:kxkkiwktk:kxkk*wktktkxﬂkiwktkwkxﬂx*wkwkxkgﬂx*w*zkxkzﬂx*w*ikxkzﬂx*tkk

%kkkkihkkkikkkkihkkkikkkkihkkkihkkk*h*kkiﬂkki*h*ikikkkkih*iiihkiiihkiikhkiiihki*ihki*ﬁ

¥ Damage surface .4
[rtrial,rtrial n] = Modelos_de danol (MDtype,ce,eps nl,n,eps);



if(rtrial_alpha > r_n)
T Loading

fload=1;
r_nl= (((Eta—delta_t.*(l-Alpha))/(Eta+Alpha*de1ta_t)).*r_n)+((delta_t/(Eta+A1pha*delta_t)).*rtrial_alpha) 2
delta r=r_nl-r n;
if hard type == 0
$ Linear
q nl= g n+ H*delta r;
else
A = abs(H);
if H>0
gmax = r0+rO-zero_gq:
qgnl = qmax—(qmax—q_n)*exp(A*(l—r_nl/r_n)) 2
elseif H<O
gnin = zero_g;
gnl = qmin—(qmin—q_n)*exp(A*(l—r_nl/r_n)) C
end
end

if (g_nl<zero_q)
gq_nil=zero_q;

end

else
$* Elastic load/unload
fload=0;

rnl=rn ;
gni=gqn ;

end

For C11 component

if fload==0

€ al=(1-dano nl)*ce;
glse

C al=(l-dano nl)*ce+( thlpha*delta_t}f (Eva+Ailpha*delta t))* (1/rtrial)#|( tH*r_nl—q_nl}f (r_n1*2))*(sigmabar*sigmabar');
end

C_tan={l-dano nl)*ce;

C11 al= C al(1,1):
-C11 tan=C tan(l,1);



