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Part 1 (Rate Independent Model)

a) Integration Algorithm

Two different types of rate independent damage models will be discussed here to some depth while the
3" damage model (symmetric tension/ compression damage model) has already been implemented.

1. Non Symmetric tension/ compression Damage Model
Algorithm for Non-symmetric case has been implemented and damage surface is retried
successfully while the corresponding MatLab code can be seen in Appendix A. The positive side of
the stress space (tension) covers exactly the same space as it is being covered by symmetric case.
While the negative stress space (compression) is for more away than the space covered in
symmetric casein the same region. The amplification factor of 1/n is being multiply with the norm
of the stresses (taking n = 3 in this case). Figure-1 shows the non-symmetric damage surface.
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Figure-1 Non-Symmetric tension/ compression Damage Surface

2. Tension Only Damage Model
In order to create surface for Tension Only damage model in stress space, algorithm is
implemented and MatLab code is presented in Appendix A.
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Figure-2 Tension only Damage Surface



It can be seen in figure-2 that the positive part of the stress space (Tension) have the same
ellipsoidal surface as the symmetric damage model have. But in the negative region of the stress
space (compression) the space is open to infinity. This is due to fact that Macaulay bracket present
in the stress formula always extract the positive part so, in case of negative domain (compression),
the norm of the stress returns zero value and hence ryis always negative and it never approaches
zero. In other words, one point experiences 3 axial compression will arrive to elastic limit.

b) Hardening/ Softening
1. Linear Law

Using data: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H=0.6
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Figure-3 Linear hardening of Tension Only damage model



Using data: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H =-0.6
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Figure-4 Linear softening of Tension Only damage model

Using data: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength =200, H=0.3
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Figure-5 Linear hardening of Non-Symmetric damage model



Using data: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H =-0.3
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Figure-6 Linear softening of Non-Symmetric damage model

Figures 3 to 6 show the results of linear hardening and softening for both Tension Only and Non

Symmetric damage mod

els. It is clearly evident that within elastic domain there is no evolution of

internal variable (r). Once the inelastic loading (damage surface) starts, the elastic domain shrinks

or expands depending u
variable (r) varies with li

. Exponential Law

pon the value of H (H<0 is softening & H>0 is hardening) and internal
nearly with respect to hardening variable (q).

Parameters: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H = 0.5, q+.. =10*r,
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Figure-7 Exponential Hardening of Tension Only damage model

Parameters: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H = -0.5, g-.. =0.1%*r,
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Figure-8 Exponential Softening of Tension Only damage model



Parameters: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H = 0.5, q+.. =5*r,
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Figure-9 Exponential Hardening of Non-Symmetric damage model

Parameters: Young’s Mod = 20000, Poison Ratio = 0.3, Yield Strength = 200, H = 0.9, g-.. =0.1*r0

hardening variable (q)

L L
145 15 155
internal variable

1% 185 17

Figure-10 Exponential Softening of Non-Symmetric damage model



Figures 7 to 10 show the results of exponential hardening and softening for both Tension Only and
Non Symmetric damage models. The graphs show that when point start to escape the damage
surface the elastic domain expands or shrinks according to H value and internal variable have an
exponential variations with respect to hardening variable. And the expansion of elastic domain
depends upon the value of g+., more the value greater the expansion of elastic domain.

c) Effective Stress Increment
Parameters: H=0.2, a =380, p =-180, y = 200, Linear Hardening/ Softening law and using default values

for other parameters all three cases

1. Case-1
The simulation curves for the loop start with Uniaxial tension loading to uniaxial tension
unloading/ compressive loading to uniaxial compressive unloading and then uniaxial tension

loading again.
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Figure-11 Loading path in Stress Space (SS) and Stress-Strain response (curve) of Case-1 for
Tension Only damage model
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Figure-12 Loading path in SS and Stress-Strain curve Case-1 for Non-Symmetric damage model

2. Case-2
The simulation curves for the loop start with Uniaxial tension loading to biaxial tension unloading/
compressive loading to biaxial compressive unloading and then biaxial tension loading again
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Figure-13 Loading path in SS and Stress-Strain curve of Case-2 for Tension Only damage model
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Figure-14 Loading path in SS and Stress-Strain curve of Case-2 for Non-Symmetric damage model

3. Case-3

The simulation curves for the loop start with biaxial tension loading to biaxial tension unloading/
compressive loading to biaxial compressive unloading and then biaxial tension loading again
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Figure-15 Loading path in SS and Stress-Strain curve of Case-3 for Tension Only damage model
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Figure-16 Loading path in Stress Space and Stress-Strain response of Case-3 for

Non-Symmetric damage model

Figures 11 to 16 shows response for all 3 cases for both damage models (Tension Only and No-
Symmetric).Under tensile loading the response is elastic and when the stress reaches yield point
the hardening start and elastic domain expands until maximum stress and then compression start
during unloading and curve start to return elastically to the value that is specified. Almost similar
behavior can be seen in all three cases. And stress strain curves show the response as per

expectations.
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Part 2 (Rate dependent Model)

d) Plain strain case for viscous damage model

The algorithm for Rate dependent damage model is implemented and Matlab code is attached in
Appendix A. The code is run to check the response of symmetric tension/ compression damage model.
And simulation results are presented below.

Parameters: H = 0.6, n = 0.3, Linear Hard/ Soft law and using default values for other parameters.
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Figure-17 Viscous Symmetric Tension/ Compression damage model
It can be seen that when viscosity comes into play the stress point on damage surface escapes from elastic

domain to inelastic domain and after a certain limit return back to expanded elastic domain. The point
shows such trend due to presence of viscosity.
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e) Correctness of Code with Linear Hardening/ Softening Law.
1. Case-1

Considering Linear Hard/ Soft law with H =0.3 and keeping other parameters at default value.
Variations in stress-strain curves are observed at different values of viscosity coefficient and

results are presented below.
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Figure-18 Stress-Strain curves at different values of viscosity

It can be seen that higher the viscosity value, higher the stress value. In elastic domain viscosity
does not play any role while in inelastic domain for same value of strain, stress have different

values against different viscosity.

2. Case-2
Considering Linear Hard/ Soft law with H=0.3, n = 0.3, a = 1.0 and keeping other parameters at
default value. Variations in stress-strain curves are observed at different values total time
because varying total time varies strain rate € and results are presented in figure 19.
It can be seen that decreasing the total time, increases strain rate which increases the
corresponding stress. Another thing is that in elastics domain the change of strain rate does not
affect stress values while in inelastic domain higher the strain rate, higher the stresses are.
The stress strain curves are plotted at total time of 3, 7 & 10 seconds.
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Figure-19 Stress-Strain curves at different values of total time (Strain rate)

3. Case-3

For Alpha time integration method, considering Linear Hard/ Soft law with H = 0.3, n = 0.3and
keeping other parameters at default value. Variations in stress-strain curves are observed at
different values of Alpha a and results are presented below.
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Figure-20 Stress-Strain curves at different values of Alpha

It can be seen that at a < 0.5 (at 0 & 0.25), the solution oscillate at nodal points due to fact that its
conditionally stable (Explicit Euler scheme). While at 0.5 < a £ 1, the stress-strain is stable because
at these values of alpha, the computation scheme is un-conditionally stable (a = 0.5 Crank
Nicholson & a = 1.0 Implicit Euler).
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Appendix A

a) Matlab Code for Tension Only damage model

Modelos_de_danol.m

elseif (MDtype==2) %* Omly tension
rtrial = sgrt({eps nl.*(eps nl>0)*ce*eps nl'}:

dibujar_criterio_danol.m

elseif MDtype==2 %Tension only damage model
tetha=[0:0.01:2*pi]-»
D B B B B B B L B B L f L NI T TRt g g
%* RADIUS

D=size (tetha) ;
ml=cos (tetha) ;
m2=sin (tetha) ;
Contador=D(1, 2):
radio = zeros(l,Contador)
s1 zeros (1, Contador)
82 = zeros(l,Contador)
for i=l:Contador
radio(i)= g/sqre(([ml(i) m2(i) O nu*(ml(i)+m2(i}}]1).* (([ml(i) m2(i) O nu*(ml(i)+m2(i)}])>0)*ce_inv*[ml (i) m2(i) O ..
nu* (ml (i)+m2(i))]1"'):
sl (i)=radio(i)*ml (i)
32 (i)=radio (i) *m2 (i}

Mo o ol

end
hplot =plot(sl,s2,tipo_linea):

b) Matlab Code for Non-Symmetric damage model

Modelos_de_danol.m

gigmal =eps nl¥*ce;
thet = ((sigmal(l).*(sigmal (1)>0))+(sigmal(2).* (sigmal (2)>0)))/ (abs(sigmal (1)) +abs (sigmal (2)})):
rtrial = (thet+({l-thet)/n).*sqgrt(eps_nl*ce*eps nl'):
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dibujar_criterio_danol.m

elseif MDoype=—3

tetha=[0:0.01:2%pi]: % No symmetric damage model

£* RADIUS
D=size (tetha);
ml=cos (tetha);
m2=sin (tetha) ;
Contador=D(1,2);
radio = zeros(l,Contador)
i
52 = zeros(l,Contador)
for i=l:Contador

thet (i) = ((ml(i).*(ml(i)>0))+(m2(i).* (m2(i)>0)))/(abs(ml(i))+abs(m2(i))):

e o o ol

zeros (1, Contador)

nu* (ml (i)+m2(i}}1"'}):
sl{i)=radio(i)*ml (i),
82 (i)=radio (i) *m2 (i) :
end

hplot =plot(sl,s2,cipo_linea);

radio(i}= g/ ((thet (i)+(l-thet(i))/n).*sqrt([ml(i) m2(i} O nu* (ml(i)+m2({i))]*ce_inv*[ml(i} m2(i) O ...

c) Matlab Code for Exponential Hardening/ Softening Law

rmap_danol.m
I

A = abs(H):
if H>O

g infP = r0+r0-zero g:

g nl = q_ian—(q_ian—q_n]*Expiﬂ*(l—r_nlfr_n]} -
elseif H<O

g infN = zero g:

g nl = q_ian—(q_ian—q_n]*Exp(h*tl—r_nlfr_n]] 5
end

d) Viscous damage model

rmap_danol.m

Eta = Eprop(7); viscu=s modelling

Alpha = Eprop(8); Fviscus modellin

E* Damage surface

[rtrial,rtrial n] = Modelos de damol (MDtype,ce,eps_nl,n,eps):

E‘s -----------------------------------------------------------------------

rtrial_alpha= ((l1-Alpha}*rtrial n) + (Alpha*rtrial); %viscus modelling
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£1oad=0;

if (rtrial_alpha > r_n)
i Loading
fload=1;
B als tttEta—delta_t.‘tl—Alpha}}/tEta+Alpha*de1ta_t}}.*I_n}+ttdelta_t/tEta+Alpha*de1ta_t}}.*Itrial_alpha};
delta r=r_nl-r_n;
if hard _type = 0O
% Linear
g _nl= g n+ H*delta r;
else
4 = abs (H):
if H>0
g_infP = r0+r0-zero_g;
g nl = q_ian—:q_ian—q_n}‘exptA*tl—I_nl/I_n}} 0
elseif H<O
g_infW = zero_g;
g nl = q_ian—tq_ian—q_n}*expth‘tl—I_nl/I_n}} o
end
end
if (g_nl<zero_d)
g _nl=zero_g;

end
sigma nl =(l.d0-dano nl)*ce*eps nl"';
sigmabar=ce®eps_nl'; $Viscous Hndelinﬂ

Modelos_de_danol.m

if (MDtype==l1} 3* Symmetric
rtrial= sgrt{eps nl*ce*eps nl'}:
rtrial n = sgrt(eps_n*ce*eps n'};

damage_main.m

E* DAMAGE MODEL

E R R R TR R R TR R TR R R T OTOTOEIOEIOEROTOTOTOTIOEIOEIOLIOTOTOLOLOLIOLIOLOLLOTOLOLIOTILTTTIOTLLTLRTTTEEEERR
[3igma nl,hvar n,aux wvar] = rmap_danol (eps_nl,hvar n,Eprop,ce,HDtype,n,delta t,eps):
% if wviscpr =

% % Comment/delete lines below once you have implemented this case

% L T i T T T i i e T i )

% menu ({ "Viscous model has not been implemented yet. '

% '"Modify files "damage main.m”,"rmap danol™ ' ;

% '£to include this option'},

% LSTOE ¢

% error ("OPTICN NOT AVAILABLE')

% else

% end
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