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1 Given the stored elastic energy function, Cauchy stress can be calculated
as follows:
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Which can be written in tensorial form as:

’ o= Mr(e)l + 2ue ‘

2 The condition of isotropy to be checked is

W (F) = W(FQ)

W = %(tr(E))2 + p tr(E?)

WE) = 2 (tr(5(E7F ~ 1)) + p tr{((E7F ~ 1))

W(FQ) = 2 (tr(3 (QTFTFQ - 1)))” + u tr((5(QTETFQ - T))?)

The used properties to check the condition are tr(A+B) = tr(A)+tr(B), tr(aA) = atr(A), tr(AB) =
tr(BA), and QQT = I. Using the first two properties, the condition will be satisfied if the following two

equations are true.
tr(FTF) = tr(QTFTFQ) tr(FTFFTF) = tr(QTFTFQQTFTFQ)
using the property tr(AB) = tr(BA) and QQT = I, the following is obtained.

tr(QTFTFQ) = tr(QQTFTF) = tr(FTF)

tr(QTFTFQQTFTFQ) = tr(QTFTFFTFQ) = tr(QQTFTFFTF) = tr(FTFFTF)

The two parts satisfy the condition, therefore, the model is isotropic.

3 Given the stored elastic energy function, the second Piola-Kirchhoff stress
can be calculated as follows:
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Which can be written in tensorial form as

S = \r(E)l + 2B

4 To obtain the nominal stress, first the deformation gradient is calculated

x |[A 00
0 0 1
1 1 A2—-1 0 0
E=§(FTF—I)=5 0 00
0 0 0
1 A 0 0O A=A 0 0O
P:FS:Atr(E)FHpFE:§A(A2—1) 0 1 0| +p 0 0 0
0 0 1 0 0 0

Pox = (5 + W)(A® — )

The curve is plotted using p = 77 and A = 115.
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9 The relationship is not monotonic if the slope of the curve is zero at some

point.
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The derivative can be zero which means that the relationship is not monotonic.
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This value doesn’t depend on the elastic constants.

To check the growth condition, the Jacobin and the stored energy are calculated.
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From the obtained results, it is conclude that Kirchhoff Saint-Venant material model fails after a
certain compression level. If the material is compressed from its undeformed configuration, stress will
increase to resist the deformation. However, when the stretch ratio reaches 0.577, the stress reaches a
maximum. Further compression will lead to decrease in stress till it becomes zero when J is equal to zero.

6 To check if the new model circumvent the drawbacks of the
previous model, the nominal stress is first calculated.
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The obtained derivative can be zero depending on the elastic constants.
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It is concluded that the modified material model circumvents the drawbacks of the previous model
only with a good choice of the elastic constants.



