
Assignment 3 
COMPUTATIONAL SOLID MECHANICS 

Marcos Boniquet Aparicio 

1. Kirchoff Saint-Venant material model 
 
Isotropic linear elasticity can be derived from balance of linear momentum, the linearized             
strain displacement relation ε=½(∇u+∇u T ) and the stored elastic energy function  
 

W(ε)=λ/2(trε) 2 +μtr(ε 2 ) 
 
1)Check that the stress tensor obtained from σ=∂W/∂ε agrees with the usual linear elasticity              
expression 
 
Since the linearization of the Green-Lagrange strain tensor E=½(C-Id) is the small strain             
tensor  it is natural to extend isotropic elasticity to nonlinear elasticity as 
 

W( E )=λ/2(tr E ) 2 +μtr( E 2 ) 
 
This hyperelastic model is called Kirchhoff Saint-Venant material model. 
 
2 )According to the definition we gave in class about isotropy in nonlinear elasticity, is this                
model isotropic? 
 
3) Derive the second Piola-Kirchhoff stress  S 

 
Given that  S =2*dW/dC and  W( C )=1/2λ o (lnJ) 2 -μ 0 lnJ+1/2μ 0 (trace C -3), we use invariants and          
derive to obtain 2PK. 
 
I 1 ( C )=trace C 
I 2 ( C )=½[(trace C ) 2 -trace C 2 ] 
I 3 ( C )=det C =J 2 

 

dI 1 ( C )/dC=Id 
dI 2 ( C )/dC=I 1 ( C )Id- C T 

dI 3 ( C )/dC=det C =I 3 ( C ) C - T 

 

thus 
d 1/2λ o (lnJ) 2 =lnJλ o C -1 
d (μ 0 lnJ/d C) = C -1 

d   (1/2μ 0 (trace C -3))/d C =1/2μ 0 Id (applying first invariant derivative) 

 
S= 
 
4) For a uniform deformation of a rod aligned with the X axis (x=ΛX y=Y, z=Z where Λ>0 is                   
the stretch ratio along the X direction) derive the relation between the nominal normal stress               
P (the xX component of the first Piola-Kirchhoff stress) and the stretch ratio Λ, P(Λ), and plot                 
it. 
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5) Is this relation P(Λ) monotonic? If not, derive the critical stretch Λ crit  at which the model                 
fails with zero stiffness. Does this critical stretch depend on the elastic constants? Show the               
material does not satisfy the growth conditions 
 

W( E )➝+∞ when J➝0 + 

 
Discuss your answers. 
 
6) Consider now the modified Kirchoff Saint-Venant material model: 
 

W( E )=λ/2(lnJ) 2 +μtr( E 2 ) 
 
Does this model circumvent the drawbacks of the previous model? 
 
7) Implement the material model in Eq(1) in the MATLAB code. Perform the consistency test               
to check your implementation. Try to demonstrate the material instabilities of this model with              
a numerical example. 
 
2. Implementation of line search 
 
Implement a line-search algorithm to be used in combination with Newton’s method. For this,              
I suggest you resort to Matlab’s function  fmindbd , which performs 1D nonlinear minimization             
with bounds. You need to define Ener_1D that evaluates the energy along the line that               
passes through x in the direction of p (the descent search direction). The function Linesearch               
may include lines like the ones suggested next: 
 

t=1 
opts=optimset(‘TolX’,options.TolX,’MaxIter’,options.n_iter_max_LS); 
t=fminbnd(@(t) Ener_1D(t,x_short,p),0,2,opts); 
x_short=x_short+t*p; 

 
Test the code with the examples where you expect buckling (the compression of the beams,               
or the deflection of the arch), and compare the results with and without linear search. 
 
3. Implementation of a material model  
 
The code you are given implements a plane-strain finite element method for finite             
deformation elasticity. A compressible Neo-Hookean material is already in place (modeling a            
slightly porous rubber for instance), whose strain energy density (or hyper elastic potential)             
is: 
 

W( C )=1/2λ o (lnJ) 2 -μ 0 lnJ+1/2μ 0 (trace C -3) 
 
This constitutive model is isotropic. Note that, since we are considering plane strain, we can               
use 2x2 reduced Cauchy-Green deformation tensor and replace trace C-3 by trace C-2 in              
the above equation. 

2 



Assignment 3 
COMPUTATIONAL SOLID MECHANICS 

Marcos Boniquet Aparicio 

 
We want to consider now an anisotropic material, more specifically, a transversely isotropic             
material. We consider a material constitutive law for a rubber reinforced by fibers, all aligned               
in the same direction in such a way that perpendicular to the fibers, the material remains                
isotropic. The orientation of the fibers is given in the reference configuration by a unit vector                
N fib . Such a model depends on the principal invariants of  C , and additionally by the fourth                
invariant 
 

I 4 ( C )= N fib .C.N fib 

 
More specifically, 
 

W( C )=μ 0 (trace C -3)-μ 0 lnJ+kG(J)+c 0 {exp[c 1 (I 4 ( C ) 1/2 -1) 4 ]-1]} 
 

where μ 0 , k ,c 0 , and c 1 are material parameters, and G(J) provides the volumetric response of                
the material. We consider  
 

G(J)= ¼(J 2 -1-2lnJ) 
 
The last term in the strain energy function specifies the contribution to the deformation              
energy of the fibers, and as typical in biological fibers, with this model these become stiffer                
the more deformed they are. 
 

a) Implement the material into the code. The code is prepared for this model             
(material=2), including the definition of the material parameters in preprocessing.m 

 
b) Check the correctness (consistency test) of your implementation by running the script            

Ceck_Derivatives.m with material =2. This script checks the gradient of the energy            
(out-of-balance forces) and the Hessian of the energy (tangent stiffness matrix) by            
numerical differentiation. Check also that when solving a mechanical problem with           
this mode, Newton’s method converges quadratically. 

 
c) Solve example=0, a dead load applies on an elastic block in tension, with a few               

representative orientations of the fibers Consider θ=𝜋/4; θ=𝜋/6 and θ=𝜋/2 (fibers           
perpendicular to the loading direction), where,  

 
N fib =[cos θ, sin  θ] T 

 
Explain the results forma  mechanical viewpoint. 
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-ASSIGNMENT- 
 
1.Kirchhoff Saint-Venant material model 
 

1) Starting from W(ε)=λ/2(trε) 2 +μtr(ε 2 ) 
 
dW/dε=λtrε*Id+μ*d(tr(ε 2 ))/dε 
 
from derivative of second invariant, is induced that d(tr(ε 2 )/ε=2ε T 

 
ledding to the expression: 
 
u=dW/dε=λtrε*Id+2με T 

,  usual expression for linear elasticity 
 
2 )Any isotropic strain energy function can be written in terms of the principal invariants  
 
This is an Isotropic case, given that invariants led to the calculation of linear elasticity 
displacement 
 
3)    Starting from W(E)=λ/2(tr(½(C-Id)) 2 +μtr(½(C-Id) 2 ) 
 
Applying sum of traces is traces of sum 
 
W(E)=λ/2(½trC-trC*Id) 2 +μ/2(trC-3) 
W(E)=λ/2[¼(trC) 2 -3trC+9]+μ/2(trC-3) 
 
And now we proceed derivation: 
 
S=λ/2[¼*2*trC*I-3I]+μI/2 
S=λI/2[trC/2+μ/2-3] 
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2. Implementation of line search 
 
Two Line Search unconstrained optimizations are added as required. The first one is             
MATLAB line search , using minimizer function fminbnd of Matlab The second one is             
backtracking  line search method. Both methods are used in combination we current            
Newton-Raphson’s method. 
 
These options can be chosen within following parameters: 
 
To choose Line search (combinated with Newton): 
 
options.linesearch=1  
 
Choose type of line search: 
 
options.type_LS=1,2      1: Backtracking, 2: Matlab 
 
Two changes are done in the code delivered to students. Changes to function  Equilibrate , 
and addition of new function called  linesearch . 
 
The complete new code is added in appendix. 
 
Reminder on Newton-Raphson’s method: 
 
x is taken from main function, we is the displacement (x1,y1,x2,y2…) multiplied by the load 
of the current iteration divided by load on last iteration (coefficient similar to 1). 
 
dx = -Hess_E\grad_E; is calculated via Energy on four Gauss points of each element, and                

thus the new positions of the node, which are x’=x+dx.(dx can be multiplied by scalar               
relaxation parameter as an option.).The second Piola Kirchhoff (S) and Isotropic strain            
energy (W) are taken from chosen NeoHookean. 
 
This happens  until errors are low enough: 
 

err_x=norm(dx)/norm(x_short); 
err_f=norm(grad_E); 

 
Notice that both are calculated because gradient could be low but displacement in very low,               
or vice versa. So it’s small residual and fa from root vs small steps but large residual. 
Both must be considered at the same time. Of course there’s a limit of iterations established. 
 
So with a margin of confidence, the equilibrium for the energy state  is achieved for x given 
by Equilibrium function.  
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Line Search 
Matlab Line Search 
 
In order to compute Line Search,  a new function is coded: 
 
function [t]= linesearch(dx,grad_E,x_short,options) 
p=dx; 
opts=optimset('TolX',options.TolX,'MaxIter',options.n_iter_max_LS); 
t=fminbnd(@(t)Ener_1D(t,x_short,p),0,2,opts)%ha encontrado t que minimiza energia para x y gradx  
end 
 

 
This function uses fminbnd, a function which finds minimum between two values (not root).  
 
Ener_1D was already coded, which search for energy of a particular array of displacements              
(dicarding constrained ones) ener = Ener_short(x+t*p,1). 
 
So fminbnd finds “t” that makes minimum the energy (scalar) between t=0 and t=2. Here               
x_short being an array is not an issue , given that the function to minimize is scalar. 
 
to find t value, the direction could be the gradient of the energy, which is the steepest                 
descent method) x’=x+ pt. However, used in combination with Newton-Raphon’s         
method , the direction is  dx  is taken, this is the displacement array just calculated. 
 
 x_short=x_short+t*dx*options. relax_par  (optional relaxation par) 
 
After, it is just about calculating the Eigenvalues on Hessian and warning if they are negative                
(which means is a maximum, so un unstable status). 
 
 
Backtracking 
 
This whole option is code-written in  Equilibrate  function. 
 
 if (options.linesearch==1)&(options.type_LS==1) %backtracking LS 
         options.n_iter_max=options.n_iter_max_LS; 
         x=x_short;  
         if  Ener_short(x+t*dx,1)> (Ener_short(x,1)+options.alfa*grad_E.*dx) 
             t1=-options.beta*t; %backtrack 
         else  
             t1=options.beta*t;  
         end  
         p=dx; 
         x_short=x+t1*p*options.relax_par;  
         t=t1;  
      end 
 

 
This code searchs for the energy combining with Newton-Raphson’s already achieved dx. 
 
Initializing t=1,  
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and as a reminder,  
 
options.alfa=0.3 
options.beta = .8 
 
So it compares whether if the path we take is the correct and changes sense of direction if 
required.  
 
Again relaxation parameter is optional (normally would be 1). 
 
       x_short=x+t1*p*options.relax_par;  
 
Once computed, same procedure as default is computed. 
 

COMPARISON ON EXAMPLES 
 
With relax_par=1 in all 3 cases and material 1 
 
Example 5 (TWHO DEAD LOADS AT BOTH SIDES OF ARCH) 
 
W/O LINE SEARCH 
 

 
With relaxation parameter =0,5 we achieve converge. Buckling at load iteration 19: 
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WITH MATLAB LINE SEARCH COMBINED TO  N-R 
 

 
 Buclink at load iteration 23. No need  of relax. parameter. 
 
WITH MATLAB LINE SEARCH BACKTRACKING  COMBINED TO  N-R 
 

 
Buckling not found. Much more displacements iterations. 
 
 
 
Example 4 DEAD LOAD AT CENTER OF ARCH 
 
W/O LINE SEARCH 
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With relaxation parameter =0,5 we achieve converge. Buckling at eighth load iteration: 

 
 
WITH MATLAB LINE SEARCH COMBINED TO  N-R 
 

 
Bucking at load iteration nr 7. 
 
WITH MATLAB LINE SEARCH BACKTRACKING  COMBINED TO  N-R 
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Much more displacements iterations. A negative displacement is achieved in the middle 
within iterations 4-5. 
Example 44 DEAD LOAD AT CENTER OF ARCH 
 
W/O LINE SEARCH 
 

 
Not until  relaxation parameter is about 0,4 converge is achieved. For higher values it 

diverges. Following, case for relax_par=0.4: 
 

 
 

WITH MATLAB LINE SEARCH COMBINED TO  N-R 
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WITH MATLAB LINE SEARCH BACKTRACKING  COMBINED TO  N-R 
It diverges whatever relax. parameter is configured. 
 
 
In general , we achieved convergence for line search methods for all cases(with last 
exception), either with backtracking or not. This is improves the Newton-Raphson’s 
methodology. 
 
Also noticeable that iterations for backtracking met hod where much more in all cases. 
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3.IMPLEMENTATION OF A MATERIAL MODEL 
 
a)  There’s only need to establish the model/functions for the transversal isotropic material. 
The difficulty here is about derivating the PK2 (S) and tangent elasticity tensor ☾ with the 
correct Vogt notation. 
 
Preprocessing has already the values for this material (case = 2), which are  
 
 
      mod1.mu=1; 
      mod1.c0=80; 
      mod1.c1=5; 
      mod1.kappa=100;  
      theta=pi/6; 
      mod1.N_fib=[cos(theta);sin(theta)]; 
 
The function energy will call transversal isotropic functions instead of Neohookian if material 
is number 2, given that preprocessing function sets potencial to 2. 
 
The functions are analog to the Neohookian ones, with no dependency in ⋋. 
 
[W]=transv_isotr_1(C,c0,c1,k,mu,fib) 
[W,S]=transv_isotr_2(C,c0,c1,k,mu,fib) 
[W,S,CC]=transv_isotr_3(C,c0,c1,k,mu,fib) 
 
Given the following  Isotropic strain energy: 
 
W( C )=μ 0 (trace C -3)-μ 0 lnJ+kG(J)+c 0 {exp[c 1 (I 4 ( C ) 1/2 -1) 4 ]-1]} 
G(J)= ¼(J 2 -1-2lnJ) 
I 4 ( C )= N fib .C.N fib 
N fib =[cos θ, sin  θ] T 

 

we calculate first S for isotr_2 and istro_3, which is a vector that energy requires in order to 
compute gradient. 
 
μ 0 (trace C -3)-->μ 0 ( C -1 -Id) 
kG(J)-->k/4*detC* C -1 -2C -1 
 
regrouping this 
 
S= μ 0 ( C -1 -Id) +k/4*detC* C -1 -2C -1 
 
Same procedure to calculate tangent elasticity tensor: 
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CC =( μ-2)*(d C -1 /dC)+k*J2/4*(d C -1 /d C )=(μ 0 -2+kJ 2 /4)*(d C -1 /d C ) 
Following, how transversal isotropic has been coded: 
 
function [W,S,CC]=transv_isotr_3(C,c0,c1,k,mu,fib) 
 
J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC 
J=sqrt(J2); 
logJ=log(J); 
G=(1/4)*(J^2-1-2*logJ); 
i4=C(3)*fib(1)*fib(2); 
 
W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*exp(c1*((sqrt(i4)-1)^4))-1; 
C_inv=[C(2) C(1) -C(3)]/J2; 
S= mu*(C_inv-[1,1,0])+(k/4)*J2*C_inv-2*C_inv  
CC=zeros(3); 
const=(mu-2+J2*k/4); 
CC(1,1)=const*(C_inv(1)*C_inv(1)+C_inv(1)*C_inv(1)); 
CC(1,2)=const*(C_inv(3)*C_inv(3)+C_inv(3)*C_inv(3)); 
CC(1,3)=const*(C_inv(1)*C_inv(3)+C_inv(1)*C_inv(3)); 
CC(2,2)=const*(C_inv(2)*C_inv(2)+C_inv(2)*C_inv(2)); 
CC(2,3)=const*(C_inv(2)*C_inv(3)+C_inv(2)*C_inv(3)); 
CC(3,3)=const*(C_inv(1)*C_inv(2)+C_inv(3)*C_inv(3)); 
CC(2,1)=CC(1,2); 
CC(3,1)=CC(1,3); 
CC(3,2)=CC(2,3); 

 
When tested with Matlab line searching, a relaxation parameter (0,4) is required to ensure  
the convergence for example 4 
 

.  
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What can be induced by the results is that a  major buckling  occurs with the first load 
iteration. After that it slowly behaves as a linear F-d. 
 
b)  Checking the  consistency  through  Check_Derivatives function. Gradient and the          
Hessian  of the energy ae computed given a very small perturbation of  h =1*10 -9 and two               
different deformation fields for x and y displacements around  x0 (preprocessing), which are             
non homogeneous and arbitrary.  
As an example are settled exponential /sinusoidal as x and y displacements respectively. 
 
For each degree of freedom, are calculated as said before, and thus comparison between              
gradient (and Hessian) and slope it’s known how sensitive is current state and awares us               
about mistakes or needs of inclusion of relaxation parameters. 
 

|( E h - E )/h  -⛛ E )  / ⛛ E | > 1*10 -3 
 

|| ( ⛛ E h - ⛛ E )/h - H || /  || H || > 1*10 -3 
 
In the case analyzed (example 4 , trans. isotropic) are both 3 orders of magnitude smaller                
than warning activations (1*10 -3 ). So model is consistent. 
 
c)  Solving the example =0,  dead load on elastic block in tension, for different angles of θ,                 
we obtain different solutions that can be explained through  a mechanical viewpoint.  
 
From fibers along loading direction  θ=0, to perpendicular to the load, are computed  

θ=0,𝜋/6,𝜋/4 ,𝜋/2 
A bigger right-center displacement is produced in between 0 and  𝜋/2. Both cases present              
similar displacements and  minimum of all these examples.  
Also noticeable that when fibers are diagonal ( 𝜋/6,𝜋/4)  it appears an  asymmetry in vertical              
displacement. 
 

θ=0 
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θ=𝜋/6 

 
 

θ=𝜋/4 
 

 
 

θ=𝜋/2 
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function [x_equil,iflag,iter,Ener] = Equilibrate(x,options)
global mod1 mesh1 load1 el1 undeformed1

err_plot=[];
err_plot1=[];
[x_short] = short(x);

switch options.method
  case 0,   %vanilla Newton-Raphson with line search as option
    iter=0;
    err_x=100;
    err_f=100;
    [Ener,grad_E,Hess_E] = Ener_short(x_short,3);

    t=1;   %initializing for backtracking
    while (iter<=options.n_iter_max) & ...
        ( (err_x>options.tol_x) | ...
        (err_f>options.tol_f))
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      iter=iter+1;
      dx = -Hess_E\grad_E;

       if options.linesearch==0
           x_short=x_short+dx*options.relax_par;
       end

      if (options.linesearch==1)&(options.type_LS==2) %matlab LS
          options.n_iter_max=options.n_iter_max_LS;
          [t]=linesearch(dx,grad_E,x_short,options);
          x_short=x_short+t*dx*options.relax_par;
      end

      if (options.linesearch==1)&(options.type_LS==1) %backtracking LS
         options.n_iter_max=options.n_iter_max_LS;
         x=x_short;
         if  Ener_short(x+t*dx,1)>
 (Ener_short(x,1)+options.alfa*grad_E.*dx)
             t1=-options.beta*t;
         else %backtrack
             t1=options.beta*t;
         end
         p=dx;
         x_short=x+t1*p*options.relax_par;
         t=t1;
      end

     [Ener,grad_E,Hess_E] = Ener_short(x_short,3);
      err_x=norm(dx)/norm(x_short);
      err_f=norm(grad_E);
      err_plot=[err_plot err_x];

1



      err_plot1=[err_plot1 err_f];

    end
    %Check positive definiteness
    if options.info==3
      [V,D] = eig(Hess_E);
      D=diag(D);
      if ((min(D))<=-1e-6*abs(max(D)))
           fprintf('Warning, the Hessian has a negative eigenvalue
 \n')
           D=sort(D);
           disp(D(1:6))
      end
    end
  otherwise,
    error('This option does not exist');
end

[x_equil] = long(x_short);
if (iter<=options.n_iter_max)
  if options.info>0
    fprintf('The equilibration was successful in %i iterations
 \n',iter)
  end
  iflag=1;
else
  if options.info>0
    fprintf('The equilibration was not reached in %i iterations
 \n',iter)
  end
  iflag=0;
end

%Output
if options.info>=2
  figure(5)
  hold off
  semilogy([1:iter],err_plot,'ro-',[1:iter],err_plot1,'bo-');
  %pause
end

Not enough input arguments.

Error in Equilibrate (line 6)
[x_short] = short(x);

Published with MATLAB® R2017a
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function [t]= linesearch(dx,grad_E,x_short,options)
p=dx;
opts=optimset('TolX',options.TolX,'MaxIter',options.n_iter_max_LS);
t=fminbnd(@(t)Ener_1D(t,x_short,p),0,2,opts)%ha encontrado t que
 minimiza energia para x y gradx
end

Not enough input arguments.

Error in linesearch (line 2)
p=dx;

Published with MATLAB® R2017a
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function [W]=transv_isotr_1(C,c0,c1,k,mu,fib)

J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);

i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*(exp(c1*sqrt(i4)-1)^4-1);

Not enough input arguments.

Error in transv_isotr_1 (line 3)
J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC

Published with MATLAB® R2017a
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function [W,S]=transv_isotr_2(C,c0,c1,k,mu,fib)
J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);

i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*exp(c1*((sqrt(i4)-1)^4))-1;
S =[];

C_inv=[C(2) C(1) -C(3)]/J2;

S= mu*(C_inv-[1,1,0])+(k/4)*J2*C_inv-2*C_inv;

end

Not enough input arguments.

Error in transv_isotr_2 (line 2)
J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC

Published with MATLAB® R2017a
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function [W,S,CC]=transv_isotr_3(C,c0,c1,k,mu,fib)

J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);
i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*exp(c1*((sqrt(i4)-1)^4))-1;

C_inv=[C(2) C(1) -C(3)]/J2;

S= mu*(C_inv-[1,1,0])+(k/4)*J2*C_inv-2*C_inv  ;

CC=zeros(3);

const=(mu-2+J2*k/4);

%W ES SCALAR, S ES VECTOR, CC ES 3X3

CC(1,1)=const*(C_inv(1)*C_inv(1)+C_inv(1)*C_inv(1));
CC(1,2)=const*(C_inv(3)*C_inv(3)+C_inv(3)*C_inv(3));
CC(1,3)=const*(C_inv(1)*C_inv(3)+C_inv(1)*C_inv(3));
CC(2,2)=const*(C_inv(2)*C_inv(2)+C_inv(2)*C_inv(2));
CC(2,3)=const*(C_inv(2)*C_inv(3)+C_inv(2)*C_inv(3));
CC(3,3)=const*(C_inv(1)*C_inv(2)+C_inv(3)*C_inv(3));
CC(2,1)=CC(1,2);
CC(3,1)=CC(1,3);
CC(3,2)=CC(2,3);

Not enough input arguments.

Error in transv_isotr_3 (line 3)
J2=C(1)*C(2)-C(3)*C(3);  %es J^2=detC

Published with MATLAB® R2017a
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