
Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

1. Kirchoff Saint-Venant material model

Isotropic linear elasticity can be derived from balance of linear momentum, the linearized
strain displacement relation ε=½(∇u+∇u T) and the stored elastic energy function

W(ε)=λ/2(trε) 2 +μtr(ε 2)

1)Check that the stress tensor obtained from σ=∂W/∂ε agrees with the usual linear elasticity
expression

Since the linearization of the Green-Lagrange strain tensor E=½(C-Id) is the small strain
tensor it is natural to extend isotropic elasticity to nonlinear elasticity as

W(E)=λ/2(tr E) 2 +μtr(E 2)

This hyperelastic model is called Kirchhoff Saint-Venant material model.

2)According to the definition we gave in class about isotropy in nonlinear elasticity, is this
model isotropic?

3) Derive the second Piola-Kirchhoff stress S

Given that S =2*dW/dC and W(C)=1/2λ o (lnJ) 2 -μ 0 lnJ+1/2μ 0 (trace C -3), we use invariants and
derive to obtain 2PK.

I 1 (C)=trace C
I 2 (C)=½[(trace C) 2 -trace C 2]
I 3 (C)=det C =J 2

dI 1 (C)/dC=Id
dI 2 (C)/dC=I 1 (C)Id- C T

dI 3 (C)/dC=det C =I 3 (C) C - T

thus
d 1/2λ o (lnJ) 2 =lnJλ o C -1
d (μ 0 lnJ/d C) = C -1

d (1/2μ 0 (trace C -3))/d C =1/2μ 0 Id (applying first invariant derivative)

S=

4) For a uniform deformation of a rod aligned with the X axis (x=ΛX y=Y, z=Z where Λ>0 is
the stretch ratio along the X direction) derive the relation between the nominal normal stress
P (the xX component of the first Piola-Kirchhoff stress) and the stretch ratio Λ, P(Λ), and plot
it.

1

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

5) Is this relation P(Λ) monotonic? If not, derive the critical stretch Λ crit at which the model
fails with zero stiffness. Does this critical stretch depend on the elastic constants? Show the
material does not satisfy the growth conditions

W(E)➝+∞ when J➝0 +

Discuss your answers.

6) Consider now the modified Kirchoff Saint-Venant material model:

W(E)=λ/2(lnJ) 2 +μtr(E 2)

Does this model circumvent the drawbacks of the previous model?

7) Implement the material model in Eq(1) in the MATLAB code. Perform the consistency test
to check your implementation. Try to demonstrate the material instabilities of this model with
a numerical example.

2. Implementation of line search

Implement a line-search algorithm to be used in combination with Newton’s method. For this,
I suggest you resort to Matlab’s function fmindbd , which performs 1D nonlinear minimization
with bounds. You need to define Ener_1D that evaluates the energy along the line that
passes through x in the direction of p (the descent search direction). The function Linesearch
may include lines like the ones suggested next:

t=1
opts=optimset(‘TolX’,options.TolX,’MaxIter’,options.n_iter_max_LS);
t=fminbnd(@(t) Ener_1D(t,x_short,p),0,2,opts);
x_short=x_short+t*p;

Test the code with the examples where you expect buckling (the compression of the beams,
or the deflection of the arch), and compare the results with and without linear search.

3. Implementation of a material model

The code you are given implements a plane-strain finite element method for finite
deformation elasticity. A compressible Neo-Hookean material is already in place (modeling a
slightly porous rubber for instance), whose strain energy density (or hyper elastic potential)
is:

W(C)=1/2λ o (lnJ) 2 -μ 0 lnJ+1/2μ 0 (trace C -3)

This constitutive model is isotropic. Note that, since we are considering plane strain, we can
use 2x2 reduced Cauchy-Green deformation tensor and replace trace C-3 by trace C-2 in
the above equation.

2

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

We want to consider now an anisotropic material, more specifically, a transversely isotropic
material. We consider a material constitutive law for a rubber reinforced by fibers, all aligned
in the same direction in such a way that perpendicular to the fibers, the material remains
isotropic. The orientation of the fibers is given in the reference configuration by a unit vector
N fib . Such a model depends on the principal invariants of C , and additionally by the fourth
invariant

I 4 (C)= N fib .C.N fib

More specifically,

W(C)=μ 0 (trace C -3)-μ 0 lnJ+kG(J)+c 0 {exp[c 1 (I 4 (C) 1/2 -1) 4]-1]}

where μ 0 , k ,c 0 , and c 1 are material parameters, and G(J) provides the volumetric response of
the material. We consider

G(J)= ¼(J 2 -1-2lnJ)

The last term in the strain energy function specifies the contribution to the deformation
energy of the fibers, and as typical in biological fibers, with this model these become stiffer
the more deformed they are.

a) Implement the material into the code. The code is prepared for this model
(material=2), including the definition of the material parameters in preprocessing.m

b) Check the correctness (consistency test) of your implementation by running the script

Ceck_Derivatives.m with material =2. This script checks the gradient of the energy
(out-of-balance forces) and the Hessian of the energy (tangent stiffness matrix) by
numerical differentiation. Check also that when solving a mechanical problem with
this mode, Newton’s method converges quadratically.

c) Solve example=0, a dead load applies on an elastic block in tension, with a few

representative orientations of the fibers Consider θ=𝜋/4; θ=𝜋/6 and θ=𝜋/2 (fibers
perpendicular to the loading direction), where,

N fib =[cos θ, sin θ] T

Explain the results forma mechanical viewpoint.

3

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

-ASSIGNMENT-

1.Kirchhoff Saint-Venant material model

1) Starting from W(ε)=λ/2(trε) 2 +μtr(ε 2)

dW/dε=λtrε*Id+μ*d(tr(ε 2))/dε

from derivative of second invariant, is induced that d(tr(ε 2)/ε=2ε T

ledding to the expression:

u=dW/dε=λtrε*Id+2με T

, usual expression for linear elasticity

2)Any isotropic strain energy function can be written in terms of the principal invariants

This is an Isotropic case, given that invariants led to the calculation of linear elasticity
displacement

3) Starting from W(E)=λ/2(tr(½(C-Id)) 2 +μtr(½(C-Id) 2)

Applying sum of traces is traces of sum

W(E)=λ/2(½trC-trC*Id) 2 +μ/2(trC-3)
W(E)=λ/2[¼(trC) 2 -3trC+9]+μ/2(trC-3)

And now we proceed derivation:

S=λ/2[¼*2*trC*I-3I]+μI/2
S=λI/2[trC/2+μ/2-3]

4

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

2. Implementation of line search

Two Line Search unconstrained optimizations are added as required. The first one is
MATLAB line search , using minimizer function fminbnd of Matlab The second one is
backtracking line search method. Both methods are used in combination we current
Newton-Raphson’s method.

These options can be chosen within following parameters:

To choose Line search (combinated with Newton):

options.linesearch=1

Choose type of line search:

options.type_LS=1,2 1: Backtracking, 2: Matlab

Two changes are done in the code delivered to students. Changes to function Equilibrate ,
and addition of new function called linesearch .

The complete new code is added in appendix.

Reminder on Newton-Raphson’s method:

x is taken from main function, we is the displacement (x1,y1,x2,y2…) multiplied by the load
of the current iteration divided by load on last iteration (coefficient similar to 1).

dx = -Hess_E\grad_E; is calculated via Energy on four Gauss points of each element, and

thus the new positions of the node, which are x’=x+dx.(dx can be multiplied by scalar
relaxation parameter as an option.).The second Piola Kirchhoff (S) and Isotropic strain
energy (W) are taken from chosen NeoHookean.

This happens until errors are low enough:

err_x=norm(dx)/norm(x_short);
err_f=norm(grad_E);

Notice that both are calculated because gradient could be low but displacement in very low,
or vice versa. So it’s small residual and fa from root vs small steps but large residual.
Both must be considered at the same time. Of course there’s a limit of iterations established.

So with a margin of confidence, the equilibrium for the energy state is achieved for x given
by Equilibrium function.

5

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

Line Search
Matlab Line Search

In order to compute Line Search, a new function is coded:

function [t]= linesearch(dx,grad_E,x_short,options)
p=dx;
opts=optimset('TolX',options.TolX,'MaxIter',options.n_iter_max_LS);
t=fminbnd(@(t)Ener_1D(t,x_short,p),0,2,opts)%ha encontrado t que minimiza energia para x y gradx
end

This function uses fminbnd, a function which finds minimum between two values (not root).

Ener_1D was already coded, which search for energy of a particular array of displacements
(dicarding constrained ones) ener = Ener_short(x+t*p,1).

So fminbnd finds “t” that makes minimum the energy (scalar) between t=0 and t=2. Here
x_short being an array is not an issue , given that the function to minimize is scalar.

to find t value, the direction could be the gradient of the energy, which is the steepest
descent method) x’=x+ pt. However, used in combination with Newton-Raphon’s
method , the direction is dx is taken, this is the displacement array just calculated.

 x_short=x_short+t*dx*options. relax_par (optional relaxation par)

After, it is just about calculating the Eigenvalues on Hessian and warning if they are negative
(which means is a maximum, so un unstable status).

Backtracking

This whole option is code-written in Equilibrate function.

 if (options.linesearch==1)&(options.type_LS==1) %backtracking LS
 options.n_iter_max=options.n_iter_max_LS;
 x=x_short;
 if Ener_short(x+t*dx,1)> (Ener_short(x,1)+options.alfa*grad_E.*dx)
 t1=-options.beta*t; %backtrack
 else
 t1=options.beta*t;
 end
 p=dx;
 x_short=x+t1*p*options.relax_par;
 t=t1;
 end

This code searchs for the energy combining with Newton-Raphson’s already achieved dx.

Initializing t=1,

6

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

and as a reminder,

options.alfa=0.3
options.beta = .8

So it compares whether if the path we take is the correct and changes sense of direction if
required.

Again relaxation parameter is optional (normally would be 1).

 x_short=x+t1*p*options.relax_par;

Once computed, same procedure as default is computed.

COMPARISON ON EXAMPLES

With relax_par=1 in all 3 cases and material 1

Example 5 (TWHO DEAD LOADS AT BOTH SIDES OF ARCH)

W/O LINE SEARCH

With relaxation parameter =0,5 we achieve converge. Buckling at load iteration 19:

7

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

WITH MATLAB LINE SEARCH COMBINED TO N-R

 Buclink at load iteration 23. No need of relax. parameter.

WITH MATLAB LINE SEARCH BACKTRACKING COMBINED TO N-R

Buckling not found. Much more displacements iterations.

Example 4 DEAD LOAD AT CENTER OF ARCH

W/O LINE SEARCH

8

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

With relaxation parameter =0,5 we achieve converge. Buckling at eighth load iteration:

WITH MATLAB LINE SEARCH COMBINED TO N-R

Bucking at load iteration nr 7.

WITH MATLAB LINE SEARCH BACKTRACKING COMBINED TO N-R

9

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

Much more displacements iterations. A negative displacement is achieved in the middle
within iterations 4-5.
Example 44 DEAD LOAD AT CENTER OF ARCH

W/O LINE SEARCH

Not until relaxation parameter is about 0,4 converge is achieved. For higher values it

diverges. Following, case for relax_par=0.4:

WITH MATLAB LINE SEARCH COMBINED TO N-R

10

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

WITH MATLAB LINE SEARCH BACKTRACKING COMBINED TO N-R
It diverges whatever relax. parameter is configured.

In general , we achieved convergence for line search methods for all cases(with last
exception), either with backtracking or not. This is improves the Newton-Raphson’s
methodology.

Also noticeable that iterations for backtracking met hod where much more in all cases.

11

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

3.IMPLEMENTATION OF A MATERIAL MODEL

a) There’s only need to establish the model/functions for the transversal isotropic material.
The difficulty here is about derivating the PK2 (S) and tangent elasticity tensor ☾ with the
correct Vogt notation.

Preprocessing has already the values for this material (case = 2), which are

 mod1.mu=1;
 mod1.c0=80;
 mod1.c1=5;
 mod1.kappa=100;
 theta=pi/6;
 mod1.N_fib=[cos(theta);sin(theta)];

The function energy will call transversal isotropic functions instead of Neohookian if material
is number 2, given that preprocessing function sets potencial to 2.

The functions are analog to the Neohookian ones, with no dependency in ⋋.

[W]=transv_isotr_1(C,c0,c1,k,mu,fib)
[W,S]=transv_isotr_2(C,c0,c1,k,mu,fib)
[W,S,CC]=transv_isotr_3(C,c0,c1,k,mu,fib)

Given the following Isotropic strain energy:

W(C)=μ 0 (trace C -3)-μ 0 lnJ+kG(J)+c 0 {exp[c 1 (I 4 (C) 1/2 -1) 4]-1]}
G(J)= ¼(J 2 -1-2lnJ)
I 4 (C)= N fib .C.N fib
N fib =[cos θ, sin θ] T

we calculate first S for isotr_2 and istro_3, which is a vector that energy requires in order to
compute gradient.

μ 0 (trace C -3)-->μ 0 (C -1 -Id)
kG(J)-->k/4*detC* C -1 -2C -1

regrouping this

S= μ 0 (C -1 -Id) +k/4*detC* C -1 -2C -1

Same procedure to calculate tangent elasticity tensor:

12

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

CC =(μ-2)*(d C -1 /dC)+k*J2/4*(d C -1 /d C)=(μ 0 -2+kJ 2 /4)*(d C -1 /d C)
Following, how transversal isotropic has been coded:

function [W,S,CC]=transv_isotr_3(C,c0,c1,k,mu,fib)

J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);
i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*exp(c1*((sqrt(i4)-1)^4))-1;
C_inv=[C(2) C(1) -C(3)]/J2;
S= mu*(C_inv-[1,1,0])+(k/4)*J2*C_inv-2*C_inv
CC=zeros(3);
const=(mu-2+J2*k/4);
CC(1,1)=const*(C_inv(1)*C_inv(1)+C_inv(1)*C_inv(1));
CC(1,2)=const*(C_inv(3)*C_inv(3)+C_inv(3)*C_inv(3));
CC(1,3)=const*(C_inv(1)*C_inv(3)+C_inv(1)*C_inv(3));
CC(2,2)=const*(C_inv(2)*C_inv(2)+C_inv(2)*C_inv(2));
CC(2,3)=const*(C_inv(2)*C_inv(3)+C_inv(2)*C_inv(3));
CC(3,3)=const*(C_inv(1)*C_inv(2)+C_inv(3)*C_inv(3));
CC(2,1)=CC(1,2);
CC(3,1)=CC(1,3);
CC(3,2)=CC(2,3);

When tested with Matlab line searching, a relaxation parameter (0,4) is required to ensure
the convergence for example 4

.

13

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

What can be induced by the results is that a major buckling occurs with the first load
iteration. After that it slowly behaves as a linear F-d.

b) Checking the consistency through Check_Derivatives function. Gradient and the
Hessian of the energy ae computed given a very small perturbation of h =1*10 -9 and two
different deformation fields for x and y displacements around x0 (preprocessing), which are
non homogeneous and arbitrary.
As an example are settled exponential /sinusoidal as x and y displacements respectively.

For each degree of freedom, are calculated as said before, and thus comparison between
gradient (and Hessian) and slope it’s known how sensitive is current state and awares us
about mistakes or needs of inclusion of relaxation parameters.

|(E h - E)/h -⛛ E) / ⛛ E | > 1*10 -3

|| (⛛ E h - ⛛ E)/h - H || / || H || > 1*10 -3

In the case analyzed (example 4 , trans. isotropic) are both 3 orders of magnitude smaller
than warning activations (1*10 -3). So model is consistent.

c) Solving the example =0, dead load on elastic block in tension, for different angles of θ,
we obtain different solutions that can be explained through a mechanical viewpoint.

From fibers along loading direction θ=0, to perpendicular to the load, are computed

θ=0,𝜋/6,𝜋/4 ,𝜋/2
A bigger right-center displacement is produced in between 0 and 𝜋/2. Both cases present
similar displacements and minimum of all these examples.
Also noticeable that when fibers are diagonal (𝜋/6,𝜋/4) it appears an asymmetry in vertical
displacement.

θ=0

14

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

θ=𝜋/6

θ=𝜋/4

θ=𝜋/2

15

Assignment 3
COMPUTATIONAL SOLID MECHANICS

Marcos Boniquet Aparicio

16

function [x_equil,iflag,iter,Ener] = Equilibrate(x,options)
global mod1 mesh1 load1 el1 undeformed1

err_plot=[];
err_plot1=[];
[x_short] = short(x);

switch options.method
 case 0, %vanilla Newton-Raphson with line search as option
 iter=0;
 err_x=100;
 err_f=100;
 [Ener,grad_E,Hess_E] = Ener_short(x_short,3);

 t=1; %initializing for backtracking
 while (iter<=options.n_iter_max) & ...
 ((err_x>options.tol_x) | ...
 (err_f>options.tol_f))
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 iter=iter+1;
 dx = -Hess_E\grad_E;

 if options.linesearch==0
 x_short=x_short+dx*options.relax_par;
 end

 if (options.linesearch==1)&(options.type_LS==2) %matlab LS
 options.n_iter_max=options.n_iter_max_LS;
 [t]=linesearch(dx,grad_E,x_short,options);
 x_short=x_short+t*dx*options.relax_par;
 end

 if (options.linesearch==1)&(options.type_LS==1) %backtracking LS
 options.n_iter_max=options.n_iter_max_LS;
 x=x_short;
 if Ener_short(x+t*dx,1)>
 (Ener_short(x,1)+options.alfa*grad_E.*dx)
 t1=-options.beta*t;
 else %backtrack
 t1=options.beta*t;
 end
 p=dx;
 x_short=x+t1*p*options.relax_par;
 t=t1;
 end

 [Ener,grad_E,Hess_E] = Ener_short(x_short,3);
 err_x=norm(dx)/norm(x_short);
 err_f=norm(grad_E);
 err_plot=[err_plot err_x];

1

 err_plot1=[err_plot1 err_f];

 end
 %Check positive definiteness
 if options.info==3
 [V,D] = eig(Hess_E);
 D=diag(D);
 if ((min(D))<=-1e-6*abs(max(D)))
 fprintf('Warning, the Hessian has a negative eigenvalue
 \n')
 D=sort(D);
 disp(D(1:6))
 end
 end
 otherwise,
 error('This option does not exist');
end

[x_equil] = long(x_short);
if (iter<=options.n_iter_max)
 if options.info>0
 fprintf('The equilibration was successful in %i iterations
 \n',iter)
 end
 iflag=1;
else
 if options.info>0
 fprintf('The equilibration was not reached in %i iterations
 \n',iter)
 end
 iflag=0;
end

%Output
if options.info>=2
 figure(5)
 hold off
 semilogy([1:iter],err_plot,'ro-',[1:iter],err_plot1,'bo-');
 %pause
end

Not enough input arguments.

Error in Equilibrate (line 6)
[x_short] = short(x);

Published with MATLAB® R2017a

2

function [t]= linesearch(dx,grad_E,x_short,options)
p=dx;
opts=optimset('TolX',options.TolX,'MaxIter',options.n_iter_max_LS);
t=fminbnd(@(t)Ener_1D(t,x_short,p),0,2,opts)%ha encontrado t que
 minimiza energia para x y gradx
end

Not enough input arguments.

Error in linesearch (line 2)
p=dx;

Published with MATLAB® R2017a

1

function [W]=transv_isotr_1(C,c0,c1,k,mu,fib)

J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);

i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*(exp(c1*sqrt(i4)-1)^4-1);

Not enough input arguments.

Error in transv_isotr_1 (line 3)
J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC

Published with MATLAB® R2017a

1

function [W,S]=transv_isotr_2(C,c0,c1,k,mu,fib)
J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);

i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*exp(c1*((sqrt(i4)-1)^4))-1;
S =[];

C_inv=[C(2) C(1) -C(3)]/J2;

S= mu*(C_inv-[1,1,0])+(k/4)*J2*C_inv-2*C_inv;

end

Not enough input arguments.

Error in transv_isotr_2 (line 2)
J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC

Published with MATLAB® R2017a

1

function [W,S,CC]=transv_isotr_3(C,c0,c1,k,mu,fib)

J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC
J=sqrt(J2);
logJ=log(J);
G=(1/4)*(J^2-1-2*logJ);
i4=C(3)*fib(1)*fib(2);

W = 1/2*mu*(C(1)+C(2)-2) - mu*logJ +k*G+c0*exp(c1*((sqrt(i4)-1)^4))-1;

C_inv=[C(2) C(1) -C(3)]/J2;

S= mu*(C_inv-[1,1,0])+(k/4)*J2*C_inv-2*C_inv ;

CC=zeros(3);

const=(mu-2+J2*k/4);

%W ES SCALAR, S ES VECTOR, CC ES 3X3

CC(1,1)=const*(C_inv(1)*C_inv(1)+C_inv(1)*C_inv(1));
CC(1,2)=const*(C_inv(3)*C_inv(3)+C_inv(3)*C_inv(3));
CC(1,3)=const*(C_inv(1)*C_inv(3)+C_inv(1)*C_inv(3));
CC(2,2)=const*(C_inv(2)*C_inv(2)+C_inv(2)*C_inv(2));
CC(2,3)=const*(C_inv(2)*C_inv(3)+C_inv(2)*C_inv(3));
CC(3,3)=const*(C_inv(1)*C_inv(2)+C_inv(3)*C_inv(3));
CC(2,1)=CC(1,2);
CC(3,1)=CC(1,3);
CC(3,2)=CC(2,3);

Not enough input arguments.

Error in transv_isotr_3 (line 3)
J2=C(1)*C(2)-C(3)*C(3); %es J^2=detC

Published with MATLAB® R2017a

1

