Continuum Damage Models

Lei Pan

Part 1-Rate independent model

1. Introduction

In part 1, I have modified the MATLAB code to implement the following situations:

1. non-symmetric tensile-compression damage model

i1. tension-only model

iil. linear and exponential hardening/softening (H<0 and H>0)
After modifying the code, I have utilized the program to get the results of Non-symmetric tensile-compression
damage model and Tension-only model under different load path, which includes the strain-stress curves,
damage variable curves and hardening variable curves. The result shows that the softening material is easier
to be damaged. The multidirectional loading will improve the yield stress of the material.
And after the damage happens, the Elastic Modulus will decrease. Also, the damage speed of exponential
model is smaller than linear model.

2. Non-symmetric tensile-compression damage model
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Figure 1. Non-symmetric tensile-compression damage model

A. The increments of o are:

AcP =100;40( = 0
Ac® = —200;A0 = 0
Ac® =800;40 = 0

In case A, the loading is only applied on x-direction. When the load path 1 is imposed, the material is still in
elastic stage, so we will see that the strain-stress curve will be a straight with load path 1 which is uniaxial
tensile loading. The load path 2 becomes to be uniaxial tensile unloading/compressive loading. Firstly, it’s
tensile unloading. And then it transforms to compressive loading. But in load part 2, the stress is still inside



the elastic domain. The load path is equal to 800 which is beyond the elastic domain, so the damage is going
to happen is this stage.

(D The Strain-Stress and damage
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Figure 2. Strain-Stress curve of case A Figure 3. Damage variable respect to time of case A

The first stress increment only applies on the x direction. According to above figure, there are four situations:
H>0 and Linear model, H>0 and Exponential model, H<0 and Linear model, H<0 and Exponential model.

Firstly, when H <0, we can notice that the material is easier to be damaged compared to the situation of H>0.
The point when the damage happens for Linear and Exponential model is same but Linear model’s damage
speed is faster.

The situation for H>0 is different from H<0. We can find that when H>0, the damage level is lower than it is
when H<0. For H>0 and Exponential model, the point when the damage happens is same to H<0 model and
the time is about 8. But the time becomes to be about 8.9 for H>0 and Linear model. The reason is that in the
same time, the hardening variable q of Linear and hardening model is higher. As a result, it makes the material
more difficult to be destroyed. And the reason why hardening models’ damage level is lower is that the damage
surface of hardening model is expansion while the damage surface of softening model is contraction which
have been shown in figure 4. To sum up, the hardening model increases the material’s ability to against the
damage.

For the Load path 1 and load path 2, because they are within the initial damage surface, so their strain-stress

curves are on the same straight line. This case means that the material is in elastic stage. After this stage, I
have applied the load path 3 that is beyond the damage surface so the material starts producing damage.

@ The hardening variable q
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Figure 4. Hardening variable q respect to time of case A



Figure 4 shows the changing of hardening variable q with respect to time. We can see that when the load is
within the initial damage surface, q doesn’t change. But when the load extends the initial damage surface,
which is also the time when the damage happens except for Hardening and Linear model, the q starts
increasing or decreasing and the increase or decrease speed of Linear model is faster.

B. The increments of o are:

Ae) = 100; 00V = 0
Ac® = —200;A0? = —200
Ac® =800; A0 =800

In this section, the increments of ¢ has added Adg,, so it becomes to be multidirectional loading problem. We
also need to take into account the norm stress. Only when the norm stress satisfies the damage principle, the
damage will happen. In case B, the loading path is no longer limited on x-direction, so the yield stress has
changed to be higher. And another point is that because in load path 1, the load is applied on x-direction, so
the curve of load path 1 and load path 2 will not be on the same straight line.

(D The Strain-Stress and damage
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Figure 5. Strainl-Stress1 curve of case B Figure 6. Strain2-Stress2 curve of case B
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Figure 7. Damage variable respect to time of case B Figure 8. Hardening variable q respect to time of case B

In case B, the yield stresses on both x and y directions have increased after applying Ao; and Ao, compared
to only applying Ao;. And we can also find this phenomenon from the damage figure and hardening variable
figure because the points when damage happens and q starts changing becomes later than that in case A.
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Figure 9. Comparison of norm(strain)-norm(stress) curves for different load path for Non-symmetric Model
The figure 9 has proved above phenomenon. The yield stresses sequence is C>B>A. This phenomenon is

caused by the reality that the yield criterion will change for different loading combination. In this case,
multidirectional loading has increased the yield stress and make the material stronger.

And we can also see that the slope of case C and case B are bigger than the slope of case A, which means that
under the combined loading situation, the Elastic Modulus has increased and material becomes harder.

@ The damage surface

The situation is like case A except that the time when the q starts changing in case B is later than that in case
A.

C. the increments of o are:

AP =100; A0V = 100
Ac® = —200;A0/? = —200
Aa® = 800; Ac> = 800

In case C, the load path 1 is not limited to x-direction anymore, so the curves of load path 1 and load path 2

will be on the same straight line. And in case C, the yield stress will also increases because of the
multidirectional loading.

(D The Strain-Stress, damage and hardening variable q
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Figure 10. Strain1-Stress1 curve of case C Figure 11. Strain2-Stress2 curve of case C
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Figure 12. Damage variable respect to time of case C Figure 13. Hardening variable q respect to time of case C

The situation of case C is like case B, but the yield stress of case C is the highest one, meaning that the material
is most difficult to be damaged in case C.

D. The Other load path:

AatP = 400; 00" = 0
Ac® = —400;00(% = 0
Ac® =800;40( = 0
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Figure 14. Strainl-Stress1 curve of case D Figure 15. Damage variable respect to time of case D

As above Figures have shown, after loading path 1 which is beyond the yield stress, the material’s Elastic
Modulus has decreased. And the damage has divided into two stages. The loading path 2 doesn’t produce any
damage to the material.

3. Tension-only model
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Figure 16. Tension-only model



A. the increments of o are:

(D The Strain-Stress and damage
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Figure 17. Strain1-Stress1 curve of case A

@ The hardening variable q

Figure 18. Damage variable respect to time of case A
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Figure 19. Hardening variable q respect to time of case A
B. the increments of o are:
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AcP =100;40( = 0
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Ac® = —200;A0? = —200
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Aa® = 800; A0 = 800
500 o
FeOlinear | Hollinear] ..
400, e . 300-
HOEX
300+ 2001
o 0"
ﬁ 2001 ﬂ 100~
: : v
o ) ]
100F o (HDEX P +
m*”.':{* el y o HeflLnear
0f ;//:'o - 100 g
" |HfD:l.\ner|
A0 ’Iu 1 i i 0l | | I j
—%005 0 0.005 0.01 0015 002 0025 il 0005 0005 on 0015
STRAIN1 S'II'&‘AII\Iz

Figure 20. Strain1-Stress1 curve of case B

Figure 21. Strain2-Stress2 curve of case B
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Figure 22. Damage variable respect to time of case B Figure 23. Hardening variable q respect to time of case B

C. the increments of o are:

AcV = 100; A0 = 100
Ac® = —200; A0 = —200
Ac® =800;40 =800
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Figure 24. Strain1-Stress1 curve of case C Figure 25. Strain2-Stress2 curve of case C
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Figure 26. Damage variable respect to time of case C

D. Comparison

Figure 27. Hardening variable q respect to time of case C
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Figure 28. Comparison of norm(strain)-norm(stress) curves for different load path for Tensile-only Model



By comparing with the case of Non-symmetric tensile-compression damage model, we get that the
multidirectional loading will also increase the yield stress and the Elastic Modulus in Tensile-only model.

E. The Other load path:

Ae) = 400; 06V = 0
Ac® = —400;A0(? = 0
Aol =800;40Y = 0
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Figure 29. Strain1-Stress1 curve of case E Figure 30. Damage variable respect to time of case E

Above results of Tension-only model when imposing the above loading path has also shown the same behavior
of Non-symmetric model.



Part 2-Rate dependent model

1. Introduction

In this part, I have discussed several coefficient’s effects on the results of Strain-Stress curve. And I also
implemented different a to discuss its effect on the C11 component of tangent and algorithmic constitutive
operators. The result shows that when « is increasing, the C11 component of algorithmic constitutive
operators will decrease. And higher viscosity coefficient 17 will cause lower slope of the strain-stress curve.
The strain rate has similar effect to viscosity coefficient. Also, we should take care of choosing the appropriate
value of a because when a is smaller than 0.5 and the total time is big enough, the results will show
oscillation which is not reliable. In order to solve this problem, the recommended value is a > 0.5.

2. Effect of viscosity coefficient n
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Figure 31. Strainl-Stress1 respect to viscosity coefficient
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Figure 32. Damage variable respect to viscosity coefficient
When we increase the viscosity coefficient, the slope of strain-stress curve in load path 3 is approaching the
Elastic Modulus while the damage level will decrease. But there is a special case when viscosity coefficient

becomes to be 2 and 10, the damage variable becomes to be negative. Because the damage variable will never
be negative, so this means that in this case, the continuum damage model is no longer applicable and credible.

3. Effect of strain rate

By increasing the total time, the strain rate will decrease accordingly.
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Figure 33. Strain1-Stress1 respect to strain rate
When the strain rate decreases, the slope in load path 3 will decrease, meaning that the material is getting to

be harder.
The effect of strain rate is similar to the effect of viscosity coefficient 7.

4. Effect of a
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Figure 34. The Strain1-Stress1 respect to @ when TIME-INT=10

When total time equal to 10, the results of different values of a are close and stable.
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Figure 35. The Strain1-Stress1 respect to @ when TIME-INT=1000 (a < 0.5)

In figure 35, I have applied total time that is equal to 1000. When a« = 0 and a = 0.25, the results are not
stable. On the contrary, the results become to be sable when a > 0.5. The figure 36 has shown the stability
when a > 0.5.
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Figure 36. The Strain1-Stress1 respect to @ when TIME-INT=1000 (a = 0.5)

5. Effect of a on C11 component of tangent and algorithmic constitutive

operators

(M C11 component of algorithmic constitutive operators
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Figure 37. C11 component of algorithmic constitutive operator respect to e when TIME-INT=10
When «a increases, the C11 component of algorithmic constitutive operators will decrease accordingly. And

the results show the stability, but this only happens when total time is small. When we apply huge total time
like 1000, the results with o < 0.5 will become instable. Like figure 37 and figure 38 have shown.
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Figure 37. C11 component of algorithmic constitutive operator respect to @ when TIME-INT=1000 (a < 0.5)
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Figure 38. C11 component of algorithmic constitutive operator respect to @ when TIME-INT=1000 (a = 0.5)

@ C11 component of tangent operators

Figure 39. C11 component of tangent operator respect to @ when TIME-INT=10



When we apply small total time value, the different @ values will have little influence on the results of C11
component of tangent operator. But when applying the huge total time value, the oscillation will also happen.
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Figure 40. C11 component of tangent operator respect to & when TIME-INT=1000 (a < 0.5)
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Figure 41. C11 component of tangent operator respect to & when TIME-INT=1000 (a = 0.5)

In this case, the results become unstable when @ = 0 and a = 0.25. When a = 0.5, the oscillation will
disappear.

6. Conclusion for o

From above discussion, we realize that when we apply huge total time values, the results given by using a <
0.5 will become unstable. So the recommended a value will be a > 0.5.



Part 3-Appendix

1. Modification in function rmap danol

if viscpr== 1 % Viscosity model
rtrial_alp=(1-alpha)*rtrial_nt+alpha*rtrial:

if(rtrial_alp> r_n)
%* Loading

fload=1:
delta_r=rtrial-r_n;
r_nl= ((eta—delta_t*(1-alpha))*r_ntrtrial_alp*delta_t)/(etatalpha*delta_t)

if hard_type ==

% Linear

if HARDSOFT_MOD>0
q nl= g nt+ H*delta_r;
q_inf=2#*r0-zero_q;
if g nl>q inf %q_nl<=gq_inf when HARDSOFI_MOD>0
q nl=q_inf:
end
else
q nl= q n+ H¥delta_r;
q_inf=zero_q.
if q nl<q inf
g nl=q inf; %q nl>=q_inf when HARDSOFT_MOD<0
end
end
H_nl=H:

else
%exponential
if HARDSOFT_MOD>0

q_inf=2*r(-zero_q:
q_nl=q_inf-(q_inf-r0) *exp (H* (1-rtrial/r0)) :
H_nl=H*(q_inf-r0)*exp (H¥ (1-rtrial/r0))/x0;

if g nl>q inf
q nl=q_inf;
end

else 1f HARDSOFT_MOD<0

q_inf=zero_q;

q nl=q _inf-(q inf-r0)*exp (H¥ (rtrial/r0-1)) ;% because A should alwav be positive
H_nl=H*(q_inf-r0) *exp (H* (rtrial/r0-1))/r0:% so here take (-H) to make 4 be positive
if g nl<q_inf

q nl=q_inf:
end
end
end
end

else

b Elastic loading/unloading
fload=0;

r_nl=r_n

gnl=gn

H_nl=0;

end



else % Non viscosity model|
if (rtrial > r_n)

h* Loading

fload=1:
delta_r=rtrial-r_n:
r_nl= rtrial
if hard_type == 0
% Linear
1f HARDSOFT_MOD>0
q nl= g n+ H¥delta_r:
q_inf=2#r0-zero_q;
if q nl>q inf
q_nl=q_inf:
end
else
q nl= q nt+ H*delta_r;
q_inf=zero_q;
if g nl<q inf
q nl=q inf;
end
end

else
%Exponential
1f HARDSOFT_MOD>0
q_inf=2#*r(-zero_q:
q_nl=q_inf-(q_inf-r0)*exp (H* (1-rtrial/r0))
H_nl=H*(q_inf-r0)*exp (H* (1-rtrial/r0))/x0;
if g nl>q inf
q nl=q_inf:
end
else if HARDSOFT_MOD<0
q_inf=zero_q:
a_nl=q_inf-(q_inf-r0) *exp (H* (rtrial/r0-1)):
H_nl=H*(q_inf-r0)*exp (H* (rtrial/x0-1))/x0;
if g nl<q_inf
q nl=q_inf:
end
end
end
end

else

h* Elastic load/unload
fload=0;

r_nl=rn

qnl=gn

end
end



% compute Cll component of tangent and algorithmic constitutive operators
RakkkkkkkkEkk
1f viscpr== 1
rtrial_alp=(1-alpha) *rtrial_ntalpha*rtrial
if (rtrial_alp> r n)% loading
Ce_al=(1-dano_nl)#ce—((alpha*delta t)/(etatalpha*delta t))*((q nl-H ni*r n1)/(r_nl"2))*(sigma_nl’ *sigma nl)/rtrial:
Ce_ta=(l-dano_nl) *ce;
Ce_al_11=Ce_al(1.1):
Ce_ta_l1=Ce_ta(l.1):
else
Ce_ta=(1-dano_nl) *ce:
Ce_al=Ce_ta;
Ce_ta 11=Ce_ta(l,1);
Ce_al 11=Ce_al(l.1):

end
end

1f viscpr==1
hvar_nl(7)=Ce_ta_11;
hvar_nl(8)=Ce_al_11;
end

2. Modification in function damage main

LABELPLOT = { hardening wvariable (q)’, internal variable’,’ damage wvariable (d)’, Ce_ta_11", Ce_al_11"};

% INITIALIZING (1= 1) !!!!

% *#*I*#*I*#*i*

1=1

r0 = sigma_u/saqrt (E) ;

hvar n(3) = r0; % r_n

hvar ni(6) = r0;: % an
hvar_n(7)=ce(l,1) :
hvar_n(8)=ce(1,1) ;

eps_nl = strainf(i, :)

sigma_nl =ce*eps_nl’; % Elastic
sigma_v{i} = [sigma_nl(l) sigma_nl(3) 0:sigma_nl(3) sigmanl(2) 0 ;: 0 0 sigma nl(4)]:

nplot = 5 :

vartoplot = cell(l, totalstep+l)
vartoplot {i} (1)
vartoplot {i} (2) = hvar_n(5) : % Internal variable (r)
vartoplot {i} (3) = 1-hvar_n(6)/hvar_n(5) : % Damage variable (d)
vartoplot {i} (4)=hvar_n(7):

vartoplot {i} (5)=hvar_n(8) :

hvar_n(6) ; % Hardening variable (qg)



% VARIABLES TO PLOT (set label on cell array LABELPLOT)

vartoplot {1} (1) = hvar_n(6) : % Hardening variable (g)

vartoplot {1} (2) = hvar n(5) ; % Internal wvariable (r)

vartoplot {i} (3) = 1-hvar_n(6)/hvar_n(5) : % Damage variable (d)
vartoplot {1} (4)=hvar n(7) ;% Cl11 component of tangent operators
vartoplot {i} (5)=hvar_n(8) :% C11 component of algorithmic conktitutive operators

3. Modification in function dibujar criterio danol

elseif MDtype==2

tetha=[-0, 5*pi*0, 99999:0.01: pi*0, 99999] ; % the range is between —-pi/2 to pi for only-tensile:
D=size(tetha) : %* Range

ml=cos(tetha) ;

nl=mnl;

nl (n1<0)=0:% when the sigma is minus, it should be 0;

m2=sin(tetha) :

n2=n2;

n2 (n2<0)=0;% when the sigma is minus, it should be 0;

Contador=D(1, 2) ; %
radio = zeros(l, Contador)
sl = zeros(l, Contador)
s2 = zeros(l, Contador)

B for i=1:Contador

nu* (ml{1)+m2(1))1");

s1(i)=radio(i)*ml(i);
s2(i)=radio(1)*m2 (1) ;

- end
hplot =plot(sl, s2, tipo_linea) :



| elseif MDtype==3

tetha=[0:0.01: 2%p1];

D=size(tetha) ; %* Range

ml=cos(tetha) :

n1=n11

nl(n1<0)=0;

m2=sin(tetha) ; G*
=m2;

n2(n2<0)=0;

Contador=D(1, 2) ; &%

radio = zeros(1l,Contador)

sl = zeros(1,Contador)

s2 = zeros(1,Contador)

for 1=1:Contador

sigma=[n1(i) n2(i) 0 nu*(nl(i)+n2(i))];
sigma_abs=[ml1(i) m2(i) 0 nu*(ml(i)+m2(1i))]:
sita=sum(sigma, 2)/sum(abs(sigma_abs), 2) ;

radio(i)=q/ ((sitat+(l-sita)/n)*sqrt(ml1(i) m2(i) 0 nu*(ml1(i)+m2(i))I*ce_inv*ml1(i) m2(i) 0 ...

nu* (ml (i)+m2(1))17));
sl(i)=radio(i)*ml (i) :
s2(i)=radio(i)*m2 (1) :

end
hplot =plot(sl, s2, tipo_linea) :
end

4. Modification in function Modelos de danol

elseif (MDtype==2) %* Only tension
sigma = ce*eps_nl’ :
sigma_only_tensile=sigma;
sigma_only_tensile(sigma_only_tensile<0)=0;
rtrial=sqrt(eps_nl*sigma_onlyv_tensile)

elseif (MDtype==3) %*Non-symmetric
sigma = eps_nl¥*ce;
sigma_abs=abs (sigma) ;
sigma_non_symmetric=sigma;
sigma_non_symmetric(sigma_non_svmmetric<0)=0;
sita=sum(sigma_non_symmetric, 2)/sumisigma_abs, 2) ;
C=sitat((1-sita)/n);
rtrial= C*sqrt(eps_nl#¥ce*eps_nl’):

end




