
COMPUTATIONAL SOLID MECHANICS

ASSIGNMENT 1

Kiran Sagar Kollepara
Computational Mechanics

Part 1: Inviscid Damage Model

Figure 1 shows the simplest of all cases, uniaxial loading on a Linear, symmetric damage model.
Some of the expected characteristics that can be seen:

• The stress strain curve clearly shows change in slope caused due to the damage, which
occurs at both tensile and compressive loading. 

• The slope of the constitutive modulus decreses as predicted by the thermodynamic laws.
Also, the stress point never moves out of the damage surface. 

• The stress point at the end step (31) lies exactly on the damage surface.
• σ2=0 , but ϵ2≠0 because of Poisson effect

Figure 1: Uniaxial loading with Symmetric Linear Hardening.

 



Figure 2 shows the 'Tension only' case. Observations:
• No change of slope observed in stress-strain curve in the compression region.
• The unloading path in the compression region is the same as the loading path. Also, the

reloading path in tension region is same as the first unloading path.
• The damage surface evolves only with tensile loading in direction 1.   

Figure 2: Uniaxial loading with Tension only damage, Linear Hardening

Figure 3: Tension only model with ν=0

In Figure 2, the Poisson coefficient is taken as 0.3. In contrast, Figure 3 shows the damage surface
of a tension only model with Poisson coefficient ν=0 . 



• The surface runs parallel to the axes in first and third quadrants fo stress space. This means
that any strain in a given direction doesn't contribute to stress in other direction.

• The damage surface in the first quadrant is not elliptical, but circular. This is also reflective
of  absence  of  Poisson's  effect,  where  in  positive  strains  in  one  direction  have  negative
contribution to the stresses in other direction.

Figure 4: Uniaxial loading with Symmetric Exponential Softening

Figure 5: Comparison of Linear and Exponential softening for same initial H d

Figure 4 shows the exponential  Softening behaviour.  Figure 5 shows a comparison of Linear and
Exponential softening behaviour. 

• The size of damage surface in  stress domain reduces with evolution,  dragging back the
stress point along with it.

• The softening can be seen slowing down approaching perfect plasticity in exponential case,
whereas it remains constant in Linear case.



Figure 6: Bi-axial loading with Symmetric Exponential Hardening

Figure 6 and  Figure 7 show the same loading for symmetric and assymetric tension-compression
model. The following observations/comparisons can be made:

• The  first  step  of  loading(tensile)  is  identical  in  both  cases.  This  is  because  the  tensile
damage surface is identical at the beginning. 

• The second step,  compressive loading,  shows a different  behaviour  because  the loading
never reaches the damage surface in asymmetric model. Hence, the damage surface doesn't
evolve in this model. 

• The lack of evolution in the second load step influences the 3rd step. In assymetric model,
the stress point reaches the damage surface earlier than this.



Figure 7: Bi-axial loading with Non-Symmetric Exponential Hardening

Figure 8 shows the exponential softening case for symmetric tensile/compression. Observations:
• Hardening  parameter q  and  internal  variable r ,  remain  constant  during  elastic

loading/unloading.
• Internal variable r , increases when the stress point is on the damage surface.
• Hardening  variable,  decreases  when the  stress  point  is  on  damage surface,  because  the

model has exponential softening.
• Loss of linearity observed in stress-strain curves at all three evolution regions.



Figure 8: Exponential Softening case: Stress-Strain curves and Evolution of
internal variable and hardening variables
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Part 2: Visco-Damage Model

The algorithm for rate of evolution of damage variable r has been implemented. The correctness of
the implementations will be checked for different values of η , α and ϵ̇ . 

Case 1: 

Viscosity: η=0.5 and η=5 . (Figure 1, 2 & 3).

Figure 1: Loading-Unloading path for η=0.5



Figure 2: Loading/Unloading path for η=5

Figure 3: Hardening Variable ( q ) vs. Time ( t ) for two different viscocities

Observations: Figure 1,2 & 3)
• For η=5 , the viscous effects are more visible, with the stress point moving far away from 

the damage surface, as compared to the stress curve of η=0.5 .



• For η=5 , the damage surface doesn't evolve much as compared to the η=0.5 case. This 
leads to a more linear Stress-Strain curve, because of the low damage. 

• This is also evident in the q vs. Time plot, where q is higher for η=0.5 .

Case 2:

Strain Rates: The efect of strain rates on evolution is studied in Figure 4 & 5. The same load steps 
are applied in different time steps.

Figure 5: Internal Variable (r) vs. Time ( t ) for different strain rates

Observations:
• Lower strain rates have larger evolution of damage variables.  
• Since loading is the same for all cases, strain rate decides how much time the stress point 

stays outside the damage surface. As the damage variable only evolves in this condition, the 
cases with lower strain rates evolve more.

Figure 4: Hardening Variable ( q ) vs. Time ( t ) for different strain rates



Case 3:
0<α<1

Figure 6: Evolution of internal variable over time

Observations:
• α=0 over predicts the damage variable as compared to α=0.5  & α=1 . 
• For α=0 , the explicit nature of method delays the evolution of damage variable.
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