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1. Introduction.

Solid mechanics usually deals with continuum damage models, being these models
strong tools for numerical simulations when the material presents micro fractures.
Due to the importance of the theoretical knowledge and the numerical aspects for
using, the aim is to implement correctly the algorithms and perform the numerical
integration of continuum damage constitutive models as well. By means of numerical
test, the current study is focus on prove the correctness of the code.

Given the mechanical characteristics of a material and the load states, the purpose
of the code is to compute for a plane stress problem the strains, damage variable,
and as a post process the effective stresses, and the tangent constitutive tensor.

In this section three models for the elastic domain are considered (symmetric,
tensile only, and non-symmetric) which in function of the experimental results one
of them could be used for model the elastic domain and the damage surface of the
material studied.
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Figure 1: Models for the elastic domain.

2. PART I: Rate independent models

The rate independent model considers that the stress state (or strain state) does
not depends on the velocity application of the load, so it can be computed without
take into account the time.

2.1. Exponential hardening/softening (H < 0 and H > 0).

An exponential law needs two parameters, A which determines the velocity to
achieve the asymptotic value of ¢;,s. This section has done the test with A=2.5 and
gins = 2 for the hardening test, and g;,y = 0.8 for the softening. Values that ensures
that the model is realistic.

In the following figures it can be appreciate that for hardening
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Figure 2: Damage surface (left) and o1 /e; plot of an exponential hardening test
(right).
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Figure 3: Damage surface (top-left), o1 /e1 plot (top-right), damage variable evolution
through the time (bottom-left) and the ¢/r plot of exponential softening test (bottom-
right).
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In the figures 2| and [3] it is shown that the damage surface expands, whereas,
for the softening it reduces. In both cases the stress state remains always on the
damage surface or in the elastic domain. The exponential laws begin when the yield
stress is exceeded and tens to ¢;nf value, and finishes for the unloading process.
The exponential law, the one implanted it is explained in Annez?

2.2. Assessing the correctness of the implementation.

Three load cases will be carried out to check the implementation and each load
case described by three-segment paths in the strain space. All the test cases for rate
independent models will be done with the linear hardening law, elastic modulus
E = 20000Pa, poison’s ratio v = 0.3, hardening modulus H = 0.6, the yield stress
oy = 200Pa and n = 3. The loading parameters chosen are o = 400Pa, = 200Pa
and v = 700Pa.

2.2.1. Loading path 1.
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Figure 4: Damage surface (top-left), o1 /e1 plot (top-right), damage variable
evolution for loading case 1 (bottom).
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In the Figure [4]is observed that in the first segment, once it reaches the yielding
stress the slope changes and follows the lineal hardening slope. During the second
segment (uni-axial tensile unloading and compressive loading) the slope it tends
to the get back part of the elastic strain, but if we load again, it takes the same
unloading slope until it achieves the maximum damage surface, where it follows
again the lineal hardening slope. And the damage variable starts in 0 and just
increases when there is a damage loading, and never decreases which is expected.

2.2.2. Loading path 2.
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Figure 5: Damage surface (top-left), norm(o)/norm(e) (top-right), and damage
variable evolution for the loading case 2 (bottom).

Due to the fact that this loading case (Figure has a bi-axial loading it have no
sense to make the plot o1 /e so it is depicted as the norm(o)/norm(e). In the figure
it can be seen that the slopes for the uniaxial and the biaxial loading are different,
which makes sense. And the evolution of the damage variable shows reasonable

results.

Page 5



Master on Numerical Methods Carles Duné Nosas

2.2.3. Loading path 3.
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Figure 6: Damage surface (left) and norm(o)/norm(e) (right).

The third test is much similar than the first one, because the rate between the
01/€1, thus the slope of the curves are equal during the test. Note that the difference
is that the value for damaging the material is not ¢, any more, due to the poisson
effect which increases the initial elastic domain in oblique direction.

After analyze this three numerical experiments we have assessed the implemen-
tation of the rate independent code, and everything is what was expected, so the
code is well implemented.

3. PART II: Rate dependent part

The rate-dependent model required a more involved modification of the MAT-
LAB code provided, that could be find in Annex®. It is interesting to check that it
is possible to recall the rate independent results with the rate dependent code when
the viscous effects are small enough.

The new parameters for the viscous model are the viscosity parameter 7, and
the T time of the load application. However, two more parameters: AT which dis-
cretizes in time, and « which defines the integration type, both variables are needed
to perform the numerical integration of the constitutive equation. We must take
care about the influence of AT and « on the results, in order to not introduce nu-
merical errors or instabilities on the computations. For analyze the variables effects
some uniaxial test have been carrying out, and are shown in this section.
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The mechanical values for the computation are the same used in the rate inde-
pendent test, and the ones which are collected in Table [I]

Load 01 02

P 500 0
Py 250 0
Py 800 0

Table 1: Load state for the test

3.1. Testing the time:

Just for start one simple test varying the load time application, with some vis-
cosity and taking o = 1/2 for be second order accurate.
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Figure 7: Damage surface (left) and testing the time effect ploting o1 /eq (right).

As it is shown in Figure[7] the effective stresses not match on the damage surface,
which it is explained because the rate dependent model the Karush-Kuhn-Tuker con-
ditions are not necessarily fulfilled. And about the time effect, the viscous solutions
tends to the inviscid one when time is larger enough, which means that the load
application velocity is small.

3.2. Testing a and n:

The results are shown in terms of the o, /e; for different n Fig 8-9 and the first
component of the tangent constitutive operators are depicted in Fig 10 as well.
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Figure 8: Plot of 0y /e; with n = 0 changing «
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Figure 9: Plot of 0y /e; with n = 0.7 changing «

Firstly note that « has strong influence on numerical instabilities, as it is shown in
Figure[§] just appears during the damage loading. This behaviour is larger for small
a, but also with & = 1/2 there are some instabilities. This was not expected form
a theoretical point of view, because it is well known that alpha integration method
works properly in the interval [1/2, 1]. But according to the theory lectures, for
a =1/2 and n = 0.7 the solution is exactly the same than the inviscid results, this
test ensures that the algorithm is well implemented.

Comparing the Figures [§ and [9] which the only difference is that there is some
viscosity for the second one, we can conclude that the instability effect appears for
small 7. There is still one observation more for the viscous case, which is that
the effective stresses are greater than the inviscid case, and it is because of the
non-fulfilling the Karush-Kuhn-Tucker conditions.
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Figure 10: Plot of the first component of the constitutive operators changing «
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Figure 11: Plot of the first component of the constitutive operators changing o with-
out viscosity

3.3. Testing the AT effect:

As it is shown in the figure [§] for a test with a = 1/2 and n = 0 the results are
not stable, so this parameters are chosen for the next test, where we want to analyze
how the instabilities can be reduced varying the time discretization. As it was said
before the parameter AT is the number of times which is the load state divided
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Figure 12: Plot of o1 /e; changing AT

As can be seen in Fig 12, the instabilities decreases while time discretization is
much finer (AT = 20) and are larger for court discretization (AT = 5). This result
is quite obvious, but proving that in our code it works, is important for asses the
correctness of the implementation.

4. Conclusions.

The implementation was tested against several cases, and in every case, it met
the results expected from the theory. However, the field of Continuum Damage
Model is very complex and requires a lot of experience and care from the user when
applying it to the real world.

For alpha greater than one half the results does not show instabilities, and larger
ones for small values of alpha. Note that this instability appears just for low vis-
cosity parameter. That remark is the key to match the theory which says that for
alpha equal to one half second order error is achieved, but there are not instabilities.

As a final conclusion, stress out that even with just the rate dependent code
we are able to compute for a non-viscous material it is better to keep both codes,

because of the rate dependent introduce some errors while computing the integration
of the constitutive equation of the damage model.

5. Annex.
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cl) Tensile-damage-only model

To implement the tensile-damage only model the following expression 1s coded,

Terinr — xl'll{ft car: ) Eppar

modelos de dancl.m (line 15-20)

glzeif [(MDtype==2) %* {Only tens=sicn
rrrial=sgrt (fmacaulay{eps nl*ce)*eps nl");

where the finacaulay is the Macaulay function, which given a number, it does nothing if

it 1s positive otherwise returns the zero value.
fmacaulay.m (line 1-3)

function [m] = fmacaulay{v)
m={abs (v)+v) /2;
end

For plotting the damage surface for the tensile model the whole structure of the
symmetric model 18 copied and just the expression of the radis iz changed for the

following one,

q

JieThCt g

dibujar criteric danol.m (line 73-73)

%% v and v are vectors collecting the components of the
gtreszes, Juat for make more easy at the implementaticon lewvel
= [ fmacaulay (ml (i)} fmacaulay(m2 (i)} O ..

fmacaulayi{nu* {ml (L)+m2(i))1]:

v=[ml (i) m2{i) 0 nmu*(ml{i)+m2(i))]:

radic(i})= af( (vm*ce inv*v'])"0.3):

c2) Non-symmetric Model

In the non-symmetric model we proceed as before where now the expression 1s the
following one,

Yi@)
Yilol

1—8 —
Teppar = ('9 + " )\- Erpar: CEppar

8=



modelos de dancl.m (line 23-24)

tetha=sum[fmacaulay(eps_nl*:e]}jsum[eps_:l*ce};
r:rial=ite:ha+({l—tetha]fn]}*sqrt{eps_nl*ce*eps_nl’};

and for plotting the damage surface,

dibujar criteric dancl.m (line 9&-33)

%% tita interpolates the radic when one of the components is
under tracticn

v=[ml({i) m2(i) O nu*{ml{ij+m2{i))]:
tita=sum{fmacaulay(v) ) sum{abs(v))
radin[i]=qj[tti:a+i(l—ti:ajfnj]*{sqrt[v*ce_inv*v']}];

c3) Exponential hardening/softening law

Firstly the parameters 4 and g, are stored as components of vector properties,

main neninteractive.m (line 108-103)

%% The A exp, and g _inf are added in the Eprop vector
prop = [E nu HARDSOFT MOD =igma u hard type viscpr =ta

=

ALPHA COEFF, L exp, g inf]:

and the expression for the exponential hardening/softening looks like,

Ar
A_
q = dinr — {t?:'nr - TnJEI: r"J

moreover the denivative H will be needed for compute the C damage tensor,

H=4 [_fimr _ rﬂ) E‘{A%}
o

rmap dancl.m (line &3-T71)

elgeif hard type==1
% Exponential
g nl = q_inf—iq_inf—rﬂ}*exp{A_exp*il—r_nlfrﬂ]};
H=A exp*| (g inf-r0)/r0)*exp(h exp*(l-r nl/rd));

c4) Constitutive tangent operator for the rate independent code

This tensor give information about the evolution of the C which keeps the mechanical
behaviour of the matenal, thus when there 1s damage, this C changes, and it 1s called C
damage, and has the following expression,



(1=-d)C, Elastic/Unloading

d — —

[ =
tan {1—4)@—%5@5, Loading

rmap dancl.m (line 3&-100)

(%% Computing the constitutive tangent tenso
Crang nl={l-danc nl}*ce;
if flocad = 1
Ctang nl=(l-danc nl)*ce-(({g_nl-
H*;_nljfr_pl“B]*([ce*epa_pl']*(ce*eps_nl'j'];
end

for plotting the first component of the tensor,
rmap dancl.m (line 118)
gux wvar (4)=Ctang nl(l,1);

damage main.m

{line 130)
vartoplot{i} (4)=ce(l,1);

{line 205)
vartcplot{i} (4) =aux wvar(4):

c3) Rate Dependent (viscous case)

The rate dependent algorithm is a little bit more complex than the inviscid code,
because the constitutive equation must be integrated. Thus, and in order to simplify the
implementation 15 decided to create a new function rmap_daro0.m which is the simile
than the rmap danoi m which is exclusive for the rate independent case. This function
has the DeltaT and eps n0 as new inputs, and note that the viscosity and the alpha
parameter are coming by the 7th and 8™ components of the vector Eprop.

rmap dancl.m

function [gsigma nl,hvar nl,aux wvar,Ctang nl,Calg nl] =
rmap danol (epz nl,hvar n,Eprop,ce,MDtype,n,eps_nod,delta t)

{Line 33-35)
(%% the eta is bring as the viscosity parameter, and alpha is
the integration coefficient
eta v=Eprop(7):
alpha=Eprop(8):

{Line 53-55)
[rtriald] Modelos de danol (MDtype,ce,eps nl,n);
[rtriall] = Modelos de danol (MDtype,ce,eps_nl,n):



rerial= rtriall* (l-alpha)+alpha*rtriall;

(Line &Z-&&)
if(rtrial > r nj
E 3 Loading

fload=l;
r nl=({sta v-delta t*{l—alpha]}f[eta_y+alpha*delta_;]j*r_n+

+Tﬂelta_pfTéta_y+aIﬁha*delta_t}]*rtrial;
delta r=r nl-r n;

c6) Constitutive tangent and algorithmic operators for the rate dependent case

The C algonthmic tensor gives information about how the mechanical properties of the
material 15 evolution along the process, and for computing we implement the next

equation,

(1-d)C, Elastic/Unloading

q:gfg = alAt(g—Hr) ___ )
(1—-d)C o+ abtr. « TET, Loading

rmap dancl.m (Line 94-101)

%% Computing the Constitutive tangent and the slgorithmic

operators
Ctang nl = (l-dano_nl) *ce:
Calg nl = (l-danc nl)*ce;

if fload==1
Calg nl = Calg nl+(alpha*delta t/(eta w+alpha*delta t))

*:(H;r_nl—q_anftr_nl“ﬂj}*{ce*gﬁa_nl'T*:ce*eps_nl'}';

end
and for displaying the first tensor component,

main noninteractive.m (line 85)

LABELPLCT = {'hardening wvariable (qg)",'internal wvariable
(r} ', 'damage wvariable (d)','C t a m gll'","'C & 1 gll'"}:

rmap danol.m (Line 120-121)

aux_wvar(4)=Ctang nlil,1):
aux _var(3)=Calg nl(l,1):



