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1 ASSIGNMENT PART 1A

In the first part of this assignment, we were tasked with implementing in the supplied MATLAB
code the integration algorithms (rate independent and plane strain case) for the continuum isotropic
damage "non-symmetric tension-compression damage" model and the "tension-only’ damage model.
This was done successfully using the lecture slides and videos as reference. These modified codes with
commentary can be found both in the Appendix I-IV.
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Figure 1a: Symmetric Tension Compression Damage Model (STC) Already Implemented
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Figure 1b: Implemented Tension-Only (TO) Damage Model
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Figure 1c: Implemented Non-Symmetric Tension-Compression (NSTC) Damage Model

The results obtained coincide with the general shapes and theory given in the literature and the
lectures. The Tension-Only model behaves asymptotically along the negative x and y axis directions,
and the Non-Symmetric Tension-Compression model exhibits the desired behavior, the compression
region of the graph in quadrant 3 is larger than the tension region in quadrant 1. We can assume that
the implementations are correct and will move on to the next part of the assignment.



2 ASSIGNMENT PART 1B

In the second part of the assignment, we were tasked with implementing the linear and exponential
hardening/softening (H<0 and H>0) cases for all three of these models. This was also done successfully
using the lecture slides and videos as reference. Similarly, these codes can be found with commentary
in Appendix V. Additionally, in the following figure below we will find a sample loading case with with
all three models overlapping.

Figure 1d: Sample Loading Case
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In the above figure, we have implemented a sample loading path on the overlapping of all three
models to give the operations of the program context. The program imposes 3 consecutive stress
increments and allows the user to plot a number of relevant results. Here we have implemented
first a bi-axial tensile-loading stress of 150 in the positive direction of both principle stresses. This
can be seen on the graph by the arrow labeled "STRESS INCREMENT 1". Next we implemented a
"STRESS INCREMENT 2" of positive 50 in the first principle direction and -50 in the second principle
direction. Finally, a third "STRESS INCREMENT 3" was imposed to bring the state of loading back
to the starting point of zero in both directions. This figure can be used as reference to help visualize
the loading cases for the subsequent loading paths described in this report.



3 ASSIGNMENT PART 1C

3.1 ASSIGNMENT PART 1C_CASE_1

Now that we have implemented the required codes and explained some functionality of the pro-
gram, we can begin to assess the correctness of these implementations. We will begin by imple-
menting the first prescribed case. This case has uni-axial tensile-loading as the first stress increment,
uni-axial tensile-unloading/compressive-loading as the second increment, and uni-axial compressive-
unloading/tensile-loading as the third increment. The values of the load paths, input parameters and
relevant stress/strain curves resulting from the implementation can be seen in figure 2 below and on
the next page.

Figure 2: STRESS I / STRAIN I curves of case 1 for Tension-Only
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Figure 2a: Linear Hardening H=0.1 Figure 2b: Linear Softening H=-0.1
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Figure 2c: Exponential Hardening H=0.1 Figure 2d: Exponential Softening H=-0.1



Above and on the previous page we can see the results of the implemented Linear Hardening,
Linear Softening, Exponential Hardening, and Exponential Softening plots corresponding to the prob-
lem statement in Tension-Only case 1. All have been loaded with the same increments, these can be
seen near the top of the figure. It is extremely important to note that all three of the implemented
methods produced very similar results, so each of these graphs is representative of it’s respective
hardening/softening case for the Symmetric Tension Compression, Tension Only, and Non-Symmetric
Tension Compression models. This is expected as the damage surfaces intersecting the loading paths
are very similar within the context of the problem and will not give drastically different results.

We will now break down what is happening in the plots. Across the board, each plot behaves
the same in the elastic loading region. The plots move linearly upwards to their yield points. Once
the yield points are reached, the stress of the hardening cases continues to increase with increasing
strain while the stress of the softening cases begin to decrease with increasing strain. The Linear
Hardening stress increases linearly as expected and the Exponential Hardening stress increases in a
curved fashion as one would expect from the theory. A similar trend is present for both cases of Linear
and Exponential softening. Once the initial uni-axial stress increment is reached, all four plots begin
uni-axial unloading and linear compression before resuming tensile loading. We can notice that the
softened materials exhibit a lower yield stress upon reloading and the hardened materials exhibit a
higher yield stress upon reloading. This is consistent with the theory and allows us to claim that the
implemented models are behaving correctly for this case.



3.2 ASSIGNMENT PART 1C_CASE_2

We will now implement case two of the assignment. This case consists of uni-axial tensile loading, fol-
lowed by bi-axial tensile-unloading/compressive-loading, finished with compressive-unloading/tensile-
loading. The values of the load increments, the input parameters, and the relevant stress/strain curves
resulting from the implementation can also be seen in figure 3 below, while some remarks and conclu-
sions will be drawn on the next page.

Figure 3: STRESS I / STRAIN I curves of case 2 for Symmetric
E= 20000 YIELD_STRESS=85 POSSION=0.3
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Figure 3a: Linear Hardening H=0.5 Figure 3b: Linear Softening H=-0.5
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Figure 3c: Exponential Hardening H=0.5 Figure 3d: Exponential Softening H=-0.5



On the previous page we can see the results of the implemented Linear Hardening, Linear Softening,
Exponential Hardening, and Exponential Softening plots corresponding to the problem statement in
symmetric case 2. All have been loaded with the same increments, these can be seen near the top of
the figure along with the input parameters. Once again, just as in the previous case, it is extremely
important to note that all three of the implemented methods produced very similar results, so each of
these graphs is representative of it’s respective hardening/softening case for the Symmetric Tension-
Compression, Tension-Only, and Non-Symmetric Tension-Compression models. This is expected for
the same reason it was expected for the previous case, the damage surfaces that intersect the loading
paths are very similar within the context of the problem and will not give drastically different results.

We will now break down what is happening in the plots. Across the board, each plot behaves the
same in the elastic loading region. The plots begin by moving linearly upwards to their yield points.
Before they can be reached, bi-axial tensile-unloading/compressive-loading takes place followed by
bi-axial compressive-unloading/tensile-loading to take the graphs to their yield points and damage
surfaces. Several comments can now be made. First, it can now be noted the effect of the magnitude
of the hardening modulus on the slope of the respective hardening/softening regions. We can confirm
from the theory that the higher the magnitude of this modulus, the steeper in slope the regions of
hardening and softening will be. This is another good indicator that our models are behaving correctly.
Second, a key difference in loading path from this case and the previous case is the application of bi-
axial tensile-unloading/compressive-loading from within the elastic region after the uni-axial elastic
tension but before reapplication of bi-axial compressive-unloading/tensile-loading. We can notice that
the addition of a negative second principle stress value during the second phase of the prescribed
increments changes the slope of the elastic region. This is to be expected and the third phase follows
this new higher slope until reaching the plot’s yield points at which the models undergo their respective
forms of hardening/softening. From this point on the Linear Hardening graph increases linearly and
the Exponential Hardening graph increases in a curved fashion. A similar trend is present for both
cases of Linear and Exponential Softening. These plots are behaving exactly as expected and are
consistent with the theory and allows us to further argue the claim that the implemented models are
correct.

3.3 ASSIGNMENT PART 1C_CASE_3

We will now move on to the third and final case of part 1 of the assignment. This case consists of
bi-axial tensile-loading, followed by bi-axial tensile-unloading/compressive-loading, finished with bi-
axial compressive-unloading/tensile-loading. Once again, the load increments, along with the input
parameters and relevant stress/strain curves resulting from the implementation can be seen in figure
4 on the below and on next page, with some drawn remarks and conclusions.

Figure 4: STRESS I / STRAIN I curves of case 3 for Non-Symmetric
E= 20000 YIELD_STRESS=85 POSSION=0.3
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Figure 4a: Linear Hardening H=0.3 Figure 4b: Linear Softening H=-0.3
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Figure 4c: Exponential Hardening H=0.3 Figure 4d: Exponential Softening H=-0.3

Above we can see the implemented methods undergoing Linear Hardening, Linear Softening, Ex-
ponential Hardening, and Exponential Softening corresponding to the problem statement of Non-
Symmetric case 3. All have been loaded with the same increments, these can be seen near the top of
the figure. Once again, as is consistent with the other two previous cases, it is extremely important to
note that all three of the implemented methods produced very similar results, so each of these graphs
is representative of it’s respective hardening/softening case for the Symmetric Tension-Compression,
Tension-Only, and Non-Symmetric Tension-Compression models. This is expected for the same rea-
sons as it was for the previous two cases. The damage surfaces intersecting the loading paths are very
similar within the context of the problem and will not give drastically different results.

We will now break down what is happening in the plots. As is consistent with previous cases, each
plot behaves the same in the elastic loading region. The plots move linearly upwards to their yield
points. Once the yield points are reached, the stress of the hardening cases continues to increase with
increasing strain while the stress of the softening cases begin to decrease with increasing strain. The
Linear Hardening graph increases linearly and the Exponential Hardening graph increases in a curved
fashion as seen in the theory. A similar trend is present for both cases of Linear and Exponential



softening. Once the initial bi-axial stress increment is reached, all four plots begin bi-axial linear-
unloading/compressive-loading before taking on bi-axial compressive-unloading/tensile-loading back
up to their new hardened/softened yield stresses. We can notice that the softened materials exhibit
a lower yield stress upon reloading and the hardened materials exhibit a higher yield stress upon
reloading. This is consistent with the theory and results of the previous uni-axial case of the same
nature, and further strengthens our claim that the implemented models are correct.

4 ASSIGNMENT PART 2D

For this part of the assignment we will be implementing in the supplied MATLAB code the inte-
gration algorithm (plane strain case) for the continuum isotropic visco-damage Symmetric Tension
Compression model. To do this, I first added the eps.n, viscpr, and delta_t variables as input to the
rmap_dano1.m after defining eps_n within the loop in damage_main.m and imported the eta and
ALPHA variables using Eprop(7) and Eprop(8) respectivley. Next we define our rtrial_Nminus1 and
rtrial_NminusALPHA variables in the damage surface before implementation in case of viscid param-
eters. This code implementation can be found in APPENDIX VI, and some sample results of this
implementation comparing viscous effects vs. inviscid under identical conditions can be found below
and on the next page.

Figure 5: STRESS I / STRAIN I curves of inviscid and viscous plots
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Figure 5a: STRESS I / STRAIN I curve of inviscid Linear Hardening H=0.1
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Figure 5b: STRESS I / STRAIN I curve of viscous Linear Hardening H=0.1 η = 0.1

In the above plots, we can see a clear difference between the inviscid linear hardening plot in figure
5a, and the viscous linear hardening plot in figure 5b. We can notice on the viscous plot that at
both the initial yield point and hardened yield point, the plot exhibits a smoother and higher stressed
transition to the linear hardening region. This result can be explained by the addition of the viscous
parameter seen in the implemented codes in Appendix VI. These results confirm what is expected from
the theory and literature.



5 ASSIGNMENT PART 2E

5.1 VARIATION OF STRESS WITH VISCOUS PARAMETER

Now that we have implemented the visco-damage Symmetric Tension Compression model, we can
assess the correctness of the implementation. This will be done by varying three different variables
individually while holding everything else constant. The first variable that we will vary is the viscosity
parameter eta ( η ). Below we can see some zoomed in plots of varying η parameters.

Figure 6: STRESS I / STRAIN I peaks from variation of viscous parameter eta ( η )
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Above in Figure 6 we can see three STRESS I / STRAIN I peaks all of different magnitude
corresponding to the variation of the viscous parameter eta ( η ). We can notice in the figure that
as we increase the value of the viscous parameter, the amplitude of the peak increases accordingly.
This corresponds to the theory stating that there is a proportional relationship between stress and the
negative inverse of the viscous parameter ( η ) multiplied by some other terms. So in theory, as we
increase the value of eta, we decrease the amount of stress subtracted by the corresponding combination
of terms, therefore effectively increasing the stress. The figure confirms this predicted phenomenon
and we can begin to formulate the argument that the implemented visco-damage Symmetric Tension
Compression model is behaving correctly.



5.2 VARIATION OF STRESS WITH STRAIN RATE

Now that we have proven the variation of the viscous parameter with stress, we will now attempt to
prove the variation of strain rate with the variation of stress to further our claim that the implemented
visco-damage Symmetric Tension Compression model is behaving correctly.

Figure 7: STRESS I / STRAIN I peaks from variation of the variable TIME_INT
E= 20000 YIELD_STRESS=85 POSSION=0.3
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In the above Figure 7, we can see that the there is a relationship between the total time variable
TIME_INT and the stress. It can be observed that as we decrease the value of TIME_INT, the
amplitude of the stress/strain peaks increase. From the theory, we can correlate an inverse relationship
between strain rate and the total time interval. We know that as total time increases, the strain rate
decreases. From the theory we can also say that as the strain rate decreases, the maximum stress peaks
should decrease since the deformation process is taking much longer when compared to if the process
was happening in a short period of time. So, combining these statements allows us to say that as the
value of the variable for total time TIME_INT increases, we should see lower stress peaks on the graph.
And as we can see in figure 6 above, our model conforms to these postulations by decreasing stress
peaks with decreasing strain rate caused my an increase in total time interval. This is an excellent
indicator that the implemented model is correct.



5.3 VARIATION OF STRESS WITH ALPHA

We will now take a look at how variations in the parameter ALPHA change the stress/strain rela-
tionship. We know that the parameter ALPHA represents the numerical method used to obtain the
solution. Below in Figure 8 we can see the effects on the STRESS I / STRAIN I curve of the variation
of numerical methods due to changing the value of ALPHA.

Figure 8: STRESS I / STRAIN I peaks from variation of ALPHA parameter
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As we can notice from the figure above, if we increase the value of ALPHA, the maximum stress
of the plot decreases. In the case when ALPHA equals 1, the peak is the lowest of the group. On the
other hand, when ALPHA=0, the peak is the highest. It is safe to assume that the exact solution will
fall somewhere between these upper and lower bounds created by ALPHA=0 and ALPHA=1. The
differences between the results of changing the parameter ALPHA stem from the different solution
method that each ALPHA value represents. All of these plots have some errors as none of these
solutions are perfect. But it is safe to assume that the Crank-Nicholson method corresponding to
ALPHA=0.5 is the most accurate of the group due to its unconditional stability and capacity to
handle second order equations with an error of third order magnitude.



5.4 VARIATION OF C TANGENT OPERATOR WITH ALPHA

We will now take a look at the effects of varying ALPHA values on the time evolution of the C1,1

tangent operator component. The results are displayed below in figure 9.

Figure 9: C Tangent operator against time with varying ALPHA values
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Above in figure 9, we can see 5 different plots corresponding to different values of ALPHA. A total
time of 1000 was used to highlight some instabilities that may surface. The first thing we can notice is
that we have a high degree of instability with time for ALPHA values of 0 and 0.25. This is consistent
with the theory of θ-methods stating that values of θ < 0.5 are explicit methods and will produce
instability because they are only conditionally stable. It is also worth noting that there is a general
downward trend in all plots. This is consistent with the theory because as damage increases with time,
the C tangent operator is related to C by the factor (1-d). So as d increases with time, we expect the
C tangent operator to decrease. Figure 9 confirms this trend.



5.5 VARIATION OF C ALGORITHMIC OPERATOR WITH ALPHA

We will now show the variation of the implemented C algorithmic operator with respect to time for
varying ALPHA values. These plots can be found in the figure below.

Figure 10: C Algorithmic operator against time with varying ALPHA values
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Above in Figure 10, similarly to the previous section we can see 5 plots of the C algorithmic
operator versus time corresponding to differing ALPHA values, however this time with a smaller total
time of 100s. We will first note the general downward trend of all the plots. Similarly to the C tangent
operator, the C algorithmic operator is also related to C by the factor (1-d), so as d increases with
time, we expect the C algorithmic operator to also decrease. We will not expect them to be the same
though due to the addition of another term during the formulation of the C algorithmic operator.
However, the exception to this statement is the plot of ALPHA=0. In this case, ALPHA=0 causes the
entire second term to vanish leaving us with the exact results of the C tangent operator. These plots
are consistent with the theory and bolster the correctness of the implementation. The code for both
the C algorithmic and C tangent implementations can be found in Appendix XII.



6 APPENDIX

APPENDIX I: Revision of Symmetric Damage Model (dibujar_criterio_dano1.m)

APPENDIX II: Implementation of Tension Only Damage Model (dibujar_criterio_dano1.m)



APPENDIX III: Non-Symmetric Tension Compression Damage Model (dibujar_criterio_dano1.m)

APPENDIX IV: Strain Norm Calculations For All Models (Modelos_de_dano1.m)



APPENDIX V: Code for Linear/Exponential and Hard/Soft cases (rmap_dano1.m)

APPENDIX VI: Implementation for isotropic visco-damage (rmap_dano1.m)



APPENDIX VII: Implementation for Ctangent and Calgorithmic (rmap_dano1.m)
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