Computational Solid Mechanics

Homeworks 1b \& 1c
Part 3: Non Linear

Submitted By: Kiran Kolhe

Homework 1b :

A two-dimensional solid is contained in the $\{X 1, X 2\}$ coordinate plane relative to an orthonormal cartesian basis $\left\{E_{I}\right\}, I=1,2,3$. The solid is initially square in shape and is enclosed in a rigid truss frame hinged at the corners A, B, C, and D of the square, so that the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA cannot change their length. The deformation is presumed homogeneous and is parametrized by the angle α rotated by the sides DA and BC.

Solution:

1) Write the deformation mapping in terms of α.

The deformation map is given by, $\mathrm{x}=\varphi(\mathrm{X}, \mathrm{t})=\varphi\left[\begin{array}{c}X_{1}+X_{2} \sin \alpha \\ X_{2} \cos \alpha\end{array}\right]$

2) Compute the deformation gradient F and the right Cauchy-Green deformation tensor C.

So the value of deformation gradient becomes,

$$
F=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial X_{1}} & \frac{\partial x_{1}}{\partial X_{2}} \\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & \sin \alpha \\
0 & \cos \alpha
\end{array}\right]
$$

The Right Cauchy Green deformation tensor is given by, $C=F^{T} * F$

$$
C=\left[\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & \sin ^{2}(\alpha)+\cos ^{2}(\alpha)
\end{array}\right]
$$

3) Compute and plot the variation in volume of the solid as a function of α.

The variation of volume is given by the relation $\mathrm{dv}=\mathrm{JdV}$.
The Jacobian ' J ' is defined as, $\mathrm{J}=\operatorname{det} \mathrm{F}$.
$\therefore J=\cos \alpha$
The deformation is homogeneous and the variation can be given by

$$
\therefore \frac{d v-d V}{d V}=\frac{d v}{d V}-1=J-1=\cos \alpha-1
$$

Substituting in the volume relation,

$$
\frac{d v}{d V}=\cos \alpha-1
$$

The plot of this relation is shown below.

4) At what point do the deformations cease to be admissible? Interpret geometrically.

For the deformation to exist J > 0 always. Hence, the deformations cease to be admissible when $\mathrm{J}<0$.
We know that, $J=\cos \alpha$
$\therefore \cos \alpha<0$ should be maintained.
$\therefore \alpha>90^{\circ}$ is the condition for the deformation to be not admissible.
5) Compute the change in length of the diagonals $A C$ and $B D$, and the change in the angle β subtended by them. Interpret geometrically. Plot the change of lengths and the change of angle β as a function of α.
The length variation of diagonal $A C$ is given by $\lambda_{A C}=\frac{A C_{\text {final }}}{A C_{\text {initial }}}$.
But, we also know that, $\lambda_{A C}^{2}=N_{A C}{ }^{T} * C * N_{A C}$

$$
\begin{gathered}
\therefore \lambda^{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\lambda_{A C}=\sqrt{1+\sin \alpha} \\
A C_{\text {final }}=(\sqrt{1+\sin \alpha}) A C_{\text {initial }}
\end{gathered}
$$

Also, for diagonal BD $\quad \lambda_{B D}=\frac{B D_{\text {final }}}{B D_{\text {initial }}}$

$$
\begin{gathered}
\lambda_{B D}^{2}=N_{B D}{ }^{T} * C * N_{B D} \\
\therefore \lambda^{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
\lambda_{B D}=\sqrt{1-\sin \alpha} \\
B D_{\text {final }}=(\sqrt{1-\sin \alpha}) B D_{\text {initial }}
\end{gathered}
$$

The final lengths after deformation of the diagonals AC \& BD vary as $1+\sin \alpha \& 1-\sin \alpha$ respectively times the initial lengths before deformation.

The change in β which is the angle between the diagonals can be interpreted as,

$$
\cos \beta=\frac{N_{A C} *(1+2 E) * N_{B D}}{\sqrt{1+2 N_{A C} * E * N_{A C}} * \sqrt{1+2 N_{B D} * E * N_{B D}}}
$$

E is the Green Lagrange strain tensor given by, $E=\frac{1}{2}(C-1)$

$$
\begin{aligned}
& \therefore E= \frac{1}{2}\left\{\left[\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \\
& \therefore E=\frac{1}{2}\left[\begin{array}{cc}
0 & \sin \alpha \\
\sin \alpha & 0
\end{array}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \sqrt{1+2 N_{A C} * E * N_{A C}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+2 * \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\sqrt{1+\sin \alpha} \\
& \sqrt{1+2 N_{B D} * E * N_{B D}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+2 * \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \sin \alpha \\
\sin \alpha & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\sqrt{1-\sin \alpha}
\end{aligned}
$$

So,

$$
\begin{gathered}
\cos \beta=\frac{\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right] *\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{2} * 2\left[\begin{array}{cc}
0 & \sin \alpha \\
\sin \alpha & 0
\end{array}\right]\right) * \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}{\sqrt{1+\sin \alpha} * \sqrt{1-\sin \alpha}} \\
\therefore \cos \beta=\frac{0}{1-\sin \alpha}=0 \\
\therefore \beta=90^{\circ}
\end{gathered}
$$

So we observe that the angle does not change even after deformation.

Variation of Diagonal AC

Variation of Diagonal BD

Homework 1c :

Consider a cylindrical solid referred to an orthonormal Cartesian reference frame $\{X 1$, $X 2, X 3\}$, whose axis aligned with the $X 3$ direction. Its normal cross section occupies a region Ω in the $\{X 1, X 2\}$ plane of boundary $\partial \Omega$. An anti-plane shear deformation of the solid can be defined as one for which the deformation mapping is of the form:

$$
\varphi 1=X^{1}, \varphi 2=X^{2}, \varphi 3=X^{3}+w\left(X^{1}, X^{2}\right)
$$

The spatial and material reference frames are taken to coincide, and the function w is defined over Ω.

Solution:

1) Sketch the deformation of the region Ω.

a) Compute the deformation gradient field F, the right Cauchy-Green deformation tensor C, and the Jacobian J of the deformation field in terms of w.

The deformation map is given by, $\mathrm{x}=\varphi(\mathrm{X})=\varphi\left[\begin{array}{c}X^{1} \\ X^{2} \\ X^{3}+w\left(X^{1}, X^{2}\right)\end{array}\right]$
The value of deformation gradient becomes,

$$
F=\left[\begin{array}{lll}
\frac{\partial x_{1}}{\partial X_{1}} & \frac{\partial x_{1}}{\partial X_{2}} & \frac{\partial x_{1}}{\partial X_{3}} \\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}} & \frac{\partial x_{2}}{\partial X_{2}} \\
\frac{\partial x_{3}}{\partial X_{1}} & \frac{\partial x_{3}}{\partial X_{2}} & \frac{\partial x_{3}}{\partial X_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 1
\end{array}\right]
$$

The Right Cauchy Green deformation tensor is given by, $C=F^{T} * F$

$$
C=\left[\begin{array}{ccc}
1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2} & \frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & 1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2} & \frac{\partial w}{\partial X_{2}} \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 1
\end{array}\right]
$$

The Jacobian is given by $\mathrm{J}=\operatorname{det}(\mathrm{F})$,

$$
\begin{gathered}
\therefore J=\left(1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}\right)\left\{\left(1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}\right)-\left(\frac{\partial w}{\partial X_{2}}\right)^{2}\right\}-\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}}\left\{\left(\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}}\right)-\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}}\right\} \\
+\frac{\partial w}{\partial X_{1}}\left\{\left(\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}}\right) \frac{\partial w}{\partial X_{2}}-\left(1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}\right) \frac{\partial w}{\partial X_{1}}\right\}
\end{gathered}
$$

$$
\therefore J=1
$$

b) Does the solid change volume during the deformation?

As $\mathrm{J}=1$, from the relation $\mathrm{dv}=\mathrm{J} d V$ we know that the initial and final volume are the same. Hence, the volume does not change during the deformation.

c) Are the local impenetrability conditions satisfied?

As $\mathrm{J}>0$, the impenetrability conditions are satisfied.

2) Consider the unit vectors:

$$
\boldsymbol{A}=\frac{\frac{\partial w}{\partial X_{1}} \boldsymbol{E}_{1}+\frac{\partial w}{\partial X_{2}} \boldsymbol{E}_{2}}{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}} \quad \text { and } \quad \boldsymbol{B}=\frac{-\frac{\partial w}{\partial X_{1}} \boldsymbol{E}_{\mathbf{1}}+\frac{\partial w}{\partial X_{2}} \boldsymbol{E}_{\mathbf{2}}}{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}
$$

where $\{E I\}, I=1,2,3$ are the (orthonormal) material basis vectors.
a) How are A and B related to the level contours of $w(X 1, X 2)$?

The gradient of level contour $w(X 1, X 2)$ is given by,

$$
\nabla w=\frac{\partial w}{\partial X_{1}} \boldsymbol{E}_{\mathbf{1}}+\frac{\partial w}{\partial X_{2}} \boldsymbol{E}_{\mathbf{2}}
$$

Now, if we calculate the unit vector for w, it becomes,

$$
\widehat{w}=\frac{\frac{\partial w}{\partial X_{1}} \boldsymbol{E}_{\mathbf{1}}+\frac{\partial w}{\partial X_{2}} \boldsymbol{E}_{\mathbf{2}}}{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}
$$

which is the same as the vector A. Hence, we can say that \mathbf{A} is the unit normal vector to level contours of $w(X 1, X 2)$, and since \mathbf{A} and \mathbf{B} are perpendicular to each other, we can also say that \mathbf{B} is unit tangent vector of $w(X 1, X 2)$.
b) Compute (in terms of w) the change in length (measured by the corresponding stretch ratios) of \boldsymbol{A} and B, as well as the change in the angle subtended by A and B.

The change in length can be calculated using the stretch relation given by,

$$
\begin{aligned}
& \lambda_{A}^{2}=N_{A}{ }^{T} * C * N_{A}=1+2 N_{A}{ }^{T} E N_{A} \\
& \lambda_{A}^{2}=\frac{\frac{\partial w}{\partial X_{1}} \boldsymbol{E}_{1}+\frac{\partial w}{\partial X_{2}} \boldsymbol{E}_{2}}{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}\left[\begin{array}{ccc}
1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2} & \frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & 1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2} & \frac{\partial w}{\partial X_{2}} \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 1
\end{array}\right] \sqrt{\frac{\partial w}{\partial X_{1}} \boldsymbol{E}_{\mathbf{1}}+\frac{\partial w}{\partial X_{2}} \boldsymbol{E}_{2}} \begin{array}{l}
\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}
\end{array} \\
& \therefore \lambda_{A}^{2}=\frac{1}{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}\left\{\left[\begin{array}{ccc}
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 0
\end{array}\right]\left[\begin{array}{ccc}
1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2} & \frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & 1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2} & \frac{\partial w}{\partial X_{2}} \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 1
\end{array}\right]\left[\begin{array}{c}
\frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{2}} \\
1
\end{array}\right]\right\}
\end{aligned}
$$

$$
\therefore \lambda_{A}=\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}
$$

Similarly, the stretch ratio for vector \mathbf{B} can be calculated as above, and it is,

$$
\begin{gathered}
\lambda_{B}^{2}=\frac{1}{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}\left\{\left[\begin{array}{lll}
-\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 0
\end{array}\right]\left[\begin{array}{ccc}
1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2} & \frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & 1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2} & \frac{\partial w}{\partial X_{2}} \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 1
\end{array}\right]\left[\begin{array}{c}
-\frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{2}} \\
1
\end{array}\right]\right\} \\
\therefore \lambda_{B}=1
\end{gathered}
$$

The change in angle subtended by these 2 vectors can be calculated as,

$$
\begin{aligned}
& \cos \theta= \frac{N_{A}{ }^{T} *(1+2 \boldsymbol{E}) N_{B}}{\sqrt{1+2{N_{A}}^{T} E N_{A}} \sqrt{1+2{N_{B}{ }^{T} E N_{B}}}} \\
& \therefore \cos \theta=\frac{N_{A}{ }^{T} *(C) N_{B}}{\lambda_{A}^{2} * \lambda_{B}^{2}}
\end{aligned}
$$

$$
\therefore \cos \theta=\frac{\sqrt{\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}{\left.\left.\frac{1}{\sqrt{\frac{\partial w}{\partial X_{1}}}} \begin{array}{cc}
\frac{\partial w}{\partial X_{2}} & 0
\end{array}\right]\left[\begin{array}{ccc}
1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2} & \frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & 1+\left(\frac{\partial w}{\partial X_{2}}\right)^{2} & \frac{\partial w}{\partial X_{2}} \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 1
\end{array}\right]\left[\begin{array}{c}
-\frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{2}} \\
1
\end{array}\right]\right\}}\left(\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}\right) *(1)
$$

$$
\therefore \cos \theta=\frac{\mathbf{0}}{\left(\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}\right)}
$$

$$
\therefore \theta=\frac{\pi}{2}
$$

c) Interpret the results.

- Vector \mathbf{A} is the unit normal vector and vector \mathbf{B} is the tangent vector to the level contours of $w(X 1, X 2)$.
- Vector \mathbf{A} undergoes a stretch of $\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}$ while vector \mathbf{B} does not undergo any stretch.
- Both the vectors remain orthonormal only before and after deformation.

3) Using the Piola transformation, compute (in terms of w) the change in area of, and in the normal to, an infinitesimal material area contained in the $\{X 1, X 2\}$ plane.

Using Piola transform, we have the relation,

$$
d \boldsymbol{a}=J \boldsymbol{F}^{-T} d \boldsymbol{A} \quad \rightarrow \quad d a \boldsymbol{n}=J \boldsymbol{F}^{-T} d A \boldsymbol{N}
$$

Where \mathbf{n} and \mathbf{N} are the unit vector to the area $d a$ and $d A$ Here, we know that,
$J=1$ and $\boldsymbol{F}^{-T}=\left[\begin{array}{ccc}1 & 0 & -\frac{\partial w}{\partial X_{1}} \\ 0 & 1 & -\frac{\partial w}{\partial X_{2}} \\ 0 & 0 & 1\end{array}\right]$ and $\mathbf{N}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Thus, the change in area can be written as,

$$
\begin{gathered}
d a=1 *\left[\begin{array}{ccc}
1 & 0 & -\frac{\partial w}{\partial X_{1}} \\
0 & 1 & -\frac{\partial w}{\partial X_{2}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] d A \\
\therefore d a=\left[\begin{array}{c}
-\frac{\partial w}{\partial X_{1}} \\
-\frac{\partial w}{\partial X_{2}} \\
1
\end{array}\right] d A
\end{gathered}
$$

5) Derive an integral expression for the deformed area of the domain Ω.

Integrating the relation dan $=J \boldsymbol{F}^{-T} d A N$, we get

$$
\int_{\Omega} d a \boldsymbol{n}=\int_{\Omega} J \boldsymbol{F}^{-T} \boldsymbol{N} d A d \Omega
$$

Where $\boldsymbol{n}=\frac{\left[\begin{array}{c}-\frac{\partial w}{\partial X_{1}} \\ -\frac{\partial w}{\partial X_{2}}\end{array}\right]}{\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}}$

$$
\begin{gathered}
\therefore \int_{\Omega} \frac{\left[\begin{array}{c}
-\frac{\partial w}{\partial X_{1}} \\
-\frac{\partial w}{\partial X_{2}} \\
1
\end{array}\right]}{\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}}} d a=\int_{\Omega}\left[\begin{array}{c}
-\frac{\partial w}{\partial X_{1}} \\
-\frac{\partial w}{\partial X_{2}} \\
1
\end{array}\right] d A d \Omega \\
\therefore d a=\sqrt{1+\left(\frac{\partial w}{\partial X_{1}}\right)^{2}+\left(\frac{\partial w}{\partial X_{2}}\right)^{2}} d \Omega
\end{gathered}
$$

6) Let the boundary $\partial \Omega$ of Ω be defined parametrically by the equations

$$
X_{1}=X_{1}(S), X_{2}=X_{2}(S)
$$

where $0 \leq S \leq L$ is the arc-length measured along $\partial \Omega$. Note that $E 1 X 1(S) / d S+$ $E 2 X 2(S) / d S$ is the unit vector tangent to $\partial \Omega$. Derive an integral expression for the perimeter of the deformed boundary $\varphi(\partial \Omega)$.

We know that, length of the curve is given by ,

$$
l=\int d s=\int \lambda d S=\int \sqrt{1+2 \mathrm{~T} E \mathrm{~T}}
$$

Where, $\quad T=\left(\frac{\mathrm{X}_{1}(\mathrm{~S})}{d S}, \frac{\mathrm{X}_{2}(\mathrm{~S})}{d S}, 0\right)$

$$
\begin{aligned}
& l=\int_{\Omega} \sqrt{1+2 T \cdot E T} d S= \sqrt{1+2\left(\frac{\mathrm{X}_{1}(\mathrm{~S})}{d S}, \frac{\mathrm{X}_{2}(\mathrm{~S})}{d S}, 0\right) * \frac{1}{2}\left[\begin{array}{ccc}
\left(\frac{\partial w}{\partial X_{1}}\right)^{2} & \frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \frac{\partial w}{\partial X_{1}} \\
\frac{\partial w}{\partial X_{1}} \frac{\partial w}{\partial X_{2}} & \left(\frac{\partial w}{\partial X_{2}}\right)^{2} & \frac{\partial w}{\partial X_{2}} \\
\frac{\partial w}{\partial X_{1}} & \frac{\partial w}{\partial X_{2}} & 0
\end{array}\right]\left(\begin{array}{c}
\frac{\mathrm{X}_{1}(\mathrm{~S})}{d S} \\
\frac{\mathrm{X}_{2}(\mathrm{~S})}{d S} \\
0
\end{array}\right\}} \\
& \therefore l=\int_{\Omega} \sqrt{\left(\frac{\mathrm{X}_{1}(\mathrm{~S})}{d S} w_{1}+\frac{\mathrm{X}_{2}(\mathrm{~S})}{d S} w_{, 2}\right)^{2}+1} d S
\end{aligned}
$$

