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+Homework 1b:

A ® (D) ® (C)

o< P

O (A) @ (B)
A two-dimensional solid is contained in the {X1, X2} coordinate plane relative to an
orthonormal cartesian basis {E;}, I = 1, 2, 3. The solid is initially square in shape and is
enclosed in a rigid truss frame hinged at the corners A, B, C, and D of the square, so that
the sides AB, BC, CD and DA cannot change their length. The deformation is presumed
homogeneous and is parametrized by the angle a rotated by the sides DA and BC.

Solution:

1) Write the deformation mapping in terms of a.
X1+ X, sin al

The deformation map is given by, x=¢ (X, t) = @ [
X, co8 a

2) Compute the deformation gradient F and the right Cauchy-Green deformation
tensor C.

So the value of deformation gradient becomes,

dx; 0Oxq

P 0X; 0Xp|_ [1 sina
dx, 0x, 0 cosa
X, 0X,

The Right Cauchy Green deformation tensor is given by, C = FT x F

1 sina

“sina  sin®(a) + cos®(a)
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3) Compute and plot the variation in volume of the solid as a function of a.

The variation of volume is given by the relation dv =] dV.
The Jacobian ‘]’ is defined as, ] = det F.
~J]=cosa

The deformation is homogeneous and the variation can be given by

.-.T_W—lzj—lzcosa—l
Substituting in the volume relation,

dv

v cosa—1
The plot of this relation is shown below.

Variation of volume as a function of alpha
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Variation of 2_:; from alpha -2m to 2m

4) At what point do the deformations cease to be admissible? Interpret
geometrically.

when | < 0.

For the deformation to exist ] > 0 always. Hence, the deformations cease to be admissible
We know that, ] = cos a

s cos a < 0 should be maintained.

~ a > 90°is the condition for the deformation to be not admissible.

5) Compute the change in length of the diagonals AC and BD, and the change in the

angle 8 subtended by them. Interpret geometrically. Plot the change of lengths and
the change of angle f8 as a function of a.

. . L ACfinal

The length variation of diagonal AC is givenby Ay, = ————

ACinitial
But, we also know that, A3, = Ny" * C * Ny¢

p—d
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2 1[1 1][ 1 sinalllll
V2 sina 1 1v211
Aac = V1 +sina
ACring = (V1 + sina) ACiniriar

BD;
Also, for diagonal BD Agp = BDfﬂ
initial

/11230 = NBDT * C * Ngp

1 1 sina 11 [-1
A2 =—[-1 1] _ —
V2 sina 1 V211
Agp =V1 —sina
BDfinay = (V1 =sina) BDijria

The final lengths after deformation of the diagonals AC & BD vary as 1 + sina & 1 — sina
respectively times the initial lengths before deformation.

The change in  which is the angle between the diagonals can be interpreted as,

Nyc * (1 + 2E) = Ngp
V14 2Nye *E * Ny¢ * /1 + 2Npp * E * Npp

cos [ =

E is the Green Lagrange strain tensor given by, E = %(C -1)

e L)

1[ 0 sinal
S F = —
2]sina 0
Now,
1 0 1 1 sina] 1 [1
\/1+2NAC*E*NAC=[ l+2*—[1 1][ l—[ l=\/1+sina
0 1 V2 sina 1 1v2l1
1 0 1 1 sina] 1 [-1
\/1+2NBD*E*NBD=l l+2*_[—1 1][ l_[ lz Vl_Sina’
0 1 V2 sina 1 V2l 1
So,

ER. (ll Ol+1 2[0 sinaD il_ll
V2 0 1] 2 “lsina 0 V2| 1

o f = V1+sina* V1 —sina
s cos = L: 0
1—-sina
“f = 90°

So we observe that the angle does not change even after deformation.
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Change in length of Diagonal AC

05

Variation of Diagonal AC

—

Change in length of Diagonal BD

0.5

Variation of Diagonal BD

p—d
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+Homework 1c:

Consider a cylindrical solid referred to an orthonormal Cartesian reference frame {X1,
X2, X3}, whose axis aligned with the X3 direction. Its normal cross section occupies a
region () in the {X1, X2} plane of boundary dQ. An anti-plane shear deformation of the
solid can be defined as one for which the deformation mapping is of the form:

@l =X, @2 =X2 @3 =X3+w (X1, X2).

The spatial and material reference frames are taken to coincide, and the function w is
defined over Q.

Solution:

1) Sketch the deformation of the region Q.

a) Compute the deformation gradient field F, the right Cauchy-Green deformation
tensor C, and the Jacobian ] of the deformation field in terms of w.

Xl
XZ
X3 + w(X!, X?)

The deformation map is given by, x = ¢ (X) = @

The value of deformation gradient becomes,

rdx; O0x;  0xq)
0X, 0X, 0X; 1 0
| 0x; 0x;  Ox 0 1
F=lax, ax, ax,|” |ow ow
0x3 0x3 0x3 0X1 0X;

| 9x, 09X, 0X

The Right Cauchy Green deformation tensor is given by, C = FT x F

'1+ <6W>2 ow adw ow ]
0X, 0X,; 0X, 0X,
C= ow Jdw (6W>2 ow
— —_— + —_— —_—
0X; 0X, 20X, 0X,
ow ow
0X, 0X,
The Jacobian is given by | = det(F),
ow\> 2 ow ow ow ow
11+()1()()— (% 7%,) ~ ax. 3%,
0X, 0X, 0X, axl 0X, 0X, 0X,
N ow <6W aw 1 ow
0X; |(\dX, axz axz axz 0X,

~] =

b) Does the solid change volume during the deformation?

As] =1, from the relation dv =] dV we know that the initial and final volume are the

same. Hence, the volume does not change during the deformation.

(

\

5

]

J
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c) Are the local impenetrability conditions satisfied?

As ] > 0, the impenetrability conditions are satisfied.

2) Consider the unit vectors:

2 2 2 2
j(%) +<§—z> j(%) <—

where {EI},I = 1, 2, 3 are the (orthonormal) material basis vectors.

a) How are 4 and B related to the level contours of w (X1, X2)?

The gradient of level contour w (X1, X2) is given by,

Vw = ow E; + ow E
W ax, 1 ax, 2
Now, if we calculate the unit vector for w, it becomes,
ow ow
ox, E1* 5y, E2

w =

@

)+ ()

which is the same as the vector A. Hence, we can say that A is the unit normal vector to
level contours of w (X1, X2), and since A and B are perpendicular to each other, we can
also say that B is unit tangent vector of w (X1, X2).

b) Compute (in terms of w) the change in length (measured by the corresponding
stretch ratios) of 4 and B, as well as the change in the angle subtended by 4 and B.

The change in length can be calculated using the stretch relation given by,
A2 =N"%C*Ny=1+2N,"EN,

'1+ (BW)Z ow dw ow ]
ow ow 0X, 0X;, 0X, 0X1| ow ow
22 = [24 E1+3X E ow ow . (GW)Z ow | 0X; E1+0X E>
2 =
X, X, aw w 1 X, X,
0X, 0X, |
( 14 <6W) ow ow ow | 5
oX, 0X, 0X, 0X, %
A2 = ! <[6W ow ] ow Jow N <6w>2 ow awl
4 2 2 aXl aXZ aXl aXZ aXZ aXZ A~
(a—w) + (a—w) ow ow X,
0X; X, - - 1 1
\ 0X, 0X, |
( )|
L ° J
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1= 1+(8w>2+(6w>2
AT X, X,

Similarly, the stretch ratio for vector B can be calculated as above, and it is,

( '1+ ((?w)z ow Jdw ow | 5 )
92X, oX, 0X, 0X, _%
’ 1 ow Jdw ow ow ow\>  ow L
2% = ! ow oWy <_> YN ow |}
2 2 aXl aXZ aXl aXZ aXZ aXZ A<
(a_w) + (a_w) 0 0 0X;
0X, X, ow w 1 1
\ L 0Xy 0X, | J
o /13 = 1
The change in angle subtended by these 2 vectors can be calculated as,
N, + (14 2E)Ng
cosf =
J1+2N,"EN,/1 + 2N5"ENg
. cosd N,y" % (C)Np
~cosf = 22
[ w2 ow Jdw ow |
1+ (axl) X, X, X, _gTW
1 (G 2w o]| owaw g, (qwyt awll gy
2 2 aXl aXZ aXl aXZ aXZ aXZ W
(O_W) + (O_W) aw ow 2
~cosf = = L 2 -
ow\? w2
(]”(a_xl) +(3x5) )*“)
0
s cosf =

w2 w2
<J1+(a—x1) +(7x;) )
. 6 — T[
“0=3
c) Interpret the results.

e Vector A is the unit normal vector and vector B is the tangent vector to the level

contours of w (X1, X2).

2 2
Vector A undergoes a stretch of \/ 1+ (;TW) + (STW) while vector B does not
1 2
undergo any stretch.

Both the vectors remain orthonormal only before and after deformation.

—
| —
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3) Using the Piola transformation, compute (in terms of w) the change in area of,
and in the normal to, an infinitesimal material area contained in the {X1, X2} plane.

Using Piola transform, we have the relation,

da=]JFTdA - dan =]JF TdAN
Where n and N are the unit vector to the area da and dA
Here, we know that,

ow
J=1and FT = 0 1 -—2wlandN=1|0
39X, 1
0 0 1
Thus, the change in area can be written as,
Lo ow
dX, ([0
da=1=x 0 ow ||0]|dA
_a_xz 1
0 0 1
ow
0X,
~da=| owl|dA
_a_xz

5) Derive an integral expression for the deformed area of the domain Q.
Integrating the relation dan = JF"TdAN, we get

f dan = J JFNdA dQ
n n

ow
_6_X1
ow
X3
1

2 2
[y

Wheren =

w

90X,

ow ow

X, _O_Xl

1 da = ow |da da
N 2 2 2l 7Y

ow ow X,

J 1+ (a_xl) t (a_xz) 1
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6) Let the boundary 9Q of Q be defined parametrically by the equations

X1=X1(5), X2=X2(5)

where 0 < S < L is the arc-length measured along 0Q. Note that E1X1(S)/dS +
E2X2(S)/dS is the unit vector tangent to dQ. Derive an integral expression for the

perimeter of the deformed boundary ¢(9Q).

We know that, length of the curve is given by,

l=jds=.[ld5=.[\/1+2TET

_ (X1(8) X2(5)
Where, T‘( ds '~ ds ’O)

[ <8w>2 ow dw ow]

0X; 0X; 0X, 0X;

X1(S) X,(S 1 2

lzf 1+ 2T - ETdS = 1+2< 1()’ 2()’0)*_ ow ow (0W> ow
0 ds = dS 2(0x, 0x, \ox,) 09X,

ow ow 0
\ | ax, X, |

o X1(S) X (S) )2
..l—fn\/< 7S wi+ a5 V2 +1 dS

0
as
X(S)
as




