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 Details: 

This assignment aims at the numerical integration of constitutive damage models using 

MATLAB. Three types of damage models have been proposed in this assignment, namely, 

the Symmetric model, Tension-only model and the Non-symmetric model. For the 

information, the Symmetric model has already been implemented and after studying the 

code and observing the results of this model we have been asked to implement tasks for 

the Tension-only and Non-symmetric damage models. 

In the first part, we have to modify the MATLAB code, considering the rate independence 

criteria (inviscid case) for the Tension-only and Non-symmetric damage models. We have 

to implement linear and exponential hardening as well as softening for each of these two 

proposed models. And lastly, we have to run this developed code for three different 

loading cases obtaining the stress-strain curves for each of them. 

In the second part, the scope has been extended to study the impact of rate dependency 

(viscid case) on the symmetric model. We have been asked to study the effects for 

different values of viscosity parameter, strain rate and time-integration parameter on the 

stress-strain curve.  

For the loading paths, the constants alpha, beta and gamma have been chosen 

conveniently so as to have a good visualization of the results. 

 Part 1 – Rate Independent Models  

 Implementation of Damage Surfaces: 

In order to implement the Tension-only and Non-symmetric damage models for the rate 

independency criteria, we have to make changes in some files. Initially, we have to modify 

the code ‘modelos_de_dano1.m’ which is responsible for defining the damage surface for 

the 3 types of damage models. In these equations, the rtrial function represents ���� 

which is the norm at time step ‘n+1’.  

Then, we have to modify the code ‘dibujar_criterio_dano1.m’ for the Tension-only and 

Non-symmetric damage models, which is responsible for plotting the damage surface. In 

this code, a parameter ‘radio’ is used which stands for the radial distance of the points on 

the curve from the origin. The damage surface is plotted in the stress space with x-

coordinate as ��  and y-coordinate as ��.  

After this, for including the Hardening/Softening law we have to modify the 

‘rmap_dano1.m’ file by referring to the formulas given in the slides. The parameter ‘H’, 

which is the hardening modulus, has a value equal to hardening coefficient for linear case 

and should be calculated for exponential case.  

Finally, we have to modify the ‘damage_main.m’ file which gives the evolution of the 

stress field. After coding these files, the ‘main.m’ file is run and the following results in the 

report have been recorded. 
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The damage surfaces for the Tension-only and Non-symmetric damage models are shown 

below in Fig.1 and Fig.2. 

                          
Fig.1 Damage surface for Tension-only model                       Fig.2 Damage surface for Non-symmetric model 

The elastic region in the Tension-only model shows asymptotic behaviour in the second 

and fourth quadrant. The Non-symmetric model has a bigger elastic domain in the third 

quadrant than the first quadrant because damage takes place at higher compressive 

stresses in the third domain as compared to the tensile stresses in first domain.  

 Effect of Hardening Modulus: 

The hardening/softening law was implemented for in order to study the linear and 

exponential response for the models. The results were obtained by plotting the hardening 

variable ‘q’ against internal variable ‘r’ for H=0.5.  

In unloading or elastic loading, hardening/softening is not applied to the material hence, 

the internal variable and hardening variable in consequent time steps are equal. 

Hardening/softening thus holds true in case of loading only.  

 
Fig.3 q vs r plot for comparison of linear and exponential hardening 

From Fig.3, it can be concluded that the time response in exponential case is slower than 

that in the linear case.  

 Implementation of Damage models for different cases:  

The developed codes have been used to assess the correctness of the implementation by 

applying them to the below 3 cases of loading. 

 Case 1: 

Young’s Modulus = 20000,   Yield Stress = 200,   Poisson ratio = 0.3,   H = ±0.1 

Load path:                                       ∆���
(�)

= 500       ∆���
(�)

= 0 

 ∆���
(�)

= −550       ∆���
(�)

= 0   

 ∆���
(�)

= 700       ∆���
(�)

= 0   
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 Tension-only Damage Model- 

 
Fig.4a Damage Surface (Hardening) for Tension-only model 

 
Fig.4b Damage Surface (Softening) for Tension-only model 

Fig.4a and Fig.4b represent the damage surfaces for hardening and softening 

respectively for the uniaxial case of the Tension-only damage model. The dotted blue lines 

indicate the evolution of the damage surface which expands outwards in case of 

hardening and reduces inwards in case of softening. The first step is the tensile loading 

which is then followed by second step of tensile unloading and finally the third step 

continues after this which is again, tensile loading. As seen in Fig.4a the damage surface 

is crossed in the first step and the material undergoes hardening as it crosses the elastic 

region. 
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Fig.5a Stress-Strain Curve (Hardening) for Tension-only model 

 
Fig.5b Stress-Strain Curve (Softening) for Tension-only model 

Fig.5a and Fig.5b represent the stress-strain curve for hardening (H=0.1) and softening 

(H= -0.1) respectively for the uniaxial case of the Tension-only damage model. In Fig.5a 

and Fig.5b the change in slope of the black line indicates the point where the damage 

surface is crossed in the first step. The only difference in hardening and softening curves 

is that while crossing the damage surface, the slope increases in hardening while it 

decreases in softening. 

 
Fig.6 Internal variable evolution for Tension-only model 

And Fig.6 represents the evolution of internal variable with time for this model. The first 

step is indicated by black line, which is followed by the second step represented by the 

blue line, and the green line depicts the third stage of loading. The evolution of internal 

variable in the second step and the third step takes place with the same slope as in both 

Load Path 1   

Load Path 2 

Load Path 3   

Load Path 1   

Load Path 2 

Load Path 3   

Load Path 1   

Load Path 2 

Load Path 3   
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of these steps the damage surface is not crossed and hence, the elastic regime is 

maintained. 

 Non-symmetric Damage Model- 
The same results have been obtained for Non-symmetric model.  

 

 
Fig.7a Damage Surface (Hardening) for Non-symmetric model 

 

 
Fig.7b Damage Surface (Softening) for Non-symmetric model 

Fig.7a and Fig.7b represent the damage surfaces for hardening (H=0.1) and softening 

(H= -0.1) case of the Non-symmetric model. The behavior is observed to be similar to the 

Tension-only model.  

 

 
Fig.8a Stress-Strain Curve (Hardening) for Non-symmetric model 

 

 
Fig.8b Stress-Strain Curve (Softening) for Non-symmetric model 

Load Path 1   

Load Path 2 

Load Path 3   

Load Path 1   

Load Path 2 

Load Path 3   
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Fig.9 Internal variable evolution for Non-symmetric model 

Fig.8a and Fig.8b represent the stress-strain curves for hardening and softening case 

respectively and Fig.9 shows the evolution of internal variable. The results can be seen 

somewhat similar with the previous ones. 

 

 Case 2: 

Young’s Modulus = 20000,   Yield Stress = 200,   Poisson ratio = 0.3,   H = ±0.1 

Load path:                                       ∆���
(�)

= 400       ∆���
(�)

= 0 

 ∆���
(�)

= −550       ∆���
(�)

= −550   

 ∆���
(�)

= 300       ∆���
(�)

= 300   

 

 Tension-only Damage Model- 

 
Fig. 10a Damage Surface (Hardening) for Tension-only model 

 
Fig. 10b Damage Surface (Softening) for Tension-only model 

Load Path 1   

Load Path 2 

Load Path 3   
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Fig.10a and 10b represent the damage surfaces for hardening and softening respectively 

for the Tension-only damage model. The dotted blue lines indicate the evolution of the 

damage surface which expands in case of hardening and contracts in case of softening. 

The first step is uniaxial tensile loading which is then followed by second step of biaxial 

tensile unloading or compression and finally the third step continues after this which is 

again, biaxial tensile loading. The damage surface is crossed in the first step where the 

elastic region is crossed and the damage takes place. 

 
Fig.11a Stress-Strain Curve (Hardening) for Tension-only model 

 
Fig.11b Stress-Strain Curve (Softening) for Tension-only model 

Fig.11a and 11b represent the stress-strain curve for hardening (H=0.1) and softening 

(H= -0.1) respectively for the Case 2 of the Tension-only damage model. The first step 

indicated by the black line is the uniaxial loading which causes damage to the surface. In 

the second step shown by the blue line, biaxial compression takes place without 

surpassing the elastic domain because of the property of the Tension-only model. And the 

third step represented by green line is biaxial tensile loading which again does not cross 

the elastic regime. The change of slope as indicated in the first case by the black line 

shows crossing of the damage surface.  

 
Fig.12 Internal variable evolution for Tension-only model 

Fig.12 represents the evolution of internal variable with time for this model. The 

evolution of internal variable in the second step and the third step takes place with the 

same slope as the elastic regime is not crossed in both of these steps. Hence, the 

hardening variable also remains constant for these steps. 

Load Path 1   

Load Path 2 

Load Path 3   

Load Path 1   

Load Path 2 

Load Path 3   

Load Path 1   

Load Path 2 

Load Path 3   
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 Non-symmetric Damage Model- 
The same results have been obtained for Non-symmetric model.  

 
Fig.13a Damage Surface (Hardening) for Non-symmetric model 

 
Fig.13b Damage Surface (Softening) for Non-symmetric model 

Fig.13a and 13b represent the damage surfaces for hardening (H=0.1) and softening (H= 

-0.1) case of the Non-symmetric model. The behavior is observed to be similar to the 

Tension-only model.  

 

 
Fig.14a Stress-Strain Curve (Hardening) for Non-symmetric model 

 

 
Fig.14b Stress-Strain Curve (Softening) for Non-symmetric model 
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Fig.15 Internal variable evolution for Non-symmetric model 

Fig.14a and 14b represent the stress-strain curves for hardening and softening case 

respectively and Fig.15 shows the evolution of internal variable. The results can be seen 

similar with the Tension-only model. 

 

 Case 3: 

Young’s Modulus = 20000,   Yield Stress = 200,   Poisson ratio = 0.3,   H = ±0.1 

Load path:                                       ∆���
(�)

= 400       ∆���
(�)

= 400 

 ∆���
(�)

= −550       ∆���
(�)

= −550   

 ∆���
(�)

= 300       ∆���
(�)

= 300   

 

 Tension-only Damage Model- 

 
Fig.16a Damage Surface (Hardening) for Tension-only model 

 
Fig.16b Damage Surface (Softening) for Tension-only model 

 

Fig.16a and 16b represent the load path for hardening and softening respectively for the 

Tension-only damage model. The damage surface is crossed in the first step where the 

elastic region is crossed and the damage takes place. 

Load Path 1   

Load Path 2 

Load Path 3   
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Fig.17a Stress-Strain Curve (Hardening) for Tension-only model 

 
Fig.17b Stress-Strain Curve (Softening) for Tension-only model 

Fig.17a and 17b represent the stress-strain curve for hardening (H=0.1) and softening 

(H= -0.1) respectively for the Case 3 of the Tension-only damage model. The first step 

indicated by the black line is the biaxial loading which crosses the damage surface. The 

changing of slope in the first step causes change in the curve which represents that elastic 

limit is overpassed. In the second step shown by the blue line, biaxial compression or 

biaxial tensile unloading takes place without surpassing the elastic domain. And the third 

step represented by green line is biaxial tensile loading which again does not cross the 

elastic regime.  

 
Fig.18 Internal variable evolution for Tension-only model 

And the Fig.18 represents the evolution of internal variable with time for this model. The 

evolution of internal variable in the second step and the third step takes place with the 

same slope as in both steps, the biaxial tensile unloading and the biaxial tensile loading, 

the elastic regime is not crossed. 
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 Non-symmetric Damage Model- 
The results for Non-symmetric model have been shown below.  

 
Fig.19a Damage Surface (Hardening) for Non-symmetric model 

 
Fig.19b Damage Surface (Softening) for Non-symmetric model 

Fig.19a and 19b represent the damage surfaces for hardening (H=0.1) and softening (H= 

-0.1) case of the Non-symmetric model. The behavior is observed to be similar to the 

Tension-only model. Fig.20a and 20b represent the stress-strain curve for hardening 

(H=0.1) and softening (H= -0.1) respectively for the Case 3 of the Non-symmetric damage 

model. And the Fig.21 represents the evolution of internal variable with time. 

 
Fig.20a Stress-Strain Curve (Hardening) for Non-symmetric model 

 
Fig.20b Stress-Strain Curve (Softening) for Non-symmetric model 
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Fig.21 Internal variable evolution for Non-symmetric model 

 

 

 

 

 

 Comparison for Viscid and Inviscid Case: 

A small comparison between the viscid and inviscid model has been done below in 

Fig.22 for the symmetric case. Both the models have same behavior in the elastic region 

as observed from Fig.22. But, as the elastic region is passed, that is when the damage 

surface has been crossed, it seems that the viscid model tends to have a more steep 

slope indicating higher stress values while the inviscid model has a less steep slope.  

 
Fig.22 Viscid/Inviscid case Comparison (stress-strain plot) 

 

 

 

 

 

 

 

 

Load Path 1   

Load Path 2 

Load Path 3   

Inviscid 

Viscid 
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 Part 2 – Rate Dependent Models  

In this part we have to implement the viscous case for symmetric model, and the effect 

of variation of the following parameters on the stress-strain curve have been visualized 

below. For this, the loading path selected is: 

 ∆���
(�)

= 100       ∆���
(�)

= 0 

 ∆���
(�)

= 100       ∆���
(�)

= 0 

 ∆���
(�)

= 400       ∆���
(�)

= 0 

And Young’s Modulus = 20000,   Yield Stress = 200,   Poisson ratio = 0.3. 

 Effect of Viscosity Parameter: 

For the above selected load path, the other parameters taken while plotting the below 

curve are η=0.3, α=0.5, H=0.1. 

 
Fig.23 Stress-Strain graph for different values of η 

Fig.23 represents the effect of different viscosity coefficients on the stress-strain graph. 

The different values for the viscosity parameter ‘η’ are taken as 0, 0.3, 0.5 and 1. In the 

elastic region, the viscosity associated with strain is zero hence we see no variation in the 

graph in the elastic region for different values of ‘η’. But, after the elastic region is passed, 

higher viscosities account for higher values of stress and because of which we can observe 

the difference in the above graph in the inelastic region. The more the value of ‘η’, the 

more is the stress. 

 Effect of Strain Rate: 
For the above selected load path, the other parameters taken while plotting the below 

curve are η=1, α=0.5, H=0.1. 

  
Fig.24 Stress-Strain graph for different values of strain rate (time int.) 

η=0 η=0.3 

η=1 

η=0.5 

T=50 T=10 

T=5 

T=0.1 T=1 
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The strain rate variation is done by changing the time interval in the program. In the 

elastic region, as usual no variation is seen. But, the strain rate varies in the inelastic 

region and hence we observe variations in graph for different strain rates. Here, because 

of the property of the rate dependent models, the stresses give different values when the 

strain rate is changed. It is observed from Fig.24, as the time interval is increased, the 

stress values obtained are lower and more stable graph is obtained.  

 Effect of Time Integration Parameter: 

For the above selected load path, the other parameters taken while plotting the below 

curve are η=1, α=0.5, H= -0.5, T=1000 

 
Fig.25 Stress-Strain graph for different values of α 

From Fig.24, as we know that, the more the time interval, more stable is the plot. Hence, 

we select T=1000 in order to get good results for differentiation. The different values of 

α for which the stress-strain graph is plotted are 0, 0.25, 0.5, 0.75 and 1. In these, we know 

that α=0 represents Forward Euler Method, α=0.5 represents Crank-Nicholson scheme 

and α=1 represents the Backward Euler Method. 

From Fig.25, we can observe that as α increases from 0 to 1, the graph becomes more 

stable. For α=0, the graph is totally unstable while it stabilizes itself between the values 

0.5-1. This tells us that at α=0 as the method is explicit which involves a less stable 

solution, it should not be preferred over α=1 which represents the implicit approach in 

order to get a stable solution. 

 

 

 

 

 

 

 

 

α=0 α =1 

α=0.75 
α=0.5 

α=0.25 
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 Conclusion: 

This assignment was targeted to study different types of damage models in Damage 

Mechanics theory. As the scope of this assignment, the Symmetric, Tension-only and Non-

symmetric damage models were coded evaluating different loading cases for rate 

independent (inviscid) and rate dependent (viscid) criteria.  

The effect of linear and exponential hardening/softening was also studied on these 

models and it was visible that linear results seemed to have a faster response as 

compared to exponential results. Hardening and Softening cases studied had a main 

prominent difference that graphs had negative slopes for softening while positive for 

hardening.  

The evolution of damage surfaces for the Tension-only and Non-symmetric damage 

models was observed for different loading paths and their stress-strain graphs were 

analyzed for the behavior shown. The first case was complete uniaxial loading, second 

being partly uniaxial and partly biaxial while the third case was completely biaxial 

loading. The stress-strain graphs depicted a slight change in slope whenever the damage 

surface was crossed in the load paths.  

The Viscous case was implemented for symmetric model and the effect of different 

parameters such as viscosity coefficient, strain rate and time integration parameter was 

studied on the stress-strain curves. It was seen that, more the time interval for integration 

more stable are the results obtained and implicit method (α=1) approaches could yield 

better results than explicit method (α=0) approaches. Also, the viscid cases have a more 

steep slope as compared to the inviscid cases. 

Lastly, the codes modified for this exercise have been attached in the appendix section 

for reference. 
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 Appendix: 

The modified codes for implementation of the damage models has been mentioned in 

this section. The codes presented below are: 

modelos_de_dano1.m, dibujar_criterio_dano1.m, rmap_dano1.m, damage_main.m 

a) modelos_de_dano1.m 

function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n) 1 
%**************************************************************************2 
************ 3 
%*          Defining damage criterion surface                                        4 
%* 5 
%*                                                                                   6 
%* 7 
%* 8 
%*                          MDtype=  1      : SYMMETRIC                              9 
%* 10 
%*                          MDtype=  2      : ONLY TENSION                           11 
%* 12 
%*                          MDtype=  3      : NON-SYMMETRIC                          13 
%* 14 
%*                                                                                   15 
%* 16 
%*                                                                                   17 
%* 18 
%* OUTPUT:                                                                           19 
%* 20 
%*                          rtrial                                                   21 
%*                22 
%**************************************************************************23 
************ 24 
  25 
  26 
  27 
%**************************************************************************28 
************ 29 
if (MDtype==1)      %* Symmetric 30 
rtrial= sqrt(eps_n1*ce*eps_n1');                       ; 31 
  32 
elseif (MDtype==2)  %* Only tension  33 
sigma_n=(eps_n1*ce); 34 
sigma_nplus=sigma_n.*(sigma_n>0); 35 
  36 
rtrial= sqrt(sigma_nplus*eps_n1'); 37 
     38 
elseif (MDtype==3)  %*Non-symmetric 39 
sigma_n=(eps_n1*ce); 40 
sigma_nplus=sigma_n.*(sigma_n>0); 41 
sigma_nabs=abs(sigma_n); 42 
teta_ratio=sum(sigma_nplus)/sum(sigma_nabs); 43 
  44 
rtrial= (teta_ratio+(1-teta_ratio)/n)*sqrt(eps_n1*ce*eps_n1'); 45 
  46 
end 47 
%**************************************************************************48 
************ 49 
return 50 
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b) dibujar_criterio_dano1.m 

function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 1 
%**************************************************************************2 
*********** 3 
%*                 PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL                             4 
%* 5 
%*      function [ce] = tensor_elastico (Eprop, ntype)                    6 
%*                                                                                  7 
%*      INPUTS                                                       %* 8 
%*                                                                                  9 
%* 10 
%*                    Eprop(4)    vector de propiedades de material                 11 
%* 12 
%*                                      Eprop(1)=  E------>modulo de Young          13 
%* 14 
%*                                      Eprop(2)=  nu----->modulo de 15 
Poisson        %* 16 
%*                                      Eprop(3)=  H----->modulo de 17 
Softening/hard. %* 18 
%*                                      Eprop(4)=sigma_u----->tensiï¿½n 19 
ï¿½ltima        %* 20 
%*                     ntype                                 %* 21 
%*                                 ntype=1  plane stress                            22 
%* 23 
%*                                 ntype=2  plane strain                            24 
%* 25 
%*                                 ntype=3  3D                                      26 
%* 27 
%*                     ce(4,4)     Constitutive elastic tensor  (PLANE S.       28 
)    %* 29 
%*                     ce(6,6)                                  ( 3D)                30 
%* 31 
%**************************************************************************32 
*********** 33 
%*        Inverse ce                                                                34 
%* 35 
ce_inv=inv(ce); 36 
c11=ce_inv(1,1); 37 
c22=ce_inv(2,2); 38 
c12=ce_inv(1,2); 39 
c21=c12; 40 
c14=ce_inv(1,4); 41 
c24=ce_inv(2,4); 42 
%**************************************************************************43 
************ 44 
 45 
% POLAR COORDINATES 46 
if MDtype==1 47 
    tetha=[0:0.01:2*pi]; 48 
    49 
%**************************************************************************50 
************ 51 
    %* RADIUS 52 
    D=size(tetha);                       %*  Range 53 
    m1=cos(tetha);                       %* 54 
    m2=sin(tetha);                       %* 55 
    Contador=D(1,2);                     %* 56 
     57 
    radio = zeros(1,Contador) ; 58 
    s1    = zeros(1,Contador) ; 59 
    s2    = zeros(1,Contador) ; 60 
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     61 
    for i=1:Contador 62 
        radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) 63 
m2(i) 0 ... 64 
            nu*(m1(i)+m2(i))]'); 65 
         66 
        s1(i)=radio(i)*m1(i); 67 
        s2(i)=radio(i)*m2(i);   68 
         69 
    end 70 
    hplot =plot(s1,s2,tipo_linea); 71 
       72 
elseif MDtype==2 73 
 74 
tetha=[(-pi/2)*0.9999:0.01:pi*0.9999]; 75 
D=size(tetha);       %* Range 76 
m1=cos(tetha);       %* 77 
m2=sin(tetha);       %* 78 
Contador=D(1,2);     %* 79 
  80 
radio = zeros(1,Contador) ; 81 
s1 = zeros(1,Contador) ; 82 
s2 = zeros(1,Contador) ; 83 
for i=1:Contador 84 
    sigma_n=[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 85 
    sigma_nplus=sigma_n.*(sigma_n>0); 86 
    radio(i)= q/sqrt(sigma_nplus*ce_inv*sigma_n'); 87 
     88 
    s1(i)=radio(i)*m1(i); 89 
    s2(i)=radio(i)*m2(i); 90 
end 91 
hplot =plot(s1,s2,tipo_linea); 92 
     93 
elseif MDtype==3 94 
     95 
tetha=[0:0.01:2*pi]; 96 
D=size(tetha); %* Range 97 
m1=cos(tetha); %* 98 
m2=sin(tetha); %* 99 
Contador=D(1,2); %* 100 
  101 
radio = zeros(1,Contador) ; 102 
s1 = zeros(1,Contador) ; 103 
s2 = zeros(1,Contador) ; 104 
  105 
for i=1:Contador 106 
    sigma_n=[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 107 
    sigma_nplus=sigma_n.*(sigma_n>0); 108 
    sigma_nabs=abs(sigma_n); 109 
    teta_ratio=sum(sigma_nplus)/sum(sigma_nabs); 110 
     111 
    radio(i)= (q/sqrt(sigma_n*ce_inv*sigma_n'))/(teta_ratio+(1-112 
teta_ratio)/n);  113 
    s1(i)=radio(i)*m1(i); 114 
    s2(i)=radio(i)*m2(i); 115 
end 116 
hplot =plot(s1,s2,tipo_linea);    117 
end 118 
return 119 
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c) rmap_dano1.m 

function [sigma_n1,hvar_n1,aux_var] = rmap_dano1 1 
(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t) 2 
  3 
%**************************************************************************4 
************ 5 
%*                                         * 6 
%*           Integration Algorithm for a isotropic damage model 7 
%* 8 
%*                                                                                    9 
* 10 
%*            [sigma_n1,hvar_n1,aux_var] = rmap_dano1 11 
(eps_n1,hvar_n,Eprop,ce)        * 12 
%*                                                                                    13 
* 14 
%* INPUTS              eps_n1(4)   strain (almansi)    step n+1                       15 
* 16 
%*                                 vector R4    (exx eyy exy ezz)                     17 
* 18 
%*                     hvar_n(6)   internal variables , step n                        19 
* 20 
%*                                 hvar_n(1:4) (empty)                          21 
* 22 
%*                                 hvar_n(5) = r  ; hvar_n(6)=q                       23 
* 24 
%*                     Eprop(:)    Material parameters                                25 
* 26 
%* 27 
%*                     ce(4,4)     Constitutive elastic tensor                        28 
* 29 
%*                                                                                    30 
* 31 
%* OUTPUTS:            sigma_n1(4) Cauchy stress  , step n+1                          32 
* 33 
%*                     hvar_n(6)   Internal variables , step n+1                           34 
* 35 
%*                     aux_var(3)  Auxiliar variables for computing const. 36 
tangent tensor  * 37 
%**************************************************************************38 
************* 39 
  40 
  41 
hvar_n1 = hvar_n; 42 
r_n     = hvar_n(5); 43 
q_n     = hvar_n(6); 44 
E       = Eprop(1); 45 
nu      = Eprop(2); 46 
H       = Eprop(3); 47 
sigma_u = Eprop(4); 48 
hard_type = Eprop(5); 49 
viscpr = Eprop(6); 50 
eta = Eprop(7); 51 
alpha = Eprop(8); 52 
%**************************************************************************53 
*********** 54 
  55 
  56 
%**************************************************************************57 
*********** 58 
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%*       initializing                                                %* 59 
 r0 = sigma_u/sqrt(E); 60 
 zero_q=1.d-6*r0; 61 
% if(r_n<=0.d0) 62 
%     r_n=r0; 63 
%     q_n=r0; 64 
% end 65 
%**************************************************************************66 
*********** 67 
  68 
  69 
%**************************************************************************70 
*********** 71 
%*       Damage surface                                                              72 
%* 73 
[rtrial_prev] = Modelos_de_dano1 (MDtype,ce,eps_n,n); 74 
[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n); 75 
rtrial_n_alpha = rtrial_prev*(1-alpha)+rtrial*alpha; 76 
%**************************************************************************77 
*********** 78 
  79 
  80 
%**************************************************************************81 
*********** 82 
%*   Ver el Estado de Carga                                                           83 
%* 84 
%*   --------->    fload=0 : elastic unload                                           85 
%* 86 
%*   --------->    fload=1 : damage (compute algorithmic constitutive 87 
tensor)         %* 88 
q_inf=2; 89 
A=1; 90 
fload=0; 91 
if viscpr == 0 92 
    if(rtrial > r_n) 93 
  94 
    %*   Loading 95 
  96 
    fload=1; 97 
    delta_r=rtrial-r_n; 98 
    r_n1= rtrial  ; 99 
    if hard_type == 0 100 
        %  Linear 101 
        q_n1= q_n+ H*delta_r; 102 
    else 103 
        H_n= A*(q_inf-r0)/r0*exp(A*(1-r_n/r0)); 104 
        q_n1= q_n+ H_n*delta_r ; 105 
    end 106 
  107 
    if(q_n1<zero_q) 108 
        q_n1=zero_q; 109 
    end 110 
  111 
  112 
else 113 
  114 
    %*     Elastic load/unload 115 
    fload=0; 116 
    r_n1= r_n  ; 117 
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    q_n1= q_n  ; 118 
  119 
  120 
    end 121 
else 122 
    if rtrial_n_alpha > r_n 123 
        fload=1;        %loading 124 
        delta_r=rtrial_n_alpha-r_n; 125 
         126 
        % computation of r at the step n+1 127 
        r_n1 = (eta - delta_t*(1-alpha))/(eta + alpha*delta_t)*r_n + 128 
(delta_t/(eta + alpha*delta_t))*rtrial_n_alpha; 129 
         130 
        if hard_type==0 131 
            % linear 132 
            H_n1 = H; 133 
            q_n1= q_n+ H_n1*delta_r; 134 
        else 135 
            H_n= A*(q_inf-r0)/r0*exp(A*(1-r_n/r0)); 136 
            q_n1= q_n+ H_n*delta_r; 137 
        end 138 
        if q_n1<zero_q 139 
            q_n1=zero_q; 140 
        end 141 
    else 142 
        % Elastic load \ unload 143 
        fload=0; 144 
        r_n1= r_n; 145 
        q_n1= q_n; 146 
    end 147 
end 148 
  149 
         150 
% Damage variable 151 
% --------------- 152 
dano_n1   = 1.d0-(q_n1/r_n1); 153 
%  Computing stress 154 
%  **************** 155 
sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 156 
%hold on  157 
%plot(sigma_n1(1),sigma_n1(2),'bx') 158 
  159 
%**************************************************************************160 
*********** 161 
%Ce_tang_1 162 
  163 
if viscpr == 1 164 
    if rtrial_n_alpha > r_n 165 
         166 
        % Constitutive Tangent Matrix Algorithm 167 
        Ce_alg_n1 = (1.d0-168 
dano_n1)*ce+((alpha*delta_t)/(eta+alpha*delta_t))*(1/rtrial_n_alpha)*((H_n1169 
*r_n1-q_n1)/(ce*eps_n1')'*(ce*eps_n1')); 170 
        C_alg = Ce_alg_n1(1,1); 171 
         172 
        % Constitutive Tangent Matrix 173 
        Ce_tan_n1 = (1.d0-dano_n1)*ce; 174 
        C_tan = Ce_tan_n1(1,1); 175 
    else 176 
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        % Constitutive Tangent Matrix Algorithm 177 
        Ce_alg_n1=(1.d0-dano_n1)*ce; 178 
        C_alg = Ce_alg_n1(1,1); 179 
        180 
        % Constitutive Tangent Matrix 181 
        Ce_tan_n1 = Ce_alg_n1; 182 
        C_tan = C_alg; 183 
    end 184 
else 185 
    if rtrial > r_n 186 
        Ce_tan_n1 = (1.d0-dano_n1)*ce+(1/rtrial)*((H_n1*r_n1-187 
q_n1)/(r_n1^2))*((ce*eps_n1')'*(ce*eps_n1')); 188 
        C_tan = Ce_tan_n1(1,1); 189 
    else 190 
        Ce_tan_n1 = (1.d0-dano_n1)*ce; 191 
        C_tan = Ce_tan_n1(1,1); 192 
    end 193 
end 194 
  195 
     196 
  197 
%**************************************************************************198 
*********** 199 
%* Updating historic variables                                            200 
%* 201 
%  hvar_n1(1:4)  = eps_n1p; 202 
hvar_n1(5)= r_n1 ; 203 
hvar_n1(6)= q_n1 ; 204 
%**************************************************************************205 
*********** 206 
  207 
if viscpr == 1 208 
    hvar_n1(8)= C_alg; 209 
    hvar_n1(9)= C_tan; 210 
end 211 
  212 
  213 
%**************************************************************************214 
*********** 215 
%* Auxiliar variables                                                               216 
%* 217 
aux_var(1) = fload; 218 
aux_var(2) = q_n1/r_n1; 219 
%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 220 
%**************************************************************************221 
********** 222 
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d) damage_main.m 

function 1 
[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,istep,stra2 
in,MDtype,n,TimeTotal) 3 
global hplotSURF  4 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
%%%%%%%%%%%%%%%%%%%%%%%% 6 
% CONTINUUM DAMAGE MODEL 7 
% ---------------------- 8 
% Given the almansi strain evolution ("strain(totalstep,mstrain)") and a 9 
set of 10 
% parameters and properties, it returns the evolution of the cauchy stress 11 
and other  variables 12 
% that are listed below. 13 
% 14 
% INPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 15 
% ---------------------------------------------------------------- 16 
% Eprop(1) = Young's modulus  (E) 17 
% Eprop(2) = Poisson's coefficient (nu) 18 
% Eprop(3) = Hardening(+)/Softening(-) modulus (H) 19 
% Eprop(4) = Yield stress (sigma_y) 20 
% Eprop(5) = Type of Hardening/Softening law  (hard_type) 21 
%            0 --> LINEAR 22 
%            1 --> Exponential 23 
% Eprop(6) = Rate behavior (viscpr) 24 
%            0 --> Rate-independent (inviscid) 25 
%            1 --> Rate-dependent   (viscous) 26 
% 27 
% Eprop(7) = Viscosity coefficient (eta)  (dummy if inviscid) 28 
% Eprop(8) = ALPHA coefficient (for time integration), (ALPHA) 29 
%             0<=ALPHA<=1 , ALPHA = 1.0 --> Implicit 30 
%                           ALPHA = 0.0 --> Explicit 31 
%            (dummy if inviscid) 32 
% 33 
% ntype    = PROBLEM TYPE 34 
%            1 : plane stress 35 
%            2 : plane strain 36 
%            3 : 3D 37 
% 38 
% istep = steps for each load state (istep1,istep2,istep3) 39 
% 40 
% strain(i,j) = j-th component of the linearized strain vector at the i-th 41 
%               step, i = 1:totalstep+1 42 
% 43 
% MDtype      = Damage surface criterion % 44 
%            1 : SYMMETRIC 45 
%            2 : ONLY-TENSION 46 
%            3 : NON-SYMMETRIC 47 
% 48 
% 49 
% n          = Ratio compression/tension strength (dummy if MDtype is 50 
different from 3) 51 
% 52 
% TimeTotal  = Interval length 53 
%  54 
%  OUTPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 55 
%  ------------------------------------------------------------------ 56 
%  1) sigma_v{itime}(icomp,jcomp)  --> Component (icomp,jcomp) of the 57 
cauchy 58 
%                                   stress tensor at step "itime" 59 
%                                   REMARK: sigma_v is a type of 60 
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%                                   variable called "cell array". 61 
% 62 
% 63 
%  2) vartoplot{itime}              --> Cell array containing variables one 64 
wishes to plot 65 
%                                    -------------------------------------- 66 
%   vartoplot{itime}(1) =   Hardening variable (q) 67 
%   vartoplot{itime}(2) =   Internal variable (r)% 68 
  69 
% 70 
%  3) LABELPLOT{ivar}              --> Cell array with the label string for 71 
%                                    variables of "varplot" 72 
% 73 
%          LABELPLOT{1} => 'hardening variable (q)' 74 
%          LABELPLOT{2} => 'internal variable' 75 
% 76 
% 77 
%  4) TIME VECTOR  - > 78 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%79 
%%%%%%%%%%%%%%%%%%%%%%%% 80 
  81 
% SET LABEL OF "vartoplot" variables  (it may be defined also outside this 82 
function) 83 
% ---------------------------------- 84 
 LABELPLOT = {'hardening variable (q)','internal variable'}; 85 
  86 
E      = Eprop(1) ; nu = Eprop(2) ;  87 
viscpr = Eprop(6) ; 88 
sigma_u = Eprop(4); 89 
  90 
if ntype == 1 91 
    menu('PLANE STRESS has not been implemented yet','STOP'); 92 
    error('OPTION NOT AVAILABLE') 93 
elseif ntype == 3 94 
    menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP'); 95 
    error('OPTION NOT AVAILABLE') 96 
else 97 
    mstrain = 4    ; 98 
    mhist   = 6    ; 99 
end 100 
  101 
totalstep = sum(istep) ; 102 
  103 
% INITIALIZING GLOBAL CELL ARRAYS 104 
% ------------------------------- 105 
sigma_v = cell(totalstep+1,1) ; 106 
TIMEVECTOR = zeros(totalstep+1,1) ; 107 
delta_t = TimeTotal./istep/length(istep) ; 108 
  109 
% Elastic constitutive tensor 110 
% ---------------------------- 111 
[ce]    = tensor_elastico1 (Eprop, ntype); 112 
% Initz. 113 
% ----- 114 
% Strain vector 115 
% ------------- 116 
eps_n1  = zeros(mstrain,1); 117 
% Historic variables 118 
% hvar_n(1:4) --> empty 119 
% hvar_n(5) = q --> Hardening variable 120 
% hvar_n(6) = r --> Internal variable 121 
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hvar_n  = zeros(mhist,1)  ; 122 
  123 
% INITIALIZING  (i = 1) !!!! 124 
% ***********i* 125 
i = 1 ; 126 
r0 = sigma_u/sqrt(E); 127 
hvar_n(5) = r0; % r_n  128 
hvar_n(6) = r0; % q_n  129 
eps_n1 = strain(i,:) ; 130 
sigma_n1 =ce*eps_n1'; % Elastic  131 
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  132 
sigma_n1(4)];  133 
  134 
nplot = 3 ;  135 
vartoplot = cell(1,totalstep+1) ;  136 
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 137 
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 138 
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 139 
  140 
for  iload = 1:length(istep) 141 
    % Load states 142 
    for iloc = 1:istep(iload) 143 
        i = i + 1 ; 144 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 145 
        % Total strain at step "i" 146 
        % ------------------------ 147 
        eps_n1 = strain(i,:) ; 148 
         149 
        % Total strain at step "i-1" 150 
        eps_n = strain(i-1,:);     151 
%**************************************************************************152 
************ 153 
        %*      DAMAGE MODEL 154 
        % 155 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 156 
        [sigma_n1,hvar_n,aux_var] = 157 
rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t); 158 
        % PLOTTING DAMAGE SURFACE 159 
        if(aux_var(1)>0) 160 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 161 
'r:',MDtype,n ); 162 
            set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)                         163 
; 164 
        end       165 
%********************************************************************** 166 
        % GLOBAL VARIABLES 167 
        % *************** 168 
        % Stress 169 
        % ------ 170 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  171 
sigma_n1(4)]; 172 
        sigma_v{i} =  m_sigma ; 173 
  174 
        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 175 
        % ---------------- 176 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 177 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)         178 
        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 179 
    end 180 
end 181 


