
Universitat Politecnica de Catalunya CIMNE
Master in Computational Mechanics

Computational Solid Mechanics

Assignment 1

Continuum Damage Models

Submitted By: Kiran Kolhe

30th March 2020

Contents

 Details. 1

 Part 1 – Rate Independent Models. 1

 Implementation of Damage Surfaces. 1

 Effect of Hardening Modulus . 2

 Implementation of Damage models for different cases 2

 Case 1. 2

 Case 2. 6

 Case 3. .9

 Comparison for Viscid and Inviscid case. .12

 Part 2 – Rate Dependent Models. .13

 Effect of Viscosity Parameter . 13

 Effect of Strain Rate . 13

 Effect of Time Integration Parameter . 14

 Conclusion . . 15

 Appendix . 16

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 1

 Details:

This assignment aims at the numerical integration of constitutive damage models using

MATLAB. Three types of damage models have been proposed in this assignment, namely,

the Symmetric model, Tension-only model and the Non-symmetric model. For the

information, the Symmetric model has already been implemented and after studying the

code and observing the results of this model we have been asked to implement tasks for

the Tension-only and Non-symmetric damage models.

In the first part, we have to modify the MATLAB code, considering the rate independence

criteria (inviscid case) for the Tension-only and Non-symmetric damage models. We have

to implement linear and exponential hardening as well as softening for each of these two

proposed models. And lastly, we have to run this developed code for three different

loading cases obtaining the stress-strain curves for each of them.

In the second part, the scope has been extended to study the impact of rate dependency

(viscid case) on the symmetric model. We have been asked to study the effects for

different values of viscosity parameter, strain rate and time-integration parameter on the

stress-strain curve.

For the loading paths, the constants alpha, beta and gamma have been chosen

conveniently so as to have a good visualization of the results.

 Part 1 – Rate Independent Models

 Implementation of Damage Surfaces:

In order to implement the Tension-only and Non-symmetric damage models for the rate

independency criteria, we have to make changes in some files. Initially, we have to modify

the code ‘modelos_de_dano1.m’ which is responsible for defining the damage surface for

the 3 types of damage models. In these equations, the rtrial function represents ����

which is the norm at time step ‘n+1’.

Then, we have to modify the code ‘dibujar_criterio_dano1.m’ for the Tension-only and

Non-symmetric damage models, which is responsible for plotting the damage surface. In

this code, a parameter ‘radio’ is used which stands for the radial distance of the points on

the curve from the origin. The damage surface is plotted in the stress space with x-

coordinate as �� and y-coordinate as ��.

After this, for including the Hardening/Softening law we have to modify the

‘rmap_dano1.m’ file by referring to the formulas given in the slides. The parameter ‘H’,

which is the hardening modulus, has a value equal to hardening coefficient for linear case

and should be calculated for exponential case.

Finally, we have to modify the ‘damage_main.m’ file which gives the evolution of the

stress field. After coding these files, the ‘main.m’ file is run and the following results in the

report have been recorded.

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 2

The damage surfaces for the Tension-only and Non-symmetric damage models are shown

below in Fig.1 and Fig.2.

Fig.1 Damage surface for Tension-only model Fig.2 Damage surface for Non-symmetric model

The elastic region in the Tension-only model shows asymptotic behaviour in the second

and fourth quadrant. The Non-symmetric model has a bigger elastic domain in the third

quadrant than the first quadrant because damage takes place at higher compressive

stresses in the third domain as compared to the tensile stresses in first domain.

 Effect of Hardening Modulus:

The hardening/softening law was implemented for in order to study the linear and

exponential response for the models. The results were obtained by plotting the hardening

variable ‘q’ against internal variable ‘r’ for H=0.5.

In unloading or elastic loading, hardening/softening is not applied to the material hence,

the internal variable and hardening variable in consequent time steps are equal.

Hardening/softening thus holds true in case of loading only.

Fig.3 q vs r plot for comparison of linear and exponential hardening

From Fig.3, it can be concluded that the time response in exponential case is slower than

that in the linear case.

 Implementation of Damage models for different cases:

The developed codes have been used to assess the correctness of the implementation by

applying them to the below 3 cases of loading.

 Case 1:

Young’s Modulus = 20000, Yield Stress = 200, Poisson ratio = 0.3, H = ±0.1

Load path: ∆���
(�)

= 500 ∆���
(�)

= 0

 ∆���
(�)

= −550 ∆���
(�)

= 0

 ∆���
(�)

= 700 ∆���
(�)

= 0

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 3

 Tension-only Damage Model-

Fig.4a Damage Surface (Hardening) for Tension-only model

Fig.4b Damage Surface (Softening) for Tension-only model

Fig.4a and Fig.4b represent the damage surfaces for hardening and softening

respectively for the uniaxial case of the Tension-only damage model. The dotted blue lines

indicate the evolution of the damage surface which expands outwards in case of

hardening and reduces inwards in case of softening. The first step is the tensile loading

which is then followed by second step of tensile unloading and finally the third step

continues after this which is again, tensile loading. As seen in Fig.4a the damage surface

is crossed in the first step and the material undergoes hardening as it crosses the elastic

region.

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 4

Fig.5a Stress-Strain Curve (Hardening) for Tension-only model

Fig.5b Stress-Strain Curve (Softening) for Tension-only model

Fig.5a and Fig.5b represent the stress-strain curve for hardening (H=0.1) and softening

(H= -0.1) respectively for the uniaxial case of the Tension-only damage model. In Fig.5a

and Fig.5b the change in slope of the black line indicates the point where the damage

surface is crossed in the first step. The only difference in hardening and softening curves

is that while crossing the damage surface, the slope increases in hardening while it

decreases in softening.

Fig.6 Internal variable evolution for Tension-only model

And Fig.6 represents the evolution of internal variable with time for this model. The first

step is indicated by black line, which is followed by the second step represented by the

blue line, and the green line depicts the third stage of loading. The evolution of internal

variable in the second step and the third step takes place with the same slope as in both

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 5

of these steps the damage surface is not crossed and hence, the elastic regime is

maintained.

 Non-symmetric Damage Model-
The same results have been obtained for Non-symmetric model.

Fig.7a Damage Surface (Hardening) for Non-symmetric model

Fig.7b Damage Surface (Softening) for Non-symmetric model

Fig.7a and Fig.7b represent the damage surfaces for hardening (H=0.1) and softening

(H= -0.1) case of the Non-symmetric model. The behavior is observed to be similar to the

Tension-only model.

Fig.8a Stress-Strain Curve (Hardening) for Non-symmetric model

Fig.8b Stress-Strain Curve (Softening) for Non-symmetric model

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 6

Fig.9 Internal variable evolution for Non-symmetric model

Fig.8a and Fig.8b represent the stress-strain curves for hardening and softening case

respectively and Fig.9 shows the evolution of internal variable. The results can be seen

somewhat similar with the previous ones.

 Case 2:

Young’s Modulus = 20000, Yield Stress = 200, Poisson ratio = 0.3, H = ±0.1

Load path: ∆���
(�)

= 400 ∆���
(�)

= 0

 ∆���
(�)

= −550 ∆���
(�)

= −550

 ∆���
(�)

= 300 ∆���
(�)

= 300

 Tension-only Damage Model-

Fig. 10a Damage Surface (Hardening) for Tension-only model

Fig. 10b Damage Surface (Softening) for Tension-only model

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 7

Fig.10a and 10b represent the damage surfaces for hardening and softening respectively

for the Tension-only damage model. The dotted blue lines indicate the evolution of the

damage surface which expands in case of hardening and contracts in case of softening.

The first step is uniaxial tensile loading which is then followed by second step of biaxial

tensile unloading or compression and finally the third step continues after this which is

again, biaxial tensile loading. The damage surface is crossed in the first step where the

elastic region is crossed and the damage takes place.

Fig.11a Stress-Strain Curve (Hardening) for Tension-only model

Fig.11b Stress-Strain Curve (Softening) for Tension-only model

Fig.11a and 11b represent the stress-strain curve for hardening (H=0.1) and softening

(H= -0.1) respectively for the Case 2 of the Tension-only damage model. The first step

indicated by the black line is the uniaxial loading which causes damage to the surface. In

the second step shown by the blue line, biaxial compression takes place without

surpassing the elastic domain because of the property of the Tension-only model. And the

third step represented by green line is biaxial tensile loading which again does not cross

the elastic regime. The change of slope as indicated in the first case by the black line

shows crossing of the damage surface.

Fig.12 Internal variable evolution for Tension-only model

Fig.12 represents the evolution of internal variable with time for this model. The

evolution of internal variable in the second step and the third step takes place with the

same slope as the elastic regime is not crossed in both of these steps. Hence, the

hardening variable also remains constant for these steps.

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 8

 Non-symmetric Damage Model-
The same results have been obtained for Non-symmetric model.

Fig.13a Damage Surface (Hardening) for Non-symmetric model

Fig.13b Damage Surface (Softening) for Non-symmetric model

Fig.13a and 13b represent the damage surfaces for hardening (H=0.1) and softening (H=

-0.1) case of the Non-symmetric model. The behavior is observed to be similar to the

Tension-only model.

Fig.14a Stress-Strain Curve (Hardening) for Non-symmetric model

Fig.14b Stress-Strain Curve (Softening) for Non-symmetric model

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 9

Fig.15 Internal variable evolution for Non-symmetric model

Fig.14a and 14b represent the stress-strain curves for hardening and softening case

respectively and Fig.15 shows the evolution of internal variable. The results can be seen

similar with the Tension-only model.

 Case 3:

Young’s Modulus = 20000, Yield Stress = 200, Poisson ratio = 0.3, H = ±0.1

Load path: ∆���
(�)

= 400 ∆���
(�)

= 400

 ∆���
(�)

= −550 ∆���
(�)

= −550

 ∆���
(�)

= 300 ∆���
(�)

= 300

 Tension-only Damage Model-

Fig.16a Damage Surface (Hardening) for Tension-only model

Fig.16b Damage Surface (Softening) for Tension-only model

Fig.16a and 16b represent the load path for hardening and softening respectively for the

Tension-only damage model. The damage surface is crossed in the first step where the

elastic region is crossed and the damage takes place.

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 10

Fig.17a Stress-Strain Curve (Hardening) for Tension-only model

Fig.17b Stress-Strain Curve (Softening) for Tension-only model

Fig.17a and 17b represent the stress-strain curve for hardening (H=0.1) and softening

(H= -0.1) respectively for the Case 3 of the Tension-only damage model. The first step

indicated by the black line is the biaxial loading which crosses the damage surface. The

changing of slope in the first step causes change in the curve which represents that elastic

limit is overpassed. In the second step shown by the blue line, biaxial compression or

biaxial tensile unloading takes place without surpassing the elastic domain. And the third

step represented by green line is biaxial tensile loading which again does not cross the

elastic regime.

Fig.18 Internal variable evolution for Tension-only model

And the Fig.18 represents the evolution of internal variable with time for this model. The

evolution of internal variable in the second step and the third step takes place with the

same slope as in both steps, the biaxial tensile unloading and the biaxial tensile loading,

the elastic regime is not crossed.

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 11

 Non-symmetric Damage Model-
The results for Non-symmetric model have been shown below.

Fig.19a Damage Surface (Hardening) for Non-symmetric model

Fig.19b Damage Surface (Softening) for Non-symmetric model

Fig.19a and 19b represent the damage surfaces for hardening (H=0.1) and softening (H=

-0.1) case of the Non-symmetric model. The behavior is observed to be similar to the

Tension-only model. Fig.20a and 20b represent the stress-strain curve for hardening

(H=0.1) and softening (H= -0.1) respectively for the Case 3 of the Non-symmetric damage

model. And the Fig.21 represents the evolution of internal variable with time.

Fig.20a Stress-Strain Curve (Hardening) for Non-symmetric model

Fig.20b Stress-Strain Curve (Softening) for Non-symmetric model

Load Path 1

Load Path 2

Load Path 3

Load Path 1

Load Path 2

Load Path 3

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 12

Fig.21 Internal variable evolution for Non-symmetric model

 Comparison for Viscid and Inviscid Case:

A small comparison between the viscid and inviscid model has been done below in

Fig.22 for the symmetric case. Both the models have same behavior in the elastic region

as observed from Fig.22. But, as the elastic region is passed, that is when the damage

surface has been crossed, it seems that the viscid model tends to have a more steep

slope indicating higher stress values while the inviscid model has a less steep slope.

Fig.22 Viscid/Inviscid case Comparison (stress-strain plot)

Load Path 1

Load Path 2

Load Path 3

Inviscid

Viscid

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 13

 Part 2 – Rate Dependent Models

In this part we have to implement the viscous case for symmetric model, and the effect

of variation of the following parameters on the stress-strain curve have been visualized

below. For this, the loading path selected is:

 ∆���
(�)

= 100 ∆���
(�)

= 0

 ∆���
(�)

= 100 ∆���
(�)

= 0

 ∆���
(�)

= 400 ∆���
(�)

= 0

And Young’s Modulus = 20000, Yield Stress = 200, Poisson ratio = 0.3.

 Effect of Viscosity Parameter:

For the above selected load path, the other parameters taken while plotting the below

curve are η=0.3, α=0.5, H=0.1.

Fig.23 Stress-Strain graph for different values of η

Fig.23 represents the effect of different viscosity coefficients on the stress-strain graph.

The different values for the viscosity parameter ‘η’ are taken as 0, 0.3, 0.5 and 1. In the

elastic region, the viscosity associated with strain is zero hence we see no variation in the

graph in the elastic region for different values of ‘η’. But, after the elastic region is passed,

higher viscosities account for higher values of stress and because of which we can observe

the difference in the above graph in the inelastic region. The more the value of ‘η’, the

more is the stress.

 Effect of Strain Rate:
For the above selected load path, the other parameters taken while plotting the below

curve are η=1, α=0.5, H=0.1.

Fig.24 Stress-Strain graph for different values of strain rate (time int.)

η=0 η=0.3

η=1

η=0.5

T=50 T=10

T=5

T=0.1 T=1

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 14

The strain rate variation is done by changing the time interval in the program. In the

elastic region, as usual no variation is seen. But, the strain rate varies in the inelastic

region and hence we observe variations in graph for different strain rates. Here, because

of the property of the rate dependent models, the stresses give different values when the

strain rate is changed. It is observed from Fig.24, as the time interval is increased, the

stress values obtained are lower and more stable graph is obtained.

 Effect of Time Integration Parameter:

For the above selected load path, the other parameters taken while plotting the below

curve are η=1, α=0.5, H= -0.5, T=1000

Fig.25 Stress-Strain graph for different values of α

From Fig.24, as we know that, the more the time interval, more stable is the plot. Hence,

we select T=1000 in order to get good results for differentiation. The different values of

α for which the stress-strain graph is plotted are 0, 0.25, 0.5, 0.75 and 1. In these, we know

that α=0 represents Forward Euler Method, α=0.5 represents Crank-Nicholson scheme

and α=1 represents the Backward Euler Method.

From Fig.25, we can observe that as α increases from 0 to 1, the graph becomes more

stable. For α=0, the graph is totally unstable while it stabilizes itself between the values

0.5-1. This tells us that at α=0 as the method is explicit which involves a less stable

solution, it should not be preferred over α=1 which represents the implicit approach in

order to get a stable solution.

α=0 α =1

α=0.75
α=0.5

α=0.25

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 15

 Conclusion:

This assignment was targeted to study different types of damage models in Damage

Mechanics theory. As the scope of this assignment, the Symmetric, Tension-only and Non-

symmetric damage models were coded evaluating different loading cases for rate

independent (inviscid) and rate dependent (viscid) criteria.

The effect of linear and exponential hardening/softening was also studied on these

models and it was visible that linear results seemed to have a faster response as

compared to exponential results. Hardening and Softening cases studied had a main

prominent difference that graphs had negative slopes for softening while positive for

hardening.

The evolution of damage surfaces for the Tension-only and Non-symmetric damage

models was observed for different loading paths and their stress-strain graphs were

analyzed for the behavior shown. The first case was complete uniaxial loading, second

being partly uniaxial and partly biaxial while the third case was completely biaxial

loading. The stress-strain graphs depicted a slight change in slope whenever the damage

surface was crossed in the load paths.

The Viscous case was implemented for symmetric model and the effect of different

parameters such as viscosity coefficient, strain rate and time integration parameter was

studied on the stress-strain curves. It was seen that, more the time interval for integration

more stable are the results obtained and implicit method (α=1) approaches could yield

better results than explicit method (α=0) approaches. Also, the viscid cases have a more

steep slope as compared to the inviscid cases.

Lastly, the codes modified for this exercise have been attached in the appendix section

for reference.

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 Appendix:

The modified codes for implementation of the damage models has been mentioned in

this section. The codes presented below are:

modelos_de_dano1.m, dibujar_criterio_dano1.m, rmap_dano1.m, damage_main.m

a) modelos_de_dano1.m

function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n) 1
%**2
************ 3
%* Defining damage criterion surface 4
%* 5
%* 6
%* 7
%* 8
%* MDtype= 1 : SYMMETRIC 9
%* 10
%* MDtype= 2 : ONLY TENSION 11
%* 12
%* MDtype= 3 : NON-SYMMETRIC 13
%* 14
%* 15
%* 16
%* 17
%* 18
%* OUTPUT: 19
%* 20
%* rtrial 21
%* 22
%**23
************ 24
 25
 26
 27
%**28
************ 29
if (MDtype==1) %* Symmetric 30
rtrial= sqrt(eps_n1*ce*eps_n1'); ; 31
 32
elseif (MDtype==2) %* Only tension 33
sigma_n=(eps_n1*ce); 34
sigma_nplus=sigma_n.*(sigma_n>0); 35
 36
rtrial= sqrt(sigma_nplus*eps_n1'); 37
 38
elseif (MDtype==3) %*Non-symmetric 39
sigma_n=(eps_n1*ce); 40
sigma_nplus=sigma_n.*(sigma_n>0); 41
sigma_nabs=abs(sigma_n); 42
teta_ratio=sum(sigma_nplus)/sum(sigma_nabs); 43
 44
rtrial= (teta_ratio+(1-teta_ratio)/n)*sqrt(eps_n1*ce*eps_n1'); 45
 46
end 47
%**48
************ 49
return 50

Computational Solid Mechanics Assignment 1 Kiran Kolhe

b) dibujar_criterio_dano1.m

function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 1
%**2
*********** 3
%* PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL 4
%* 5
%* function [ce] = tensor_elastico (Eprop, ntype) 6
%* 7
%* INPUTS %* 8
%* 9
%* 10
%* Eprop(4) vector de propiedades de material 11
%* 12
%* Eprop(1)= E------>modulo de Young 13
%* 14
%* Eprop(2)= nu----->modulo de 15
Poisson %* 16
%* Eprop(3)= H----->modulo de 17
Softening/hard. %* 18
%* Eprop(4)=sigma_u----->tensiï¿½n 19
ï¿½ltima %* 20
%* ntype %* 21
%* ntype=1 plane stress 22
%* 23
%* ntype=2 plane strain 24
%* 25
%* ntype=3 3D 26
%* 27
%* ce(4,4) Constitutive elastic tensor (PLANE S. 28
) %* 29
%* ce(6,6) (3D) 30
%* 31
%**32
*********** 33
%* Inverse ce 34
%* 35
ce_inv=inv(ce); 36
c11=ce_inv(1,1); 37
c22=ce_inv(2,2); 38
c12=ce_inv(1,2); 39
c21=c12; 40
c14=ce_inv(1,4); 41
c24=ce_inv(2,4); 42
%**43
************ 44
 45
% POLAR COORDINATES 46
if MDtype==1 47
 tetha=[0:0.01:2*pi]; 48
 49
%**50
************ 51
 %* RADIUS 52
 D=size(tetha); %* Range 53
 m1=cos(tetha); %* 54
 m2=sin(tetha); %* 55
 Contador=D(1,2); %* 56
 57
 radio = zeros(1,Contador) ; 58
 s1 = zeros(1,Contador) ; 59
 s2 = zeros(1,Contador) ; 60

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 61
 for i=1:Contador 62
 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) 63
m2(i) 0 ... 64
 nu*(m1(i)+m2(i))]'); 65
 66
 s1(i)=radio(i)*m1(i); 67
 s2(i)=radio(i)*m2(i); 68
 69
 end 70
 hplot =plot(s1,s2,tipo_linea); 71
 72
elseif MDtype==2 73
 74
tetha=[(-pi/2)*0.9999:0.01:pi*0.9999]; 75
D=size(tetha); %* Range 76
m1=cos(tetha); %* 77
m2=sin(tetha); %* 78
Contador=D(1,2); %* 79
 80
radio = zeros(1,Contador) ; 81
s1 = zeros(1,Contador) ; 82
s2 = zeros(1,Contador) ; 83
for i=1:Contador 84
 sigma_n=[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 85
 sigma_nplus=sigma_n.*(sigma_n>0); 86
 radio(i)= q/sqrt(sigma_nplus*ce_inv*sigma_n'); 87
 88
 s1(i)=radio(i)*m1(i); 89
 s2(i)=radio(i)*m2(i); 90
end 91
hplot =plot(s1,s2,tipo_linea); 92
 93
elseif MDtype==3 94
 95
tetha=[0:0.01:2*pi]; 96
D=size(tetha); %* Range 97
m1=cos(tetha); %* 98
m2=sin(tetha); %* 99
Contador=D(1,2); %* 100
 101
radio = zeros(1,Contador) ; 102
s1 = zeros(1,Contador) ; 103
s2 = zeros(1,Contador) ; 104
 105
for i=1:Contador 106
 sigma_n=[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 107
 sigma_nplus=sigma_n.*(sigma_n>0); 108
 sigma_nabs=abs(sigma_n); 109
 teta_ratio=sum(sigma_nplus)/sum(sigma_nabs); 110
 111
 radio(i)= (q/sqrt(sigma_n*ce_inv*sigma_n'))/(teta_ratio+(1-112
teta_ratio)/n); 113
 s1(i)=radio(i)*m1(i); 114
 s2(i)=radio(i)*m2(i); 115
end 116
hplot =plot(s1,s2,tipo_linea); 117
end 118
return 119

Computational Solid Mechanics Assignment 1 Kiran Kolhe

c) rmap_dano1.m

function [sigma_n1,hvar_n1,aux_var] = rmap_dano1 1
(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t) 2
 3
%**4
************ 5
%* * 6
%* Integration Algorithm for a isotropic damage model 7
%* 8
%* 9
* 10
%* [sigma_n1,hvar_n1,aux_var] = rmap_dano1 11
(eps_n1,hvar_n,Eprop,ce) * 12
%* 13
* 14
%* INPUTS eps_n1(4) strain (almansi) step n+1 15
* 16
%* vector R4 (exx eyy exy ezz) 17
* 18
%* hvar_n(6) internal variables , step n 19
* 20
%* hvar_n(1:4) (empty) 21
* 22
%* hvar_n(5) = r ; hvar_n(6)=q 23
* 24
%* Eprop(:) Material parameters 25
* 26
%* 27
%* ce(4,4) Constitutive elastic tensor 28
* 29
%* 30
* 31
%* OUTPUTS: sigma_n1(4) Cauchy stress , step n+1 32
* 33
%* hvar_n(6) Internal variables , step n+1 34
* 35
%* aux_var(3) Auxiliar variables for computing const. 36
tangent tensor * 37
%**38
************* 39
 40
 41
hvar_n1 = hvar_n; 42
r_n = hvar_n(5); 43
q_n = hvar_n(6); 44
E = Eprop(1); 45
nu = Eprop(2); 46
H = Eprop(3); 47
sigma_u = Eprop(4); 48
hard_type = Eprop(5); 49
viscpr = Eprop(6); 50
eta = Eprop(7); 51
alpha = Eprop(8); 52
%**53
*********** 54
 55
 56
%**57
*********** 58

Computational Solid Mechanics Assignment 1 Kiran Kolhe

%* initializing %* 59
 r0 = sigma_u/sqrt(E); 60
 zero_q=1.d-6*r0; 61
% if(r_n<=0.d0) 62
% r_n=r0; 63
% q_n=r0; 64
% end 65
%**66
*********** 67
 68
 69
%**70
*********** 71
%* Damage surface 72
%* 73
[rtrial_prev] = Modelos_de_dano1 (MDtype,ce,eps_n,n); 74
[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n); 75
rtrial_n_alpha = rtrial_prev*(1-alpha)+rtrial*alpha; 76
%**77
*********** 78
 79
 80
%**81
*********** 82
%* Ver el Estado de Carga 83
%* 84
%* ---------> fload=0 : elastic unload 85
%* 86
%* ---------> fload=1 : damage (compute algorithmic constitutive 87
tensor) %* 88
q_inf=2; 89
A=1; 90
fload=0; 91
if viscpr == 0 92
 if(rtrial > r_n) 93
 94
 %* Loading 95
 96
 fload=1; 97
 delta_r=rtrial-r_n; 98
 r_n1= rtrial ; 99
 if hard_type == 0 100
 % Linear 101
 q_n1= q_n+ H*delta_r; 102
 else 103
 H_n= A*(q_inf-r0)/r0*exp(A*(1-r_n/r0)); 104
 q_n1= q_n+ H_n*delta_r ; 105
 end 106
 107
 if(q_n1<zero_q) 108
 q_n1=zero_q; 109
 end 110
 111
 112
else 113
 114
 %* Elastic load/unload 115
 fload=0; 116
 r_n1= r_n ; 117

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 q_n1= q_n ; 118
 119
 120
 end 121
else 122
 if rtrial_n_alpha > r_n 123
 fload=1; %loading 124
 delta_r=rtrial_n_alpha-r_n; 125
 126
 % computation of r at the step n+1 127
 r_n1 = (eta - delta_t*(1-alpha))/(eta + alpha*delta_t)*r_n + 128
(delta_t/(eta + alpha*delta_t))*rtrial_n_alpha; 129
 130
 if hard_type==0 131
 % linear 132
 H_n1 = H; 133
 q_n1= q_n+ H_n1*delta_r; 134
 else 135
 H_n= A*(q_inf-r0)/r0*exp(A*(1-r_n/r0)); 136
 q_n1= q_n+ H_n*delta_r; 137
 end 138
 if q_n1<zero_q 139
 q_n1=zero_q; 140
 end 141
 else 142
 % Elastic load \ unload 143
 fload=0; 144
 r_n1= r_n; 145
 q_n1= q_n; 146
 end 147
end 148
 149
 150
% Damage variable 151
% --------------- 152
dano_n1 = 1.d0-(q_n1/r_n1); 153
% Computing stress 154
% **************** 155
sigma_n1 =(1.d0-dano_n1)*ce*eps_n1'; 156
%hold on 157
%plot(sigma_n1(1),sigma_n1(2),'bx') 158
 159
%**160
*********** 161
%Ce_tang_1 162
 163
if viscpr == 1 164
 if rtrial_n_alpha > r_n 165
 166
 % Constitutive Tangent Matrix Algorithm 167
 Ce_alg_n1 = (1.d0-168
dano_n1)*ce+((alpha*delta_t)/(eta+alpha*delta_t))*(1/rtrial_n_alpha)*((H_n1169
*r_n1-q_n1)/(ce*eps_n1')'*(ce*eps_n1')); 170
 C_alg = Ce_alg_n1(1,1); 171
 172
 % Constitutive Tangent Matrix 173
 Ce_tan_n1 = (1.d0-dano_n1)*ce; 174
 C_tan = Ce_tan_n1(1,1); 175
 else 176

Computational Solid Mechanics Assignment 1 Kiran Kolhe

 % Constitutive Tangent Matrix Algorithm 177
 Ce_alg_n1=(1.d0-dano_n1)*ce; 178
 C_alg = Ce_alg_n1(1,1); 179
 180
 % Constitutive Tangent Matrix 181
 Ce_tan_n1 = Ce_alg_n1; 182
 C_tan = C_alg; 183
 end 184
else 185
 if rtrial > r_n 186
 Ce_tan_n1 = (1.d0-dano_n1)*ce+(1/rtrial)*((H_n1*r_n1-187
q_n1)/(r_n1^2))*((ce*eps_n1')'*(ce*eps_n1')); 188
 C_tan = Ce_tan_n1(1,1); 189
 else 190
 Ce_tan_n1 = (1.d0-dano_n1)*ce; 191
 C_tan = Ce_tan_n1(1,1); 192
 end 193
end 194
 195
 196
 197
%**198
*********** 199
%* Updating historic variables 200
%* 201
% hvar_n1(1:4) = eps_n1p; 202
hvar_n1(5)= r_n1 ; 203
hvar_n1(6)= q_n1 ; 204
%**205
*********** 206
 207
if viscpr == 1 208
 hvar_n1(8)= C_alg; 209
 hvar_n1(9)= C_tan; 210
end 211
 212
 213
%**214
*********** 215
%* Auxiliar variables 216
%* 217
aux_var(1) = fload; 218
aux_var(2) = q_n1/r_n1; 219
%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 220
%**221
********** 222

Computational Solid Mechanics Assignment 1 Kiran Kolhe

d) damage_main.m

function 1
[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,istep,stra2
in,MDtype,n,TimeTotal) 3
global hplotSURF 4
%%%5
%%%%%%%%%%%%%%%%%%%%%%%% 6
% CONTINUUM DAMAGE MODEL 7
% ---------------------- 8
% Given the almansi strain evolution ("strain(totalstep,mstrain)") and a 9
set of 10
% parameters and properties, it returns the evolution of the cauchy stress 11
and other variables 12
% that are listed below. 13
% 14
% INPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 15
% -- 16
% Eprop(1) = Young's modulus (E) 17
% Eprop(2) = Poisson's coefficient (nu) 18
% Eprop(3) = Hardening(+)/Softening(-) modulus (H) 19
% Eprop(4) = Yield stress (sigma_y) 20
% Eprop(5) = Type of Hardening/Softening law (hard_type) 21
% 0 --> LINEAR 22
% 1 --> Exponential 23
% Eprop(6) = Rate behavior (viscpr) 24
% 0 --> Rate-independent (inviscid) 25
% 1 --> Rate-dependent (viscous) 26
% 27
% Eprop(7) = Viscosity coefficient (eta) (dummy if inviscid) 28
% Eprop(8) = ALPHA coefficient (for time integration), (ALPHA) 29
% 0<=ALPHA<=1 , ALPHA = 1.0 --> Implicit 30
% ALPHA = 0.0 --> Explicit 31
% (dummy if inviscid) 32
% 33
% ntype = PROBLEM TYPE 34
% 1 : plane stress 35
% 2 : plane strain 36
% 3 : 3D 37
% 38
% istep = steps for each load state (istep1,istep2,istep3) 39
% 40
% strain(i,j) = j-th component of the linearized strain vector at the i-th 41
% step, i = 1:totalstep+1 42
% 43
% MDtype = Damage surface criterion % 44
% 1 : SYMMETRIC 45
% 2 : ONLY-TENSION 46
% 3 : NON-SYMMETRIC 47
% 48
% 49
% n = Ratio compression/tension strength (dummy if MDtype is 50
different from 3) 51
% 52
% TimeTotal = Interval length 53
% 54
% OUTPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 55
% -- 56
% 1) sigma_v{itime}(icomp,jcomp) --> Component (icomp,jcomp) of the 57
cauchy 58
% stress tensor at step "itime" 59
% REMARK: sigma_v is a type of 60

Computational Solid Mechanics Assignment 1 Kiran Kolhe

% variable called "cell array". 61
% 62
% 63
% 2) vartoplot{itime} --> Cell array containing variables one 64
wishes to plot 65
% -------------------------------------- 66
% vartoplot{itime}(1) = Hardening variable (q) 67
% vartoplot{itime}(2) = Internal variable (r)% 68
 69
% 70
% 3) LABELPLOT{ivar} --> Cell array with the label string for 71
% variables of "varplot" 72
% 73
% LABELPLOT{1} => 'hardening variable (q)' 74
% LABELPLOT{2} => 'internal variable' 75
% 76
% 77
% 4) TIME VECTOR - > 78
%%%79
%%%%%%%%%%%%%%%%%%%%%%%% 80
 81
% SET LABEL OF "vartoplot" variables (it may be defined also outside this 82
function) 83
% ---------------------------------- 84
 LABELPLOT = {'hardening variable (q)','internal variable'}; 85
 86
E = Eprop(1) ; nu = Eprop(2) ; 87
viscpr = Eprop(6) ; 88
sigma_u = Eprop(4); 89
 90
if ntype == 1 91
 menu('PLANE STRESS has not been implemented yet','STOP'); 92
 error('OPTION NOT AVAILABLE') 93
elseif ntype == 3 94
 menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP'); 95
 error('OPTION NOT AVAILABLE') 96
else 97
 mstrain = 4 ; 98
 mhist = 6 ; 99
end 100
 101
totalstep = sum(istep) ; 102
 103
% INITIALIZING GLOBAL CELL ARRAYS 104
% ------------------------------- 105
sigma_v = cell(totalstep+1,1) ; 106
TIMEVECTOR = zeros(totalstep+1,1) ; 107
delta_t = TimeTotal./istep/length(istep) ; 108
 109
% Elastic constitutive tensor 110
% ---------------------------- 111
[ce] = tensor_elastico1 (Eprop, ntype); 112
% Initz. 113
% ----- 114
% Strain vector 115
% ------------- 116
eps_n1 = zeros(mstrain,1); 117
% Historic variables 118
% hvar_n(1:4) --> empty 119
% hvar_n(5) = q --> Hardening variable 120
% hvar_n(6) = r --> Internal variable 121

Computational Solid Mechanics Assignment 1 Kiran Kolhe

hvar_n = zeros(mhist,1) ; 122
 123
% INITIALIZING (i = 1) !!!! 124
% ***********i* 125
i = 1 ; 126
r0 = sigma_u/sqrt(E); 127
hvar_n(5) = r0; % r_n 128
hvar_n(6) = r0; % q_n 129
eps_n1 = strain(i,:) ; 130
sigma_n1 =ce*eps_n1'; % Elastic 131
sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0 132
sigma_n1(4)]; 133
 134
nplot = 3 ; 135
vartoplot = cell(1,totalstep+1) ; 136
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 137
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 138
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d) 139
 140
for iload = 1:length(istep) 141
 % Load states 142
 for iloc = 1:istep(iload) 143
 i = i + 1 ; 144
 TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 145
 % Total strain at step "i" 146
 % ------------------------ 147
 eps_n1 = strain(i,:) ; 148
 149
 % Total strain at step "i-1" 150
 eps_n = strain(i-1,:); 151
%**152
************ 153
 %* DAMAGE MODEL 154
 % 155
%%% 156
 [sigma_n1,hvar_n,aux_var] = 157
rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t); 158
 % PLOTTING DAMAGE SURFACE 159
 if(aux_var(1)>0) 160
 hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 161
'r:',MDtype,n); 162
 set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1) 163
; 164
 end 165
%** 166
 % GLOBAL VARIABLES 167
 % *************** 168
 % Stress 169
 % ------ 170
 m_sigma=[sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0 171
sigma_n1(4)]; 172
 sigma_v{i} = m_sigma ; 173
 174
 % VARIABLES TO PLOT (set label on cell array LABELPLOT) 175
 % ---------------- 176
 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 177
 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 178
 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d) 179
 end 180
end 181

