UNIVERSITAT PoLITECNICA [N Erasmus
DE CATALUNYA _
BARCELONATECH Mundus

UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA

MSc. COMPUTATIONAL MECHANICS ERASMUS MUNDUS

ASSIGNMENT 2.2: J2 PLASTICITY

Computational Solid Mechanics

Author:
Nikhil Dave

Date: May 2, 2018



Contents

1

Introduction 1
1.1 Input data and Material parameters . . . . . . . . . . . .. .o 1
1.2 Loading path . . . . . . . . . . e e e 1
Perfect plasticity 2
2.1 Rate-independentmodel . . . . . . . . ... .. .. 2
2.2 Rate-dependentmodel . . . . . . . ... ... e 3
Linear isotropic hardening plasticity 4
3.1 Rate-independentmodel . . . . . . . . . ... ... e 4
3.2 Rate-dependentmodel . . . . . . . ... ... 4

Nonlinear isotropic hardening plasticity considering an exponential saturation law 6
4.1 Rate-independentmodel . . . . . . . . .. ... 6
4.2 Rate-dependentmodel . . . . . . ... L 6
Linear kinematic hardening plasticity 8
5.1 Rate-independentmodel . . . . . . . ... ... L o 8
5.2 Rate-dependentmodel . . . . . . .. ... ... e 8
Nonlinear isotropic and linear kinematic hardening plasticity 10
6.1 Rate-independentmodel . . . . . . . . .. ... e 10
6.2 Rate-dependentmodel . . . . . . . ... .. e 10
Restoration of the rate-independent behaviour from rate dependent model 12
Conclusion 13
Appendix i



List of Figures

10

11

12

13

14

15

Strain-time curve: loading path considered in the analysis. . . . . . ... ... ... 2
Rate-independent perfect plasticity: Stress-strain curves for varying Poisson’s ratio. 2
Rate-dependent perfect plasticity model: Stress-strain curves with different values

of viscous coefficient. . . . . . . . ... 3
Rate-dependent perfect plasticity model: Stress-time curves with different values of
viscous coefficient. . . . . . . .. e 3
Rate-independent linear isotropic hardening plasticity: Stress-strain curves for dif-
ferent values of isotropic hardening modulus. . . . ... ... ... ......... 4
Rate-dependent linear isotropic hardening plasticity model: Stress-strain curves

with different values of viscous coefficient. . . . . . . ... ... ... L. 5
Rate-dependent linear isotropic hardening plasticity model: Stress-time curves with
different values of viscous coefficient. . . . . . ... ... ... L oL, 5
Rate-independent nonlinear isotropic hardening plasticity: Stress-strain curves for
different values of exponential saturation parameter. . . . ... ... ........ 6
Rate-dependent nonlinear isotropic hardening plasticity model: Stress-strain curves

with different values of viscous coefficient. . . . . . . ... ... oL 7
Rate-dependent nonlinear isotropic hardening plasticity model: Stress-time curves

with different values of viscous coefficient. . . . . . . ... ... oL 7
Rate-independent linear kinematic hardening plasticity: Stress-strain curves for dif-
ferent values of kinematic hardening modulus. . . ... ... ... ......... 8
Rate-dependent linear kinematic hardening plasticity model: Stress-strain curves

with different values of viscous coefficient. . . . . . . ... ... ... ... 9
Rate-dependent linear kinematic hardening plasticity model: Stress-time curves

with different values of viscous coefficient. . . . . . . .. .. ... oo 9
Rate-independent nonlinear isotropic and linear kinematic hardening plasticity: Stress-
SEIAIM CUIVES. © . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e 10
Rate-dependent nonlinear isotropic and linear kinematic hardening plasticity model:

Stress-Strainl CUIVES. . v v v v v v e e e e e e e e e e e e e e e e e e e e e e e 11



16

17

18

Rate-dependent nonlinear isotropic and linear kinematic hardening plasticity model:
SEress-time CUTVES. . . . v v v v v v i vttt et e e e e e e e e e e e e e
Rate-dependent perfect plasticity model with varying total simulation time: Stress-
SLTAIN CUTVES. . . . v v v v v e e e e e e e e e e e e e e e e e e e e e e e
Rate-dependent perfect plasticity model with varying viscous coefficient: Stress-

SLTAIN CUTVES. & v v v v vt e e e e e e e e e e e e e e e e e e e e e e e e

19 Rate-dependent perfect plasticity model with varying viscous coefficient: Stress-time
CUTVES. & o o v e e e e e e e e e e e e e e e e e e e e e e e e e
List of Tables

1

Default input data and material properties used in the analysis . . . . . .. ... ..



COSM - Assignment 2.2: J2 Plasticity Nikhil Dave

1 Introduction

The purpose of this work is to analyse the behaviour of the material considering various J2 plas-
ticity models. To this effect, a MATLAB program is implemented to perform numerical simulations
for these models and generate post-processed stress-strain and stress-time graphs to examine and
validate our understanding of J2 plasticity.

1.1 Input data and Material parameters

The implementation requests the user to determine several parameters required for the analysis
and also suggests default values that could be considered. These values define the model type the
user desires to analyse. The default material parameters are specified as the properties of metal in
order to simulate close to a real-world scenario. The default input data and material properties are
given in Table 1. It is important to remark that for specific cases few parameters are not needed
and are accordingly neglected by the MATLAB program presented in the Appendix.

Input data &
material parameters Value

Young’s modulus, E 2.1e+11 Pa
Yield stress, o, 4.0e+8 Pa
Isotropic hardening modulus, K 2.0e+10 Pa
Kinematic hardening modulus, H 1.0e+10 Pa
Asymptotic maximum Stress, o 9.0e+8 Pa

Exponential saturation parameter, § 150

Viscous coefficient, n 3.0e+10 Pa - s
Poisson’s ratio, v 0.30
Total time of simulation, ¢ 5s
Step size, At 0.025 s

Table 1: Default input data and material properties used in the analysis

1.2 Loading path

The loading path for this analysis is defined as a strain-time curve which starts with a uniaxial
loading state till £y; = 0.01, surpassing tensile yield stress and achieving plastic loading. Next, an
uniaxial unloading is performed till ;; = —0.01, to surpass the compressive yield stress. This is
followed by a loading state again until £;; = 0.01. This collection of loading and unloading steps
could be expressed as a cyclic loading path as shown in Figure 1. Please note the loading path
considered here is the same as in the 1D plasticity analysis.

1



COSM - Assignment 2.2: J2 Plasticity Nikhil Dave

Loading path (strain - time curve)
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Figure 1: Strain-time curve: loading path considered in the analysis.

2 Perfect plasticity

2.1 Rate-independent model

In this section, we analyse the rate-independent perfect plasticity model for varying Poisson’s ratio
v. As associated with plastic behaviour, the relevant information is stored in the deviatoric part
of the stress and therefore we can see that stresses cannot exceed the deviatoric yield stress and
provide a constant value curve on the dev(stress)-strain graph. The same effect is also evident
during the unloading phase, wherein the stresses decrease to negative deviatoric yield stress value
and become constant thereafter. It can also be seen in the stress-strain graphs shown in Figure 2
that the value of Poisson’s ratio of the material determines the slope of the curve during both the
loading and unloading phase affecting the rate of increase of the stresses to reach the yield value
faster. Although, since stresses comprises of both deviatoric and spherical part, the slope depends
on the combined effect and we do not encounter a constant value curve on the stress-strain graph.
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Figure 2: Rate-independent perfect plasticity: Stress-strain curves for varying Poisson’s ratio.
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2.2 Rate-dependent model

Now, we analyse the effect of viscosity of the material, 1 in the rate-dependent model. In this
model, since the elastoplastic tangent operator changes due to viscosity, we notice the increase in
stresses above the deviatoric yield value during both loading and unloading phases. Figure 3(a)
shows the stress-strain graph for this model as a function of the viscosity of the material wherein a
higher slope is observed with increasing value of viscosity without any effect on the yield surface.
For this model, we also study the behaviour of stresses with time. In the stress-time curves shown in
Figure 4, we observe the symmetry of the response in both tension and compression with deviatoric
stress value surpassing yield value with increase in viscosity parameter.
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Figure 3: Rate-dependent perfect plasticity model: Stress-strain curves with different values of viscous

coefficient.
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Figure 4: Rate-dependent perfect plasticity model: Stress-time curves with different values of viscous

coefficient.
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3 Linear isotropic hardening plasticity

3.1 Rate-independent model

In this section, we analyse the behaviour of the linear isotropic hardening model with varying
isotropic hardening modulus, K. In this model, an expansion of the elastic region could be noticed
in the dev(stress)-strain graph shown in Figure 5(b). With increasing hardening modulus, the slope
of the curve increases and the elastic region expands. This is in order to keep the rate-independent
model a reasonable process as per the internal variable, q. On overcoming the deviatoric yield
stress, the relation between stress and strain depends on the isotropic hardening modulus.
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Figure 5: Rate-independent linear isotropic hardening plasticity: Stress-strain curves for different val-
ues of isotropic hardening modulus.

3.2 Rate-dependent model

Now, we analyse the effect of viscosity of the material, n in the rate-dependent model. Figure 6
shows the stress-strain graphs for this model as a function of the viscosity of the material wherein
the change in viscosity doesn’t bring about much change to the stress-strain graph in Figure 6(a),
although we could see a smoother transition with higher slopes in the dev(stress)-strain graph with
similar expansion of the yield surface as in rate-independent case. For this model, we also consider
the behaviour of stresses with time. In the stress-time curve shown in Figure 7(b), we observe that
compared to the perfect plasticity model the stresses do not remain constant and increase with the
expansion of the domain.
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Figure 6: Rate-dependent linear isotropic hardening plasticity model: Stress-strain curves with different

values of viscous coefficient.
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Figure 7: Rate-dependent linear isotropic hardening plasticity model: Stress-time curves with different

values of viscous coefficient.
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4 Nonlinear isotropic hardening plasticity considering an ex-
ponential saturation law

4.1 Rate-independent model

In this section, we analyse the behaviour of the nonlinear isotropic hardening model with varying
exponential saturation parameter, 6. The exponential part can be seen in Figure 8(b) when the
material surpasses the deviatoric yield stress. The curve also tends to be asymptotic independent of
the exponential saturation parameter value to the asymptotic deviatoric maximum stress. Although
higher stresses cannot be achieved once the deviatoric asymptotic value is reached, increase in the
exponential saturation parameter makes this process faster as it controls the expansion of the yield
surface. Not much effect could be seen in the stress-strain graph in Figure 8(a) which includes the
deviatoric and spherical part.
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Figure 8: Rate-independent nonlinear isotropic hardening plasticity: Stress-strain curves for different
values of exponential saturation parameter.

4.2 Rate-dependent model

Now, we analyse the effect of viscosity of the material, n in the rate-dependent model. Figure 9
shows the stress-strain graphs for this model as a function of the viscosity of the material wherein
we observe that the material is able to overcome the deviatoric asymptotic value since the rate-
dependent model enables the material to be present outside the elastic domain. The effect of
increasing the viscous coefficient is seen as higher stresses are observed in the analysis. For this
model, we now examine the behaviour of stresses with time. In the stress-time curve shown
in Figure 10(b), it is noted that the yield surface expands exponentially compared to the linear
isotropic hardening model.
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Figure 9: Rate-dependent nonlinear isotropic hardening plasticity model: Stress-strain curves with
different values of viscous coefficient.
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Figure 10: Rate-dependent nonlinear isotropic hardening plasticity model: Stress-time curves with
different values of viscous coefficient.
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5 Linear kinematic hardening plasticity

5.1 Rate-independent model

In this section, we analyse the behaviour of the linear kinematic hardening model with varying
kinematic hardening modulus, H. In this model, there is no expansion of the elastic region as seen
in the stress-strain graphs shown in Figure 11. With increasing hardening modulus, the slope of
the curve increases and the elastic region translates as per the internal variable, ¢. It is interesting
to note that with this translation, with higher kinematic hardening the compressive plastic loading
occurs ahead of the other cases.
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Figure 11: Rate-independent linear kinematic hardening plasticity: Stress-strain curves for different
values of kinematic hardening modulus.

5.2 Rate-dependent model

Now, we analyse the effect of viscosity of the material, n in the rate-dependent model. Figure
12(a) shows the dev(stress)-strain graph for this model as a function of the viscosity of the ma-
terial wherein we observe a closed curve with smoother transition. Also, with increasing viscous
coefficient, higher stresses are observed in the analysis. For this model, now we analyse the be-
haviour of stresses with time. In the stress-time curves shown in Figure 13, we observe the linear
increment due to the translation effect discussed above.
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6 Nonlinear isotropic and linear kinematic hardening plasticity

6.1 Rate-independent model

In this section, an important and interesting analysis is performed to understand the behaviour of
the material by combining the two models discussed in the previous sections i.e. the nonlinear
isotropic and linear kinematic hardening models. To this end, Figure 14 shows the stress-strain
graphs for the rate-independent model wherein the effect of including both the models could be
observed clearly. Firstly, due to the inclusion of isotropic hardening, expansion of the yield surface
is possible. Secondly, the insertion of kinematic hardening results in losing the symmetry and
therefore the asymptotic value would not be achieved in this case.
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Figure 14: Rate-independent nonlinear isotropic and linear kinematic hardening plasticity: Stress-strain
curves.

6.2 Rate-dependent model

In case of the rate-dependent model, Figure 15 shows the stress-strain graphs wherein the viscous
coefficient just adds a regular shift between the two regions as also observed in all the earlier cases
and exhibits identical effects as discussed in the rate-independent model. For this model, we also
looked at the behaviour of stress with time. In the stress-time curve shown in Figure 16(b), we
observe the effect of including both isotropic and kinematic hardening models as noticed above.

10
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Figure 15: Rate-dependent nonlinear isotropic and linear kinematic hardening plasticity model: Stress-

strain curves.
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Figure 16: Rate-dependent nonlinear isotropic and linear kinematic hardening plasticity model: Stress-
time curves.
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7 Restoration of the rate-independent behaviour from rate de-
pendent model

In this section, we aim to restore the rate-independent behaviour of the model from a rate-
dependent case. This could be achieved by two simple approaches. Firstly, increasing the total
time of the simulation would essentially decrease the loading rate and therefore result in recov-
ering a rate-independent model. Another approach is to decrease the viscous coefficient in our
rate-dependent analysis, which would ideally mean, that we simulate the rate-independent case.
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Figure 17: Rate-dependent perfect plasticity model with varying total simulation time: Stress-strain
curves.
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Figure 18: Rate-dependent perfect plasticity model with varying viscous coefficient: Stress-strain
curves.

Both these approaches are used to validate our understanding and are shown in Figures 17-19
where the perfect plasticity model is used to demonstrate this effect. Figure 17(b) shows the

12
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Figure 19: Rate-dependent perfect plasticity model with varying viscous coefficient: Stress-time curves.

effect of increasing the total time of the simulation till the results become independent of the
loading rate whereas, in Figures 18(b) and 19(b), the viscosity of the material is reduced till the
rate-independent effect is observed. Both the results provide the same effect and validate our
understanding and the implementation in MATLAB.

8 Conclusion

In this work, the BE time-stepping algorithm for J2 rate-independent/dependent hardening plas-
ticity models, including linear & nonlinear isotropic hardening and linear kinematic hardening is
implement in MATLAB. Multiple numerical simulations are performed with the presented material
properties and data of the cyclic loading. The post-processed results i.e. stress-strain, dev(stress)-
strain and stress-time, dev(stress)-time graphs for the rate-dependent plasticity models are pre-
sented to analyse the behaviour of the material with varying material parameters. The implemen-
tation is finally validated by showing that the rate-independent behaviour could be recovered from
the rate-dependent model under certain circumstances.

13
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9 Appendix

main_J2 plasticity.m

1
20 %
3 | f============================================= ===
4 | % Program for J2 Plasticity - By: Nikhil Dave
5 | % Computational Solid Mechanics - MSc. Computational Mechanics
6 | % Universitat Politecnica de Catalunya (Barcelona Tech)
71 %
8 | J==========================================================================
9 | % Clear screen, workspace, close open figures
10 | clear;
11 | close all;
12 | clc;
13| %
14 | % Input parameters
15| %
16 % Material properties
17 Mat_Prop.E = suggest_para(’Specify youngs modulus, E [Pa]:’,2.1ell);
18 fprintf(’ \n )
19 Mat_Prop.sigma_y = suggest_para(’Specify yield stress, \sigma_y [Pal:’,4e8);
20 fprintf(’ \n )
21 Mat_Prop.nu = suggest_para(’Specify poissons coefficient, nu [-]:’,0.3);
22 Mat_Prop.lambda = (Mat_Prop.ExMat_Prop.nu)/((1 + Mat_Prop.nu)*(1 - 2*Mat_Prop.nu)
23 Mat_Prop.mu = Mat_Prop.E/(2%(1 + Mat_Prop.nu));
24 Mat_Prop.k = Mat_Prop.lambda+(2/3)*Mat_Prop.mu;
25 axx = [1, 1, 1, 0, 0, 0]’;
26 dev = eye(6) -(1/3)*(axx*axx’);
27 Mat_Prop.C = Mat_Prop.k*(axx*axx’) + 2*Mat_Prop.muxdev;
28
29 % Various models to be analysed
30 fprintf(’ \n )
31 fprintf(’ \n )
32 disp(’ (1) : Analyse perfect plasticity.’)
33 disp(’ (2): Analyse isotropic hardening plasticity.’)
34 disp(’ (3): Analyse kinematic hardening plasticity.’)
35 disp(’ (4): Analyse isotropic and Kinematic hardening plasticity.’)
36 plastic_mod = suggest_para(’Which model to be analysed?:’,1);
37
38 % Specify rate dependency
39 fprintf(’ \n )
40 Rate = input(’Include rate-dependency? [Y/N]:’,’s’);
41 if Rate == ’Y’
42 fprintf(’ \n ’)
43 Mat_Prop.visc = suggest_para(’Specify the viscous coefficient [Pa*s]:’,3e10);
44 else
45 Mat_Prop.visc=0; 7 zero for rate-independent case
46 end
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47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

64
65
66
67

68
69
70

71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91

% Models with hardening
switch plastic_mod

case

case

case

otherwise ) Perfect plasticity

end

% Including isotropic hardening type

if plastic_mod == 2 || plastic_mod ==

fprintf(’ \n )

disp(’(1): Analyse linear isotropic hardening plasticity.’)

disp(’ (2): Analyse nonlinear isotropic hardening plasticity considering

isotropic_hardening = suggest_para(’Specify isotropic hardening type:’,1);
if isotropic_hardening ==

2 % Isotropic hardening

fprintf (° \n ’)

disp(’You are analysing the isotropic hardening plasticity model.’);

Hardening = ’Y’;

fprintf(’ \n ’)

Mat_Prop.K = suggest_para(’Specify isotropic hardening modulus, K [Pa]:’,2el0
);

Mat_Prop.H = 0;

3 % Kinematic hardening

fprintf(° \n ’)

disp(’You are analysing the kinematic hardening plasticity model.’);

Hardening = ’Y’;

Isotropic_Hardening = ’None’;

fprintf(’ \n ’)

Mat_Prop.H = suggest_para(’Specify kinematic hardening modulus ,H [Pal:’,1el0
)

Mat_Prop.K = 0;

4 7 Isotropic and Kinematic hardening

fprintf(’ \n ’)

disp(’You are analysing the isotropic and kinematic hardening plasticity
model.’);

Hardening = ’Y’;

fprintf(’ \n ’)

Mat_Prop.K = suggest_para(’Specify isotropic hardening modulus, K [Pal:’,2el10
)

fprintf(° \n ’)

Mat_Prop.H = suggest_para(’Specify kinematic hardening modulus, H [Pa]:’,1el0
)3

fprintf(’ \n ’)

disp(’You are analysing the perfect plasticity model’);
Hardening = °N’;

Isotropic_Hardening = ’None’;

Mat_Prop.K = 0;

Mat_Prop.H = 0;

exponential saturation law.’)

Isotropic_Hardening = ’Exp’;

fprintf(’ \n ’)

Mat_Prop.sigma_inf = suggest_para(’Specify asymptotic maximum stress,
sigma_inf [Pa]:’,9e8);

ii



COSM - Assignment 2.2: J2 Plasticity Nikhil Dave

92 fprintf(’ \n )

93 Mat_Prop.delta = suggest_para(’Specify exponential saturation parameter,
delta:’,150);

94 else

95 Isotropic_Hardening = ’Linear’;

96 end

97 end

98

99 % Total simulation time and step size

100 fprintf(’ \n )

101 tot_time = suggest_para(’Specify total simulation time for each loadstate [s]:’,1

102 fprintf(’ \n ’)

103 time_step = suggest_para(’Specify time step size [s]:’,0.025);

104

105 | %

106 | % Processing

107 | %

108 no_of_loadstates = 5;

109 eps_vector = zeros(no_of_loadstates,1);

110 eps_vector(l) = 0.0;

111 eps_vector(2) = 0.01;

112 eps_vector(3) = 0.0;

113 eps_vector(4) = -0.01;

114 eps_vector(5) = 0.0;

115 eps_vector(6) = 0.01;

116 strain = zeros(no_of_loadstates*tot_time/time_step,1);

117 for ii = 2:(tot_time/time_step)+1

118 strain(ii) = (eps_vector(2)/(tot_time/time_step))*(ii-1);

119 strain(ii+tot_time/time_step) = eps_vector(2)+((eps_vector(3)...

120 -eps_vector(2))/(tot_time/time_step))*(ii-1);

121 strain(ii+2*(tot_time/time_step)) = eps_vector(3)+((eps_vector(4)...

122 -eps_vector(3))/(tot_time/time_step))*(ii-1);

123 strain(ii+3*(tot_time/time_step)) = eps_vector(4)+((eps_vector(5)...

124 -eps_vector(4))/(tot_time/time_step))*(ii-1);

125 strain(ii+4x*(tot_time/time_step)) = eps_vector(5)+((eps_vector(6)...

126 -eps_vector(5))/(tot_time/time_step))*(ii-1);

127 end

128 time = zeros((no_of_loadstates)*(tot_time/time_step),1);

129 for k = 1:(no_of_loadstates*tot_time/time_step)

130 time(k) = k*time_step;

131 end

132

133 % Initialising

134 chi = 0; % isotropic strain variable

135 chi_dash = zeros(6,1); ' kinematic strain variable

136 eps_pl = zeros(6,1); % plastic strain

137 gamma = zeros(length(strain),1); 7 plastic multiplier

138 stress = zeros(6,1);

139 dev_stress = zeros(6,1);

140 q = 0;

141 q_dash = zeros(6,1);

iii
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142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

163

164

165

166
167
168
169

170

171

172

173
174
175
176
177
178
179
180
181
182
183
184

stressl = zeros(length(strain),1);
dev_stressl = zeros(length(strain),1);

% get yield function and trial state values

for i = 2:length(strain)

eps = [strain(i), 0 , 0, 0, 0, 0]7;

[try_f,trystate] = trystatefn_J2(Mat_Prop,chi,chi_dash,...
eps_pl,eps,dev,Isotropic_Hardening) ;

if try_f <=0
eps_pl = trystate.eps_pl;
chi = trystate.chi;
chi_dash = trystate.chi_dash;
stress1(i) = trystate.stress(1l);
dev_stress1(i) = trystate.dev_stress(1);
q = trystate.q ;
g_dash = trystate.q_dash;
C_epl = Mat_Prop.C;

else

% linear or no isotropic hardening
if strcmp(Isotropic_Hardening ,’Linear’) == 1 || strcmp(Isotropic_Hardening |,
’None’)==
gamma = try_f/((2*Mat_Prop.mu+(2/3)*(Mat_Prop.K+Mat_Prop.H)+(Mat_Prop.
visc/time_step))*time_step);
[C_epl,Upd] = Plastic_upd_fn_linear_J2 (gamma,Mat_Prop.mu,Mat_Prop.H,
Mat_Prop.K, ...
trystate,Mat_Prop.visc,
time_step,Mat_Prop.k,dev

)3
% nonlinear isotropic hardening
else
gamma = NRmethod_J2 (try_f,Mat_Prop.visc,Mat_Prop.mu,Mat_Prop.H,Mat_Prop.

sigma_y, ...
Mat_Prop.sigma_inf ,Mat_Prop.delta,trystate.chi,

time_step);
[C_epl, Upd] = Plastic_upd_fn_nonlinear_J2 (gamma,Mat_Prop.mu,Mat_Prop.H
Mat_Prop.sigma_inf,Mat_Prop.sigma_y,trystate,time_step,Mat_Prop.visc,
Mat_Prop.delta,Mat_Prop.k,dev) ;
end

% Update
eps_pl = Upd.eps_pl;
chi = Upd.chi;
chi_dash = Upd.chi_dash;
stress1(i) = Upd.stress(1);
dev_stressl1(i) = Upd.dev_stress(1);
gamma (i) = gamma;
q = Upd.q;
g_dash = Upd.q_dash;
end
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185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

end

h

% Post-processing

b

i stress-strain graph

figure(1)

plot(strain,stressl,’bs-’);

hold on

grid on

grid minor

set(gca, ’FontSize’,12)

xlabel (’$\varepsilon$ \ [-]’,’Interpreter’,’LaTex’,’FontSize’,20)
ylabel (’$\sigma_{11} \ [Pal$’,’Interpreter’,’LaTex’,’FontSize’,20)
legend([’\nu = ’ num2str(Mat_Prop.nu,’%0.2f°)],’Location’,’southeast’)

%y dev stress-strain graph

figure(2)

plot(strain,dev_stressl,’bs-’);

hold on

grid on

grid minor

set(gca, ’FontSize’,12)

xlabel (’$\varepsilon$ \ [-]’,’Interpreter’,’LaTex’,’FontSize’,20)
ylabel (’$dev(\sigma_{11}) \ [Pal$’,’Interpreter’,’LaTex’,’FontSize’,20)
legend([’\nu = ’ num2str(Mat_Prop.nu,’%0.2f°)],’Location’,’southeast’)

i stress-time graph

if Mat_Prop.visc "= 0

figure (3)

plot([0;time],stressl, ’bs-")

hold on

grid on

grid minor

set(gca,’FontSize’,12)

xlabel(°$t \ [s]$’,’Interpreter’,’LaTex’,’FontSize’,20)
ylabel(’$\sigma_{11} \ [Pal$’,’Interpreter’,’LaTex’,’FontSize’,20)

legend([’\eta = ’ num2str(Mat_Prop.visc,’%1.2E’)],’Location’,’southeast’)
figure (4)

plot ([0;time] ,dev_stressl, ’bs-’)

hold on

grid on

grid minor

set(gca, ’FontSize’,12)

xlabel (°$t \ [s]$’,’Interpreter’,’LaTex’,’FontSize’,20)

ylabel (’$dev(\sigma_{11}) \ [Pal$’,’Interpreter’,’LaTex’,’FontSize’,20)
legend([’\eta = ’ num2str(Mat_Prop.visc,’%1.2E’)], ’Location’,’southeast’)
end
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suggest_para.m

OV OOV P WNR

[

function Result = suggest_para(text,default)

b

% para_in suggests an input parameter to the user

/A

prompt = [text ’(suggested value ’ num2str(default) ’) = ’];
Result = input(prompt);

if isempty(Result)
Result = default;
end

trystatefn J2.m

OO UT A~ WN -

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

function [try_f , trystate] = trystatefn_J2(Mat_Prop,chi,chi_dash,eps_pl,...
eps,dev,Isotropic_Hardening)

0
/A
% trystatel_J2 computes variables for trial state

h

% Input

chi_try = chi;

chi_dash_try = chi_dash;

eps_pl_try = eps_pl;

eps_i = eps;

stress_try = Mat_Prop.C*x(eps_i - eps_pl_try);

% Linear or no isotropic hardening

if strcmp(Isotropic_Hardening ,’Linear’) == || strcmp(Isotropic_Hardening ,’None’)

q_try = - Mat_Prop.K * chi_try ;

% Nonlinear isotropic hardening

elseif strcmp(Isotropic_Hardening ,’Exp’) ==

g_try = (Mat_Prop.sigma_y - Mat_Prop.sigma_inf)*(l-exp(-Mat_Prop.delta*chi_try));
end

% Output

g_dash_try = -Mat_Prop.H*(2/3)*eye(6)*chi_dash_try;
dev_stress_try = dev * stress_try;

try_f = norm(dev_stress_try-q_dash_try)-(sqrt(2/3))*(Mat_Prop.sigma_y-q_try);
trystate.eps_pl = eps_pl_try;

trystate.chi = chi_try;

trystate.chi_dash = chi_dash_try;

trystate.stress = stress_try;

trystate.dev_stress = dev_stress_try;

trystate.q = q_try;

trystate.q_dash = q_dash_try;

end

vi
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plastic_upd_fn_linear_J2.m

1

2| function [C_epl, Upd] = Plastic_upd_fn_linear_J2 (gamma,mu,H,K,trystate,visc,
time_step,k,dev)

3| %

4 | % Plastic_upd_fn_linear_J2 finds elastoplastic tangent modulus and updated

5| % plastic values for linear case

6| %

7

8 | % Input

9 | eps_pl_try = trystate.eps_pl;

10 | chi_try = trystate.chi;

11 | chi_dash_try = trystate.chi_dash;

12 | stress_try = trystate.stress;

13 | dev_stress_try = trystate.dev_stress;

14 | q_try = trystate.q;

15 | g_dash_try = trystate.q_dash;

16 | nor = (dev_stress_try-q_dash_try)/norm(dev_stress_try-q_dash_try) ;
17 | ax=[1 11 0 0 0]’;

18 | del = 1-(2*muxgamma*time_step)/norm(dev_stress_try - q_dash_try);
19 | del_dash = 2*mu/(2*mu+2/3*(K+H)+visc/time_step)-(1-del);

21 | % Output

22 | Upd.eps_pl = eps_pl_try + gamma*xtime_step*nor;

23 | Upd.chi = chi_try + gamma*time_step*sqrt(2/3);

24 | Upd.chi_dash = chi_dash_try - gamma*time_step*nor;

25 | Upd.stress = stress_try - gamma*time_step*2*mu*nor;

26 | Upd.dev_stress = dev*Upd.stress;

27 | Upd.q = q_try - gammaxtime_step*sqrt(2/3)*K;

28 | Upd.q_dash = q_dash_try + gammaxtime_step*(2/3)*H*nor;
29 | C_epl = kx(ax*ax’)+2*xmu*xdel*dev-2*mu*del_dash*(nor*nor’) ;
30 | end

plastic_upd_fn nonlinear J2.m

1

2 | function [C_epl, Upd] = Plastic_upd_fn_nonlinear_J2 (gamma,mu, H,sigma_inf,...
3 sigma_y, trystate, time_step,visc, delta,k,dev)
41 %

5| % Plastic_upd_fn_nonlinear_J2 finds elastoplastic tangent modulus and updated
6 | % plastic values for nonlinear case

7 | J======s==================================S=====S=SS=S==S===================

8

9 | % Input

10 | eps_pl_try = trystate.eps_pl;

11 | chi_try = trystate.chi;

vii
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12| chi_dash_try = trystate.chi_dash;

13 | stress_try = trystate.stress;

14 | dev_stress_try = trystate.dev_stress;

15 | g_dash_try = trystate.q_dash;

16 | nor = (dev_stress_try-q_dash_try)/norm(dev_stress_try-q_dash_try);
17 | ax=[1 1100 0]°;

18 | del = 1-(2*mu*gamma*time_step)/norm(dev_stress_try - q_dash_try);
19
20
21 | % Output
22
23 | Upd.eps_pl = eps_pl_try + gamma*time_step*nor;

24 | Upd.chi = chi_try+gamma*time_step*sqrt(2/3);

25 | Upd.chi_dash = chi_dash_try-gamma*time_step*nor;

26 | Upd.stress = stress_try - gamma*time_step*2*muxnor;

27 | Upd.dev_stress = dev*Upd.stress;

28 | Upd.q = (sigma_y-sigma_inf)*(1-exp(-deltax(chi_try+ gamma*time_step*sqrt(2/3))));
29 | Upd.q_dash = q_dash_try+gamma*time_step*(2/3)*H*nor;

30 | d2p = (sigma_inf - sigma_y) * del * time_step*sqrt(2/3)*exp(-del*(Upd.chi+gamma*
time_step*sqrt(2/3)));

31 | del_dash = 2x*mu/(2*mu+(2/3)*(d2p+H)+visc/time_step)-(1-del);

32 | C_epl = k*x(ax*ax’)+2*mu*delta*dev-2*muxdel_dash*(nor*nor’) ;

33 | end
NRmethod J2.m
1
2 | function gamma = NRmethod_J2 (try_f,visc,mu,H,sigma_y,sigma_inf,delta,chi,time_step)
3| %
4 | % NRmethod_J2 is the Newton-Raphson method for solving nonlinear problems
51 %
6
7 | tol = 1le-6; % convergence tolerance
8 | maxit = 10; % maximum iterations

9| jj = 0; % initialise counter
10 | gamma = 0; % initialise gamma

12| % calculate residual

13 | residual = try_f-gammaxtime_step*(2*mu+(2/3)*H+visc/time_step)-sqrt(2/3)*...
14 ((sigma_inf - sigma_y)*(1l-exp(-deltax(chi+gamma*time_step*sqrt(2/3))))...
15 -(sigma_inf-sigma_y)*(1-exp(-delta*chi)));

16 | % while loop with tolerance

17 | while abs(residual) > tol && jj < maxit

18 | dgamma = - time_step*(2*mu+(2/3)*H+visc/time_step)-(2/3)*(sigma_inf-sigma_y)...
19 *xdelta*time_step*sqrt (2/3)*exp(-delta*(chi+gamma*time_step*sqrt(2/3)));
20 | del_gamma = -(1/dgamma)*residual ;

21 | % update gamma and residual for next loop

22 | gamma = gamma + del_gamma ;

23 | residual = try_f - gammax*time_step*(2*mu+(2/3)*H+visc/time_step)-sqrt(2/3)*...
24 ((sigma_inf-sigma_y)*(1-exp(-delta*(chi+gamma*time_step*sqrt(2/3))))...

viii
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25 -(sigma_inf-sigma_y)*(l-exp(-delta*chi)));
26 | jj=jj+1; % counter update

27 | end

28 | end

ix
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