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COSM - Assignment 1: Continuum Damage Models Nikhil Dave

1 Objective

The objective of this assignment is to understand, present and implement the theory of contin-
uum damage for elastoplastic materials. In the first part, for strain-rate independent models,
a supplied MATLAB code for symmetric model with linear hardening/softening law is to be
modified to incorporate the tension-only and non-symmetric tension-compression models along
with exponential hardening/softening law. The second part deals with the implementation of
the rate-dependent models and viscosity parameter and study their behaviour and correctness.

2 Part I: Rate independent models

In this section we present the result plots obtained - the path in the stress space and the stress-
strain curve for three proposed cases. These are analysed for the two specified models with the
following basic material properties,

E = 200 GPa, σy = 200 MPa, ν = 0.3, H = ±0.2, n = 2

where E is the Young modulus, σy is the yield stress, ν is the Poisson ratio, H is the harden-
ing/softening modulus and n is the ratio of compression/tension strength.

2.1 Case 1: Complete uniaxial path
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Figure 1: Path at the stress space for case 1: tension-only damage model

The first case of the analysis consisting of uniaxial loading/unloading path is given as,

∆σ
(1)
1 = α, ∆σ

(1)
2 = 0; ∆σ

(2)
1 = −β, ∆σ

(2)
2 = 0; ∆σ

(3)
1 = γ, ∆σ

(3)
2 = 0 (1)
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where α, β and γ are arbitrary parameters chosen as α = 400 MPa, β = −1500 MPa and
γ = 1000 MPa.

Figure 1 shows a graphical representation of the obtained path in the stress space for the
tension-only damage model. In this case, stress paths were chosen specifically to check the
correctness of our implementation with hardening type as exponential. Firstly the load path
goes into the inelastic zone which is then compressed and loaded again. The evolution of the
stress space is represented by the dotted blue lines which expands, to keep the points on the
boundary, due to hardening. As the material overcomes the elastic regime in the first loading,
it undergoes a hardening process and the internal variable r increases. In the following step,
the material is compressed with a lower slope but without any restriction on its elastic domain.
This is due to the fact that the tension-only model posses a characteristic to allow the material
to be compressed up to infinity.

-6 -5 -4 -3 -2 -1 0 1 2

STRAIN
1 10

-3

-800

-600

-400

-200

0

200

400

S
T

R
E

S
S

1

(a) Stress-strain curve

0 2 4 6 8 10

TIME

0.4

0.5

0.6

0.7

0.8

0.9

in
te

rn
a
l 
v
a
ri

a
b

le
 (

r)

(b) Internal variable evolution

Figure 2: Result plots for case 1: tension-only damage model

Figure 2 shows the stress-strain curve and the evolution of internal variable with time obtained
for the loading path explained above where the black line with cross represents the first load
stage, the blue line with circles shows the second load stage and the green line with asterisk
corresponds to the third load stage. In the final step, the evolution takes place with the same
slope as the previous step, as expected. Also, the internal variable remains constant for this
step since the compression loading does not overpasses the elastic regime.

We know that the non-symmetrical tension-compression damage model represents materials,
like concrete, whose tension and compression domains are different from each other. Figure 3
shows a plot of the obtained path in the stress space. It is interesting to note that the elastic
regime is surpassed twice because the material is allowed to fail under compressive loading in
addition to the first tensile loading.
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Figure 3: Path at the stress space for case 1: non-symmetrical tension-compression damage model
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(b) Internal variable evolution

Figure 4: Result plots for case 1: non-symmetrical tension-compression damage model

Figure 4 shows the stress-strain curve and the evolution of internal variable with time obtained
for the loading path where we can observe that the internal variable increases with the first
loading (as in tension-only model) and later when the inelastic regime is achieved again under
compression. This effect can also be seen in the lower part of the stress-strain curve.
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2.2 Case 2: Uniaxial / biaxial path

The second case of the analysis consisting of uniaxial / biaxial path is given as,

∆σ
(1)
1 = α, ∆σ

(1)
2 = 0; ∆σ

(2)
1 = −β, ∆σ

(2)
2 = −β; ∆σ

(3)
1 = γ, ∆σ

(3)
2 = γ (2)

where α = 400 MPa, β = −1500 MPa and γ = 1000 MPa.
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Figure 5: Path at the stress space for case 2: tension-only damage model

Figure 5 shows a graphical representation of the obtained path in the stress space for the
tension-only damage model. In this case, since we use the softening parameter, H = −0.2,
it can be seen that as the material overcomes the elastic regime, the stress space represented by
the dotted blue lines contracts in order to fulfil the consistency conditions.

Figure 6 shows the stress-strain curve and the evolution of hardening variable with time ob-
tained for the loading path implemented with softening type as exponential. The hardening
variable q varies with the evolution of the domain in the stress space i.e. evolution of the inter-
nal variable and is helpful in understanding the contraction behaviour in case of softening.

As the material overcomes the elastic regime in the first loading, it undergoes a softening pro-
cess and the hardening variable decreases. In the following step, the material is compressed
without any restriction on its elastic domain due to the characteristic of the tension-only model.
Again, as expected in the final step, the evolution takes place with the same slope as the pre-
vious step. Also, the hardening variable remains constant for this step since the compression
loading does not overpasses the elastic regime.
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(b) Hardening variable evolution

Figure 6: Result plots for case 2: tension-only damage model

Figure 7 shows a plot of the obtained path in the stress space for the non-symmetrical tension-
compression damage model. Again in this case, the elastic regime is surpassed twice because
the material is allowed to fail under compressive loading as well as during the first tensile load-
ing due to which we could notice the unloading and second loading stages are not coincident
as in the tensile-only model.
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Figure 7: Path at the stress space for case 2: non-symmetrical tension-compression damage model
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(b) Hardening variable evolution

Figure 8: Result plots for case 2: non-symmetrical tension-compression damage model

Figure 8 shows the stress-strain curve and the evolution of hardening variable with time ob-
tained for the loading path where we can observe that the hardening variable decreases twice
evolving (contraction) the size of the elastic surface, first with the tensile loading and then
during compression.

By solving different scenarios and loading paths, we could assess the behaviour of our imple-
mentation, which relates with the theoretical statements.

2.3 Case 3: Complete biaxial path

The third case of the analysis consisting of complete biaxial path is given as,

∆σ
(1)
1 = α, ∆σ

(1)
2 = α; ∆σ

(2)
1 = −β, ∆σ

(2)
2 = −β; ∆σ

(3)
1 = γ, ∆σ

(3)
2 = γ (3)

where α = 400 MPa, β = −1500 MPa and γ = 1000 MPa.

In this final case, we check the correctness of our implementation with hardening type as lin-
ear. Figure 9 shows a graphical representation of the obtained path in the stress space for the
tension-only damage model.
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Figure 9: Path at the stress space for case 3: tension-only damage model

Figure 10 shows the stress-strain curve and the evolution of hardening variable with time ob-
tained for the loading path. It could be easily noticed that the results of this case are very similar
to the complete uniaxial case, since it is practically the same problem but two-dimensional.
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Figure 10: Result plots for case 3: tension-only damage model
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Figure 11: Path at the stress space for case 3: non-symmetrical tension-compression damage model

The results for the non-symmetrical tension-compression damage model given in Figures 11
and 12 also shows that the this case does not differ with the complete uniaxial case. The 2D
stress-strain plots in both dimensions are also exactly the same which makes it very similar
to case 1. Therefore, the effects of modelling the hardening type as linear or exponential is
analysed with all three cases for this task. It could be seen that the variation of the hardening
variable in Figure 12 is linear in nature compared to the other two cases, where the variation
is curved and effectively more accurate than the linear implementation.
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Figure 12: Result plots for case 1: non-symmetrical tension-compression damage model
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3 Part II: Rate dependent models

In the second part of this assignment, we assess the correctness of the implementation of the
integration algorithm for the continuum isotropic visco-damage symmetric tension-compression
model considering the effects of a few properties like viscosity η, strain rate ε̇, alpha value
for α time-integration method. We consider the same fixed values of the parameters Poisson
ratio, linear hardening/softening, Young’s modulus and yield stress as in the first part of the
assignment.

3.1 Effect of viscosity η on stress-strain curve

We know that the material achieves higher stresses in the inelastic region due to the effect of
higher viscosity. To check if our implementation produces the same effect, we select a simple
case of uniaxial load path overpassing the elastic region. The results obtained for the stress-
strain curve with varying viscosities are shown in Figure 13.
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Figure 13: Evolution of stress-strain curve for different values of viscosity η

From the above plot, we see identical behaviour of all the models within the elastic domain
since we have zero viscosity associated with the strain in the elastic region. Though, within the
inelastic region, higher viscosities account for higher stresses for the same strain value which is
consistent with our theoretical knowledge. Hence, our implementation behaves as expected.

3.2 Effect of strain rate on stress-strain curve

In order to show the evolution of the stress-strain curve as a function of strain rate ε̇, we fix all
parameters and loading path except the total time. This allows us to control the strain rate as a
direct relation i.e. for higher strain rate, the loading path should be applied in lesser time.
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Figure 14 shows that within the elastic region, there is no variation. But as expected in the
inelastic region, a direct dependency of stress on strain rate is observed. This is the main
property of the rate dependent models, wherein the stresses not only depend on strains but
also on their rate. This important characteristic of the visco-damage models means that even
for a constant strain tensor ε, a change in stress tensor σ could be observed.
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Figure 14: Evolution of stress-strain curve for different values of strain rate ε̇

For checking the correctness of the implementation, we compared the stress-strain curves for
zero viscosity and varying total time period to give us the same results as the rate independent
model. It can also be observed that the model also matches the rate independent case if the
total time period is high enough to consider strain rate as zero. This proved that the model
behaves as expected.

3.3 Effect of time-integration parameter α on stress-strain curve

Now, we analyse the behaviour of the stress-strain curve with various time-integration schemes.
We considered different time-integration schemes like explicit Forward-Euler scheme (α = 0),
explicit scheme with α = 0.25, implicit Crank-Nicholson scheme (α = 0.5 ), Galerkin scheme
(α = 0.75), implicit Barckward-Euler scheme (α = 1).

Figure 15 shows the stress-strain curves for different α values. It can be noticed that we get a
meaningful solution using the integration schemes with α > 0.5, where the loading - unloading
behaviour could be easily understood. But with the explicit integration schemes, the solution
obtained is does not seems meaningful. It is known from the partial differential equation so-
lution methods that explicit schemes are conditionally stable, produce spurious solutions and
should be avoided even if they provide low computational cost. We also know that all these
schemes are first order accurate except Crank-Nicholson (second order accurate) which should
be preferred and therefore is used for all other results provided in this report.
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(a) Implicit backward Euler scheme α = 1

-6 -5 -4 -3 -2 -1 0 1 2

STRAIN
1 10

-3

-500

-400

-300

-200

-100

0

100

200

300

S
T

R
E

S
S

1

 = 0.75

(b) Galerkin scheme α = 0.75
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(c) Crank-Nicholson scheme α = 0.5
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(d) Explicit scheme with α = 0.25
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(e) Explicit forward Euler scheme α = 0

Figure 15: Evolution of stress-strain curve for different values of α integration parameter
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3.4 Effect of time-integration parameter α on tangent and algorithmic
constitutive operators

To obtain the influence of α on the evolution of the tangent and algorithmic constitutive opera-
tors, we fix all other parameters and evaluate their behaviour. In this section, we use three dif-
ferent integration schemes - Implicit backward Euler scheme (α = 1), Crank-Nicholson scheme
(α = 0.5) and Explicit forward Euler scheme (α = 0).

Figure 16 shows the evolution of both tangent and algorithmic constitutive operators using the
implicit backward Euler scheme. We know that the tangent constitutive operator relates the
stress and strain derivatives and the algorithmic operator relates the derivatives of the current
values of stresses and strains. Therefore, the value of these operators are equal whenever they
are in the elastic region as seen in the Figure 16 but as soon as the damage appears, the values
change.
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(b) Algorithmic constitutive operator

Figure 16: Evolution along time of the C11 component of the tangent and algorithmic constitutive
operators for α = 1

Similarly, the evolution of these operators using the Crank-Nicholson scheme is shown in Figure
17. The results obtained follow the same trend as in the previous case but with lower value of α.

In the final plot, shown in Figure 18, we check the correctness of our model implementation
using Explicit forward Euler scheme. Since α = 0, both components are identical and the model
behaviour is as expected. It is interesting to note that as α increases these components starts
deviating from the same value to reproduce the behaviour of the material but with either α or
∆t tending to zero, the the differences vanish and both operators tend to match.
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(a) Tangent constitutive operator
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(b) Algorithmic constitutive operator

Figure 17: Evolution along time of the C11 component of the tangent and algorithmic constitutive
operators for α = 0.5
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(a) Tangent constitutive operator
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(b) Algorithmic constitutive operator

Figure 18: Evolution along time of the C11 component of the tangent and algorithmic constitutive
operators for α = 0
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4 Conclusion

In this assignment work for continuum damage for elastoplastic materials, the implementation
of the several requirements was performed into a given MATLAB code after understanding the
theory of rate independent and dependent models. While comparing all obtained results with
the theoretical knowledge, the capability of the implementation performed to solve various
cases was validated at each step. The model currently works for all required cases specified
in the first assignment of Computational Solid Mechanics. Lastly, all modified functions of the
implementation can be found in the Appendix of this document.
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5 Appendix

Modified functions

This section includes all the modified functions used in the implementation of the code and to
generate the presented results. The functions listed below are -
damage main.m, rmap dano1.m, Modelos de dano1.m, dibujar criterio dano1.m.

A) damage main.m

1
2 function [sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main...

3 (Eprop,ntype,istep,strain,MDtype,n,TimeTotal)

4 global hplotSURF

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % CONTINUUM DAMAGE MODEL

7 % ----------------------

8 % Given the almansi strain evolution ("strain(totalstep,mstrain)") and a

9 % set of parameters and properties, it returns the evolution of the cauchy

10 % stress and other variables that are listed below.

11 %

12 % INPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

13 % ----------------------------------------------------------------

14 % Eprop(1) = Young’s modulus (E)

15 % Eprop(2) = Poisson’s coefficient (nu)

16 % Eprop(3) = Hardening(+)/Softening(-) modulus (H)

17 % Eprop(4) = Yield stress (sigma_y)

18 % Eprop(5) = Type of Hardening/Softening law (hard_type)

19 % 0 --> LINEAR

20 % 1 --> Exponential

21 % Eprop(6) = Rate behavior (viscpr)

22 % 0 --> Rate-independent (inviscid)

23 % 1 --> Rate-dependent (viscous)

24 %

25 % Eprop(7) = Viscosity coefficient (eta) (dummy if inviscid)

26 % Eprop(8) = ALPHA coefficient (for time integration), (ALPHA)

27 % 0<=ALPHA<=1 , ALPHA = 1.0 --> Implicit

28 % ALPHA = 0.0 --> Explicit

29 % (dummy if inviscid)

30 %

31 % ntype = PROBLEM TYPE

32 % 1 : plane stress

33 % 2 : plane strain

34 % 3 : 3D

35 %

36 % istep = steps for each load state (istep1,istep2,istep3)

37 %

38 % strain(i,j) = j-th component of the linearized strain vector at the i-th

39 % step, i = 1:totalstep+1

15
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40 %

41 % MDtype = Damage surface criterion %

42 % 1 : SYMMETRIC

43 % 2 : ONLY-TENSION

44 % 3 : NON-SYMMETRIC

45 %

46 % n = Ratio compression/tension strength (dummy if MDtype is

47 % different from 3)

48 %

49 % TimeTotal = Interval length

50 %

51 % OUTPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

52 % ------------------------------------------------------------------

53 % 1) sigma_v{itime}(icomp,jcomp) --> Component (icomp,jcomp) of the cauchy

54 % stress tensor at step "itime"

55 % REMARK: sigma_v is a type of

56 % variable called "cell array".

57 %

58 % 2) vartoplot{itime} --> Cell array containing variables wishes to plot

59 % --------------------------------------

60 % vartoplot{itime}(1) = Hardening variable (q)

61 % vartoplot{itime}(2) = Internal variable (r)%

62 %

63 % 3) LABELPLOT{ivar} --> Cell array with the label string for

64 % variables of "varplot"

65 %

66 % LABELPLOT{1} => ’hardening variable (q)’

67 % LABELPLOT{2} => ’internal variable’

68 %

69 % 4) TIME VECTOR - >

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71 % SET LABEL OF "vartoplot" variables (it may be defined also outside...

72 % this function)

73 % ----------------------------------

74 LABELPLOT = {’hardening variable (q)’,’internal variable’,’C_alg’,’C_tan’};

75 E = Eprop(1) ; nu = Eprop(2) ;

76 viscpr = Eprop(6) ;

77 sigma_u = Eprop(4);

78
79 if ntype == 1

80 menu(’PLANE STRESS has not been implemented yet’,’STOP’);

81 error(’OPTION NOT AVAILABLE’)

82 elseif ntype == 3

83 menu(’3-DIMENSIONAL PROBLEM has not been implemented yet’,’STOP’);

84 error(’OPTION NOT AVAILABLE’)

85 else

86 mhist = 6 ;

87 end

88
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89 if viscpr == 1

90 Eprop = [Eprop 0];

91 else

92 end

93
94 totalstep = sum(istep) ;

95
96 % INITIALIZING GLOBAL CELL ARRAYS

97 % -------------------------------

98 sigma_v = cell(totalstep+1,1) ;

99 TIMEVECTOR = zeros(totalstep+1,1) ;

100 delta_t = TimeTotal./istep/length(istep) ;

101
102 % Elastic constitutive tensor

103 % ----------------------------

104 [ce] = tensor_elastico1 (Eprop, ntype);

105 % Initz.

106 % -----

107 % Strain vector

108 % -------------

109 hvar_n = cell(mhist) ;

110
111 % INITIALIZING (i = 1) !!!!

112 % ***********i*

113 i = 1 ;

114 r0 = sigma_u/sqrt(E);

115 hvar_n{3} = ce; %

116 hvar_n{4} = ce; %

117 hvar_n{5} = r0; % r_n

118 hvar_n{6} = r0; % q_n

119 eps_n1 = strain(i,:) ;

120 sigma_n1 =ce*eps_n1’; % Elastic

121 sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ;...

122 0 0 sigma_n1(4)];

123 vartoplot = cell(1,totalstep+1) ;

124 vartoplot{i}(1) = hvar_n{6} ; % Hardening variable (q)

125 vartoplot{i}(2) = hvar_n{5} ; % Internal variable (r)

126 vartoplot{i}(3) = 1-hvar_n{6}/hvar_n{5} ; % Damage variable (d)

127 vartoplot{i}(4) = hvar_n{3}(1,1) ; % C_tan

128 vartoplot{i}(5) = hvar_n{4}(1,1) ; % C_alg

129
130 for iload = 1:length(istep)

131 % Load states

132 for iloc = 1:istep(iload)

133 i = i + 1 ;

134 TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ;

135 % Total strain at step "i"

136 % ------------------------

137 Eprop(end) = TIMEVECTOR(i) - TIMEVECTOR(i-1);
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138 eps = strain(i-1,:);

139 eps_n1 = strain(i,:) ;

140
141 %* DAMAGE MODEL

142 [sigma_n1 ,hvar_n ,aux_var] =...

143 rmap_dano1(eps,eps_n1,hvar_n,Eprop,ce,MDtype,n);

144
145 % PLOTTING DAMAGE SURFACE

146 if(aux_var(1)>0)

147 hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n{6},...

148 ’r:’,MDtype,n );

149 set(hplotSURF(i),’Color’,[0 0 1],’LineWidth’,1);

150 end

151
152 % GLOBAL VARIABLES

153 % ***************

154 % Stress

155 % ------

156 m_sigma=[sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ;...

157 0 0 sigma_n1(4)];

158 sigma_v{i} = m_sigma ;

159
160 % VARIABLES TO PLOT (set label on cell array LABELPLOT)

161 % ----------------

162 vartoplot{i}(1) = hvar_n{6} ; % Hardening variable (q)

163 vartoplot{i}(2) = hvar_n{5} ; % Internal variable (r)

164 vartoplot{i}(3) = 1-hvar_n{6}/hvar_n{5} ; % Damage variable (d)

165 vartoplot{i}(4) = hvar_n{3}(1,1);

166 vartoplot{i}(5) = hvar_n{4}(1,1);

167 end

168 end

B) rmap dano1.m

1
2 function [sigma_n1,hvar_n1,aux_var] = rmap_dano1 (eps,eps_n1,hvar_n,Eprop,...

3 ce,MDtype,n)

4
5 %**************************************************************************

6 %* *

7 %* Integration Algorithm for a isotropic damage model

8 %* *

9 %* [sigma_n1,hvar_n1,aux_var] = rmap_dano1 (eps_n1,...

10 %* hvar_n,Eprop,ce) *

11 %* *

12 %* INPUTS eps_n1(4) strain (almansi) step n+1 *

13 %* vector R4 (exx eyy exy ezz) *

14 %* hvar_n(6) internal variables , step n *

15 %* hvar_n(1:4) (empty) *
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16 %* hvar_n(5) = r ; hvar_n(6)=q *

17 %* Eprop(:) Material parameters *

18 %* ce(4,4) Constitutive elastic tensor *

19 %* *

20 %* OUTPUTS: sigma_n1(4) Cauchy stress , step n+1 *

21 %* hvar_n(6) Internal variables , step n+1 *

22 %* aux_var(3) Auxiliar variables for computing...

23 %* const. tangent tensor *

24 %**************************************************************************

25 hvar_n1 = hvar_n;

26 r_n = hvar_n{5};

27 q_n = hvar_n{6};

28 E = Eprop(1);

29 H = Eprop(3);

30 Aexp = Eprop(3) ;

31 sigma_u = Eprop(4);

32 hard_type = Eprop(5) ;

33 visc = Eprop(6) ;

34 eta = Eprop(7) ;

35 alf = Eprop(8) ;

36
37 %**************************************************************************

38 %* initializing %*

39 r0 = sigma_u/sqrt(E);

40 zero_q=1.d-6*r0;

41 q_inf = r0 +( r0-zero_q);

42 %**************************************************************************

43 %* Damage surface

44 tau_bf = Modelos_de_dano1(MDtype,ce,eps,n);

45 tau_af = Modelos_de_dano1(MDtype,ce,eps_n1,n);

46 %**************************************************************************

47 if visc == 0

48 rtrial = tau_af;

49 else

50 tau = (1-alf)*tau_bf+alf*tau_af;

51 dt = Eprop(9);

52 if tau <= r_n

53 rtrial = r_n;

54 else

55 rtrial = r_n*(eta-dt*(1-alf))/(eta+alf*dt)+tau*(dt)/(eta+alf*dt);

56 end

57 end

58
59 %**************************************************************************

60 %* Ver el Estado de Carga %*

61 %* ---------> fload=0 : elastic unload %*

62 %* ---------> fload=1 : damage (compute algorithmic...

63 %* constitutive tensor) %*

64

19



COSM - Assignment 1: Continuum Damage Models Nikhil Dave

65 if(rtrial > r_n)

66 %* Loading

67 fload=1;

68 delta_r=rtrial-r_n;

69 r_n1= rtrial ;

70 if hard_type == 0

71 % Linear

72 q_n1= q_n+ H*delta_r;

73 H_n1 = H;

74 else

75 % Exponential

76 q_n1 = q_inf-(q_inf-q_n)*exp(Aexp*(1-rtrial/r_n));

77 H_n1 = H*(q_inf-q_n)/r_n*exp(Aexp*(1-rtrial/r_n));

78 end

79
80 if(q_n1<zero_q)

81 q_n1=zero_q;

82 H_n1 = 0;

83 elseif (q_n1>q_inf)

84 q_n1 = q_inf;

85 H_n1 = 0;

86 end

87 ce_tang_n1 = (q_n1/r_n1)*ce-(q_n1-H_n1*r_n1)/(r_n1.^3)*((ce*eps_n1’)...

88 *(ce*eps_n1’)’);

89 if (visc == 1)

90 ce_alg_n1 = ce_tang_n1+(alf*dt)/(eta+alf*dt)*(H_n1*r_n1-q_n1)/...

91 (tau_af*r_n1.^2)*((ce*eps_n1’)*(ce*eps_n1’)’);

92 end

93
94 else

95
96 %* Elastic load/unload

97 fload=0;

98 r_n1= r_n ;

99 q_n1= q_n ;

100 ce_alg_n1 = (q_n1/r_n1)*ce;

101 ce_tang_n1 = ce_alg_n1;

102
103 end

104 % Damage variable

105 % ---------------

106 dano_n1 = 1.d0-(q_n1/r_n1);

107 % Computing stress

108 % ****************

109 sigma_n1 =(1.d0-dano_n1)*ce*eps_n1’;

110 %**************************************************************************

111 %* Updating historic variables %*

112 hvar_n1{3}= ce_tang_n1 ;

113 hvar_n1{5}= r_n1 ;
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114 hvar_n1{6}= q_n1 ;

115 if (visc == 1)

116 hvar_n1{4} = ce_alg_n1;

117 end

118 %**************************************************************************

119 %* Auxiliar variables %*

120 aux_var(1) = fload;

121 aux_var(2) = q_n1/r_n1;

122 %**************************************************************************

C) Modelos de dano1.m

1
2 function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n)

3 %**************************************************************************

4 %* Defining damage criterion surface

5 %*

6 %*

7 %* MDtype= 1 : SYMMETRIC

8 %* MDtype= 2 : ONLY TENSION

9 %* MDtype= 3 : NON-SYMMETRIC

10 %*

11 %*

12 %* OUTPUT:

13 %* rtrial

14 %**************************************************************************

15 if (MDtype==1) %* Symmetric

16 rtrial= sqrt(eps_n1*ce*eps_n1’);

17
18 elseif (MDtype==2) %* Only tension

19 sig_n1 = eps_n1*ce;

20 sig_n1(sig_n1 < 0) = 0;

21 rtrial= sqrt(sig_n1*eps_n1’);

22
23 elseif (MDtype==3) %*Non-symmetric

24 sig_n1 = eps_n1*ce;

25 sig_n1p = sig_n1;

26 sig_n1p(sig_n1p < 0) = 0;

27 th = (sig_n1p(1)+sig_n1p(2))/(abs(sig_n1(1))+abs(sig_n1(2)));

28 rtrial= (th+(1-th)/n)*sqrt(eps_n1*ce*eps_n1’);

29 end

30 %**************************************************************************

31 return
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D) dibujar criterio dano1.m

1
2 function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n)

3 %**************************************************************************

4 %* PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL %*

5 %* %*

6 %* function [ce] = tensor_elastico (Eprop, ntype) %*

7 %* %*

8 %* INPUTS %*

9 %* %*

10 %* Eprop(4) vector de propiedades de material %*

11 %* Eprop(1)= E------>modulo de Young %*

12 %* Eprop(2)= nu----->modulo de Poisson %*

13 %* Eprop(3)= H----->modulo de Softening/hard.%*

14 %* Eprop(4)=sigma_u----->tensile limit %*

15 %* ntype %*

16 %* ntype=1 plane stress %*

17 %* ntype=2 plane strain %*

18 %* ntype=3 3D %*

19 %* ce(4,4) Constitutive elastic tensor (PLANE S.)%*

20 %* ce(6,6) ( 3D) %*

21 %**************************************************************************

22 %* Inverse ce %*

23 ce_inv=inv(ce);

24 c11=ce_inv(1,1);

25 c22=ce_inv(2,2);

26 c12=ce_inv(1,2);

27 c21=c12;

28 c14=ce_inv(1,4);

29 c24=ce_inv(2,4);

30 %**************************************************************************

31 % POLAR COORDINATES

32 if MDtype==1

33 tetha=[0:0.01:2*pi];

34 %**********************************************************************

35 %* RADIUS

36 D=size(tetha); %* Range

37 m1=cos(tetha); %*

38 m2=sin(tetha); %*

39 Contador=D(1,2); %*

40 radio = zeros(1,Contador) ;

41 s1 = zeros(1,Contador) ;

42 s2 = zeros(1,Contador) ;

43 for i=1:Contador

44 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*...

45 [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]’);

46 s1(i)=radio(i)*m1(i);

47 s2(i)=radio(i)*m2(i);

48 end
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49 hplot =plot(s1,s2,tipo_linea);

50
51 elseif MDtype==2

52
53 limitINF = -pi/2*0.99;

54 limitSUP = pi*0.99;

55 tetha=[limitINF:0.01:limitSUP];

56 % RADIUS

57 D=size(tetha); % Range

58 m1=cos(tetha);

59 m2=sin(tetha);

60 Contador=D(1,2);

61 radio = zeros(1,Contador) ;

62 s1 = zeros(1,Contador) ;

63 s2 = zeros(1,Contador) ;

64 for i=1:Contador

65 radio(i)= q/sqrt([m1(i)*(m1(i)>0) m2(i)*(m2(i)>0) 0 nu*...

66 (m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ...

67 nu*(m1(i)+m2(i))]’);

68 s1(i)=radio(i)*m1(i);

69 s2(i)=radio(i)*m2(i);

70 end

71 hplot =plot(s1,s2,tipo_linea);

72
73 elseif MDtype==3

74
75 tetha=[0:0.01:2*pi];

76 % RADIUS

77 D=size(tetha); % Range

78 m1=cos(tetha);

79 m2=sin(tetha);

80 Contador=D(1,2);

81 radio = zeros(1,Contador) ;

82 s1 = zeros(1,Contador) ;

83 s2 = zeros(1,Contador) ;

84 for i=1:Contador

85 tetha_aux = (m1(i)*(m1(i)>0) + m2(i)*(m2(i)>0))/...

86 (abs(m1(i)) + abs(m2(i))) ;

87 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*...

88 [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]’)/...

89 (tetha_aux + ((1 - tetha_aux)/n));

90 s1(i)=radio(i)*m1(i);

91 s2(i)=radio(i)*m2(i);

92 end

93 hplot =plot(s1,s2,tipo_linea);

94 end

95 %**************************************************************************

96 return
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