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1 Introduction

The aim of the first assignment in the course ”Computational Solid Mechanics” is to
grasp the algorithmic structure underlying the numerical integration of continuum damage
constitutive models. For educational purposes the focus lies on the local constitutive
response of a fixed point in the continuum rather than computing a whole domain in a
finite element matter. Furthermore, only plane strain is considered. The students are asked
to implement these models in an existing MATLAB code skeleton. The template already
provides a working implementation for computing and plotting the inviscid symmetric case
utilizing a linear hardening/softening law.

It is worth mentioning that the existing code also offers a graphical user interface that
allows the user to interactively set the loading path and to plot different internal variables.
However, to avoid a tedious adaption of the GUI, changes are limited to the main_-
nointeractive.m file and its containing functions where all input parameters have to be
set inline.

The report follows the assignments’ structure which divides the implementation into sev-
eral steps. In the first part the rate independent model is modified to incorporate a
non-symmetric tension-compression damage model as well as tension-only damage model.
Additionally, an exponential hardening and softening law is introduced. In a next step the
correctness of the implementation is assessed using three different loading and unloading
scenarios. The second part focuses on the integration algorithm representing a continuum
isotropic visco-damage model for the symmetric tension-compression case. Again, to verify
the results a parameter study is conducted.

Before the discussion of the actual implementation all input parameters used for the com-
putations and assessments are introduced in the following section.

Remark: All mentioning of the underlying theory refers to the lecture held by Prof. Huespe
and the corresponding lecture notes.



2 Input parameters

As mentioned above this sections gives an overview of the parameters chosen for the
computations executed throughout the assessments of the implementations. If not further
specified the parameters are defined as follows:

e Young’s modulus E = 20000 [MPa]

e Poisson’s ratio v = 0.3

e Hardening modulus H = {1'(1]‘0 ig Z 8

e Yield stress o, = 200 [MPa]

e Ratio between compression and tension strength n = 3

e Viscosity coefficient n = 0.0 [MPa/s]

e Total time t = 10 [s]

o Integration coefficient o = 1.0 (Implicit Backward Euler scheme)

e Number of time increments per load state n;p. = 20

For simplicity reasons all values in the following sections will be given in dimensionless
form.



3 Rate-independent damage models

3.1 Exponential hardening/softening law

Before dealing with the implementation of the non-symmetric damage models an expo-
nential hardening respectively softening law is introduced to the function rmap_danol.m.
To be specific the term for calculating the hardening variable ¢ is changed from the linear
expression q(r) = ro + H(r — ro) to the exponential expression ¢(r) = goo — (¢oo — 70) *
exp(A (1 — -)) with A chosen as [H|. In order to see the influence of this exponential
term a computation with a symmetric tension-compression model and a negative harden-
ing modulus H = —1.0 (softening) was conducted. The differences between the already
implemented linear law and the introduced exponential law can be observed in Figure
1. The upper plots where the coordinate axes represent the principal stresses o and o9,
show the corresponding damage surfaces as blue ellipses for each time step. The prescribed
loading path for an ideal linear isotropic material is denoted in red and the actual path in
the stress space is shown in black. In this case uniaxial tensile loading was applied starting
from (a%o), aéo)) = (0, 0) with stress increments of A&g) = 200, A5'§2) = 200, A&g?’) = 200.
The plots on the bottom of the figure show the principal stress o1 plotted against the prin-
cipal strain ;. Here, the differences between the two models become particularly evident.
After approaching the yield stress, the left plot (Figure 1a) shows a linear behaviour until
complete damage is reached, whereas on the right (Figure 1b) an exponential softening
can be observed.
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Figure 1: Comparison of linear and exponential softening in a symmetric tension-

compression model

Henceforth, all computations in this chapter will be executed using the exponential hard-



ening respectively softening law.

3.2 Tension-only damage model

This section will deal with the implementation of the tensile-only damage model which is
handled inside the Modelos_de_danol.m function. With respect to the calculation of & two
cases have to be distinguished. In case the values of & are positive they stay untouched,
if they are negative they are set to zero. The new stress tensor (or here, vector in Voigt
notation) is called 7. Apart from that the calculation of 7. stays similar to the symmetric
case and takes the form 7. = Vot : e.

3.3 Non-symmetric tension-compression damage model

The implementation of the non-symmetric tension-compression damage model takes also
place inside the Modelos_de_danol.m function. The main difference between the symmetric

and non-symmetric damage model is the introduction of a factor of the form [© + %]
3,_

where 6 = Zéiﬂ?l and n stands for the compression-tension strength ratio. & can be
1

computed by the double contraction of C and ¢ taking the first, second and fourth value of
the resulting vector (Voigt notation). By setting all values to zero which are smaller than
zero we obtain the McAuley bracket of this vector and by simply applying MATLAB’s
abs () function we get a vector with the absolute values of & respectively.

3.4 Validation of the implementation

In both cases the function dibujar_criterio_danol.m, that is responsible for plotting
the damage surface, had to be modified accordingly. To check the correct visualization
of the damage surface the test case from section 3.1 is investigated again. For the non-
symmetric tension-compression damage model shown in Figure 2b we can observe, that
the symmetric model (upper plot of Figure 1b) is recovered, when the compression-tension
strength ratio n is set to one. In case of the tension-only damage model the Poisson’s ratio
v is set to zero which should lead to a horizontal respectively vertical contour lines of the
damage surface in areas where one of the principal stresses is negative. The plot in Figure
2a confirms the expected behaviour resulting in an ”infinitely” large damage surface.

Furthermore, the correct computation of 7. should be assessed for both damage models.

Therefore, three different loading scenarios will be introduced. As a starting point for all

(0) _(0)
1

loading paths (o, ", 05 ") = (0,0) is chosen. The stress increments for the three cases read

as follows:
1.
A&gl) =« A&él) =0 (uniaxial tensile loading)
A&f) =—pf A&éz) =0 (uniaxial tensile unloading/compressive loading)
A&g?’) =7 A&gg) = (uniaxial compressive unloading/tensile loading)
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Figure 2: Load case 1: Damage surface (upper) and 1 — o1-plot (lower) for the non-
symmetric damage models

2.
A&z(ll) =« A&él) =0 (uniaxial tensile loading)
A&gQ) =0 A&éz) = —f (biiaxial tensile unloading/compressive loading)
A&%S) = A&ég) = (biaxial compressive unloading/tensile loading)
3.
A&gl) =« A&él) =« (biaxial tensile loading)
A&f) =—p A&éz) = —f (biaxial tensile unloading/compressive loading)
A&gs) =y A&ég) =y (biaxial compressive unloading/tensile loading)

where the parameters are defined as:

a = 400
8 =2200
~ = 3000.

3.4.1 Loading scenario 1

In Figure 3 the results for the first uniaxial loading scenario are displayed. The upper
plots show the damage surface (blue) in the space of principal stresses, the theoretical
loading path (red) and the actual stress path (black). For the tension-only model we
see the ”infinite” damage surface with asymptotic behaviour (v = 0.3) of the contour
lines in the range where only one principal stress is positive. On the other hand a closed
damage surface can be observed for the non-symmetric model. However, compared to
the symmetric model (see Figure 1) it is expanded by a factor of three (n = 3) in the
compressive stress regime. The corresponding stress-strain progression for both models is
presented in the lower plots.

Now we take a closer look at these £ — o1-plots to see if tensile and compressive damage
is induced according to the chosen theory. As expected both models show the same
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Figure 3: Load case 1: Damage surface (upper) and €1 — o;-plot (lower) for the non-
symmetric damage models

behaviour in the first tensile stress regime. After reaching the yield stress at o, = 200 an

exponential softening until a?gl) ~ 80 can be observed followed by linear tensile unloading.
Since the tension-only model does not consider a yield stress for compression, no damage
is introduced and the resulting stress-strain curve is linear and identical for compressive
loading and unloading. When again tensile loading is applied the tension-only model
basically continues the softening where it left off before (a?(f) ~ 80). Ounly a small gap due
to the interpolation between the time steps is visible. In case of the non-symmetric model
exponential softening starts as the stress approaches a value of 0152) =n * —01(/1) ~ —240.

Further compressive loading leads to a reduction of the yield stress to 0753) ~ —100. Hence,
during compressive unloading and tensile loading a flatter linear stress-strain curve occurs.
This leads to a notable gap in the softening curve in the tensile loading regime because

the yield stress is already reached at 01(13) =1/nx —075,2) ~ 33.

It is also worth mentioning that the first load case is a symmetrical loading scenario
meaning that the linear £; — oi-curves always go through the origin of the coordinate
system (o1,02) = (0,0).

3.4.2 Loading scenario 2

To continue the assessment the results of the second loading scenario shown in Figure 4
will be investigated. The first major difference with respect to the preceding load case is
the unsymmetrical loading caused by a uniaxial loading followed by biaxial loading during
the second stress increment. Again, both models show the same behaviour during the first



tensile loading phase. However, due to the unsymmetrical loading mentioned before the
linear stress-strain curve does not cross the starting point during tensile unloading as well
as compressive loading inside the linear regime. As before no damage is introduced by
tension-only model during the second stress increment and therefore the stress-strain curve
remains straight. The third stress increment leads to a symmetrical biaxial compressive
unloading and tensile loading which means that the stress-strain curve crosses through the
point of origin on the way to the tensile stress regime. It is again linear but does not follow
the same path during compressive unloading and linear tensile loading as seen in the first
load case. Damage occurs before the reduced stress limit from the first stress increment
is reached leaving a significant distortion in the softening curve. For the non-symmetric
damage model the same observations can be made with the addition, that damage is
introduced during compressive loading. This results in a flatter stress-strain curve and a
smaller stress limit during the third stress increment.
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Figure 4: Load case 2: Damage surface (upper) and €1 — o;-plot (lower) for the non-
symmetric damage models

One can note that the unsymmetrical loading leads to the fact that the yield stress is
reached for smaller strain values when compared with the first example. Also a relationship
between the tensile and compressive yield stresses as seen before can not be derived by
simply looking at the plots.

3.4.3 Loading scenario 3

The third load case applies biaxial loading, though in a symmetrical manner. Therefore,
the results presented in Figure 5 look very similar to the ones of the first load case (Figure
3) with uniaxial symmetrical loading. The absolute stress values obtained at the turning



points are the same. The only difference is that they occur for smaller strains which is
reasonable considering that more loading is applied. Due to the symmetry the relationships
between the tensile and compressive yield stress as stated for the first loading scenario are

still valid.
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Figure 5: Load case 3: Damage surface (upper) and €1 — o;-plot (lower) for the non-

symmetric damage models

To summarize the assessment it can be noted that for all three load cases the presented
stress-strain plots show the expected behaviour and therefore validate the correct imple-

mentation of both damage models.



4 Rate-dependent models

4.1 Isotropic visco-damage model

By introducing viscosity to the damage model the stress tensor does not only dependent
on the strain, but additionally depends on time. Since the time is an independent variable
an ordinary first order differential equation for calculating the internal variable r of the
damage variable d has to be solved. In general an analytical solution can not always be
found, meaning the use of a numerical integration scheme is necessary. For the academic
example dealt with in this report, an analytic solution exists which gives us the chance to
evaluate the algorithmic solution in the following sections.

4.2 Validation of the implementation

Firstly, the influence of the viscosity coefficient i and the strain rate € on the strain-stress
curve is investigated. Afterwards, different integration schemes are evaluated by compar-
ing the analytical and algorithmic tangent operator for specific values of the integration
coefficient a.

4.2.1 Influence of viscosity coefficient 7

We reproduce the uniaxial tensile loading scenario from Section 3.1 to investigate the
influence of a change in the viscosity coefficient n. For n = 0 (Figure 6a) the non-viscous
case from Section 3.1 is retrieved. When viscosity is introduced (see Figure 6b) the linear
softening does not start immediately after reaching the prescribed yield stress. Rather
hardening and a higher maximum stress in form of a rounded top can be observed. Figures
6c and 6d show that with an increasing 7 these effects are amplified. To get an idea of
the quantitative influence of the viscosity coefficient the maximum stresses reached for
different values of 1 are presented in Table 1.

i 0.0 05| 10| 3.0
max o1 | 209 | 215 | 222 | 247

Table 1: Maximum stresses for different values of n

4.2.2 Influence of strain rate ¢

In order to assess the change of the strain rate the viscosity coefficient is fixed to n = 0.5.
Since the strain rate € is not a direct input parameter of the code, it has to be manipulated
in a different way. From theory we know that the strain rate is indirectly proportional to
the loading time. Meaning e.g. by increasing the total loading time ¢, the strain rate is
decreased. Taking Figure 6b with a total time t = 10 as a reference, we can see that for a
small strain rate (Figure 7a) the viscosity effects intensify. On the other hand the influence
of the viscosity diminishes with smaller strain rates as highlighted in Figure 7b. This is
in accordance with the fact that the non-viscous case is recovered for strain rates ¢ — 0.

10
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Figure 6: Influence of viscosity coefficient n on the £ — o1-plot of the symmetric damage
model

Overall it can be stated, that the strain rate € has a similar influence on the strain-stress
curve as the viscosity parameter n (see Figure 6).

4.2.3 Comparison of analytic and algorithmic tangent operator

The underlying numerical integration scheme is based on the so-called alpha method.
This subsection analyses the influence of the integration coefficient o on the algorithmic
tangent operator. For the assessment a uniaxial loading scenario was applied starting from
(U§0), Uéo)) = (0,0) with stress increments of Aﬁg) = 400, A&f) = —1000, A&g?’) = 1400.

Before continuing with the comparison the correct implementation of both tangent op-
erators is assessed by testing specific cases where the analytical and algorithmic solution
should coincide. As shown later both tangent operator are equal when a = 0. Also when
the time step size At = 0 the analytic solution is recovered. Since At = 0 can not be
properly displayed either the number of time steps has to be increased or the total loading
time can be reduced as presented in Figure 8a. Another example is the case where the
algorithmic tangent operator coincides with the one of the rate independent model at the
inviscid limit. This behaviour can be observed in Figure 8b.

Now we will investigate the change of the integration coefficient «. The graphs in Figure
9 show each the first entry of the analytic and the algorithmic tangent operator plotted
against time for five values of ao between 0 to 1. Figure 9a confirms the statement above

11
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that for a = 0 representing forward Euler explicit scheme both tangent operators coincide.
Next we take a look at Figure 9b & 9c where the later with a value of o = 0.5 represents
the Crank-Nicolson integration scheme. As the value of the integration coefficient increases
we can observe that during inealstic loading the value of the algorithmic tangent operator
decreases faster, but corrects properly when the loading returns to the elastic regime.
However, when the material is heavily damaged or even completely destroyed artificial
negative values with no physical meaning occur. These phenomena are amplified for even
larger a-values as visualized in Figures 9d & 9e. With a = 1.0 the implicit forward Euler
scheme is used.

Since the strain-stress plots did not show significant differences for the chosen values of «,
the discussion was limited to the influence on the algorithmic tangent operator.

The obtained results show that in practice the choice of the integration parameter can
have a great impact on the accuracy of certain output parameters and therefore, should
be thoroughly investigated.
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A Appendix

clc

clear all

%close all

W0/070/07070, 0/070.

% Program for modelling damage model
% (FElemental gauss point level)

% Developed by J.A. Hdez Ortega

% 20—May—2007, Universidad Politecnica de Cataluna
0/07/0707/070707/0707/0707070707/0707/6707/07070707/0707/0707/0707/0/0707/0707/0707/0707/07070707/0707/0/07/0/070/070/0707/0707/0707/0707/0707/0/0
Z%profile on

%
Tb % % ok ok ok ok ok ok K oK KK K

% INPUTS

Tb % ok ok ok ok ok Kk K K KOk K K

%addpath ("AUX_SUBROUTINES’)

% YOUNG’s MODULUS

YOUNGM = 20000 ;

% Poisson’s coefficient
%
POISSON = 0.3 ;

% Hardening/softening modulus
%
HARDSOFTMOD = —1.0;

% Yield stress

-

YIELD_STRESS = 200 ;

% Problem type TP = {’PLANE STRESS’, 'PLANE STRAIN’, 3D’}
% =1 =£ =3

ntype= 2 ;

% Model PTC = { ’SYMMETRIC’, TENSION’, ’NON-SYMMETRIC’} ;
% =1 = 2 =8

%
MDtype =1;

% Ratio compression strength / temsion strength
%
n =3 ;

% SOFTENING/HARDENING TYPE
%
HARDTYPE = ’LINEAR’ ; %{LINEAR,EXPONENTIAL}
% VISCOUS/INVISCID

%

VISCOUS = ’YES’ ;

% Viscous coefficient ———
%
eta = 0.5;

% TimeTotal (initial = 0) ——
%
TimeTotal = 0.001 ;

% Integration coefficient ALPHA

%

ALPHA_COEFF = 0.5;
% Points

%

nloadstates = 3

SIGMAP = zeros(nloadstates ,2) ;
SIGMAP (1 ,:) =[400 0];
SIGMAP (2 ,:) =[—600 0];
SIGMAP (3 ,:) =[800 0];

% Number of time increments for each load state
%

istep = 20*ones(1,nloadstates) ;

% VARIABLES TO PLOT

vpx = 'TIME’ ; % AVAILABLE OPTIONS: °STRAIN_1°, °'STRAIN_.2’

% | STRAIN.1| ’, ’|STRAIN.2|’

% 'norm (STRAIN)’, °TIME’

%vpy = ’analytic tangent operator (C(1,1))°

vpy = ’algorithmic_tangent_operator_(C(1,1))°'% AVAILABLE OPTIONS: ’'STRESS_1’, °'STRESS_2°

% | STRESS_1|’, ’|STRESS_2|°

% ’'morm (STRESS)’, ’'TIME’, ’'DAMAGE VAR.’, hardening wvariable (q)’, damage variable (d)’

% intermnal wariable (r)’, ’“analytic tangent operator (C(1,1))’, ’algorithmic tangent operator (C(1,1))’
% 8) LABELPLOT{ivar} —> Cell array with the label string for

% variables of "warplot”

%

LABELPLOT = {’hardening._variable_-(q)’, internal_variable_(r)’,’ ’damage_variable_(d)’, ’analytic_-tangent_operator_(C(1

98%6%%%%%% %% %% % %% %%6%6%655 END INPUTS %%%6%%%6%%%6%6%%676%6%26%%626%6 %2676 %%6%6%6%6%66 %7676 %

%% Plot Initial Damage Surface and effective stress path

strain_history = PlotIniSurf (YOUNGM, P POISSON, YIELD_STRESS,SIGMAP, ntype , MDtype,n, istep );

E = YOUNGM H

14



POISSON

nu ;
YIELD_STRESS ;

sigma_u

switch HARDTYPE
case ’'LINEAR’
hard_type = 0 H
otherwise
hard_type =1 H

end
switch VISCOUS
case ’'YES’
viscpr =1 ;
otherwise
viscpr = 0 ;
end
Eprop = [E nu HARDSOFTMOD sigma_u hard_type viscpr eta ALPHA _COEFF] ;

% DAMAGE MODEL

[sigma_v ,vartoplot ,LABELPLOT out,TIMEVECTOR]=damage_main (Eprop,ntype,istep ,strain_history ,MDtype,n, TimeTotal);

try; LABELPLOT; catch ;LABELPLOT = LABELPLOT.out ; end ;

% PLOTTING
[

|
ncolores = 3 ;
colores = ColoresMatrix(ncolores);
markers = MarkerMatrix(ncolores) ;
hplotLLL = [] ;
for i = 2:length(sigma_v)
stress_eig = sigma_v{i} ; %eigs (sigma_-v{i}) ;
tstress_eig = sigma_v{i—1}; %eigs (sigma_-v{i—1}) ;
hplotLLL (end+1) = plot ([tstress_eig(1,1) stress_eig(1,1) ],[tstress_eig(2,2) stress_eig(2,2)], LineWidth’,2, colc
plot(stress_eig(1,1),stress_eig(2,2), 'bx’)
text(stress_eig(1,1),stress_eig(2,2),num2str(i))
% SURFACES
A
end

% % SURFACES

% if (auz-var(1)>0)

% hplotSURF (i) = dibujar_criterio_-danol (ce, nu, hvar_-n(6), ’r:’,MDtype,n );
% set (hplotSURF (i), Color’,[0 0 1], LineWidth ' ,1);

% end

DATA. sigma_v = sigma.v
DATA. vartoplot = vartoplot
DATA.LABELPLOT = LABELPLOT
DATA.TIMEVECTOR = TIMEVECTOR
DATA.strain = strain_history ;

plotcurvesNEW (DATA, vpx , vpy , LABELPLOT, vartoplot) ;

% fig-name = input(’ Save figure as ...%: 7, ’s’);

% if Tisempty(fig-name)

% saveas (figure (2),[pwd ’/fig/’ fig-name], "epsc’)
% end
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function [rtrial] = Modelos_.de_danol (MDtype,ce,eps_nl ,n)
ook ¢ 4 5k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok K oKk ok Kk K ok K ok ok ok sk koK ok ok sk ok o oKk ok sk ok K ok ok ok ok ok ok kK ok oK ok K oKk K oKk ok sk K ok o oKk ok ok ok K kR K

Do Defining damage criterion surface o
o Tk
Tbx

o MDtype= 1 : SYMMETRIC s
Tox MDtype= 2 : ONLY TENSION Tox
T MDtype= 3 : NON-SYMMETRIC Tox
Do Tox
Do Tox
%« OUTPUT : Tox
Do rtrial Tox

Do ok 5 ok ok 3k o ok ok ok ok ok K K ok oK oK ok KK K oK oK oK oK K oK oK oK KK K K oK oK oK K K K oK oK ok KK K oK oK oK K K oK ok oK KK K K oK oK oK K K K oK oK oK KK K oK oK K K K oK oK oK KR K K

Dok ko5 ok ok ok o K oK ok ok ok K K oK oK oK K K oK oK oK kK K K oK oK KK K K K K K K K oK oK K KK K oK oK K K K K oK oK oK K K oK oK oK K K oK oK K KK K oK oK K K K K K oK K KRR K K
if (MDtype==1) %+ Symmetric
rtrial= sqrt(eps_nlxcexeps_nl’) ;

elseif (MDtype==2) %+ Only tension
s_bar = cexeps_nl’; % [4z1] wvector see Lecture 4 slide 10...
s_bar (s_bar <0) = 0; % all negative walues set to zero —> s_bar_plus
rtrial= sqrt(s_-bar ’xeps_nl’);

elseif (MDtype==3) %xNon—symmetric

s-bar = cexeps_nl ’;

s_bar = [s_bar (1) s_bar(2) s_bar (4)];
s-bar_p = s_bar;

s_bar_p (s_-bar_p <0)=0;

theta = sum(s_bar_p)/sum(abs(s_bar));

fact = theta + (1—theta)/n;

rtrial= fact*sqrt(eps_-nlxcexeps_nl’);
end
Dok ¢ 3 5k ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok K ok K ok K ok ok K Kk K ok K oK ok K ok kK ok K ko ok ok ok sk kK ok K ok K ok kK ok K ok K K ok K oKk ok ok R K ok o Kk ok kK ko K
return
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function hplot = dibujar_criterio_danol (ce,nu,q,tipo_-linea ,MDtype,n)
Tk 5 4 5 3k ok ok o ok oK ok ok ok K K K oK ok kK K K oK ok kK K K oK K K R K oK oK ok K K oK oK oK KK K oK oK ok R K K K oK oK ok KK K oK oK ok K K oK oK oK KK K K oK K K K K K K K KK K

Do PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL

Jox J6%

Do function [ce] = tensor_elastico (Eprop, ntype) Tox

Jox J6%

Tox INPUTS Tox

Jox Jox

Tox Eprop (4) vector de propiedades de material Tox

Do Eprop(1)= E————>modulo de Young Tox

Jox Eprop(2)= nu———>modulo de Poisson Do

Jox Eprop(3)= H——>modulo de Softening/hard. %x

Do Eprop (4)=sigma_-u———>tension wultima To%

Do ntype D%

Do ntype=1 plane stress T

Yo% plane strain To*

Do 8D Do

Tox ce(4.4) Constitutive elastic tensor (PLANE S. ) o
Do ce(6,6) ( 38D) Tox

Tk 5 4 5 3k ok ok ok ok ok ok ok K K K ok ok KK K K oK ok kK K K oK oK R K oK oK ok K K oK oK ok KK K oK oK ok ok K K K oK oK ok R K oK oK ok K K oK oK oK KK K K oK ok kK K oK K K KK K

%*************************************************************************************
Jox Inverse ce s
ce_inv=inv (ce);

cll=ce_inv (1,1);

c22=ce_inv (2,2);

cl2=ce_inv (1,2);

c21l=cl2;

cld=ce_inv (1,4);

c24=ce_inv (2 ,4);
%**************************************************************************************

%**************************************************************************************
% POLAR COORDINATES
if MDtype==

tetha=[0:0.01:2%pi];

T o ok o5 3k 3k sk o ok ok ok ok ok KK ok oK ok ok ok K K ok ok ok ok R K oK ok oK sk K o K ok ok ok R K oK oK oK ok SRR K oK ok ok ok R K oK ok oK sk K K R sk ok ok R K oK ok oK ok oK oK oK ok ok ok R K ok ok oK ok R o K

%+ RADIUS

D=size (tetha); %%  Range
ml=cos(tetha); Jox

m2=sin (tetha); Jox
Contador=D(1,2); Jox

radio = zeros(1,Contador) ;

sl = zeros (1,Contador) ;

s2 = zeros (1,Contador) ;

for i=1:Contador
radio(i)= q/sqrt([ml(i) m2(i) O nux(ml(i)+m2(i))]*ce_inv*x[ml(i) m2(i) O
nux(m1(i)+m2(i))] )
sl(i)=radio(i)*ml(i);
s2(i)=radio (i)*m2(1i);

end
hplot =plot(sl,s2,tipo_linea);

elseif MDtype==2
% TASK 1la
% Slides 4!!!
% copy but change radio according to slides
% put in an if statement for negative values
tetha=[0:0.01:2%pi];

Do 4 % %k 4 4 ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok sk ok ok ok ok ok o K kO ok ok ok ok ok ok ok ok ok ok ok ok ok o Kk ko ok ok ok ok sk ok ok ok ok ok o o o K Kk ok ko ok ok ok

%« RADIUS

D=size (tetha); %+  Range
ml=cos (tetha); Jox

m2=sin (tetha); J6x
Contador=D(1,2); Do
ml_p=ml;

m2_p=m2;

ml_p(ml_p<0) = 0;
m2_p(m2_p<0) = 0

5

radio = zeros(1,Contador) ;
sl = zeros(1,Contador) ;
s2 = zeros (1,Contador) ;

for i=1:Contador
radio(i)= q/sqrt ([ml_p(i) m2.p(i) 0 nux(ml_p(i)+m2.p(i))]*ce_invx[ml(i) m2(i) O
nux(ml(i)4m2(i))]’)

5

sl(i)=radio (i)*ml

(i);
s2(i)=radio (i)*m2(1i);
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end
hplot =plot(sl,s2,tipo_linea);

Comment/delete lines below once you have implemented this case

EREEEEEEEEEEEEEEEEEEEEEEEEREESEEREREESEEERESESEESESESRSESESS;;ES

menu ({ "Damage surface "ONLY-TENSION” has mot been implemented yet. ’;
"Modify files 7"Modelos-de_-danol1” and ”dibujar_criterio_-danol”’
to include this option '},
’STOP’ ) ;

error ("OPTION NOT AVAILABLE’)

R RN

elseif MDtype=
% TASK 1la
% copy symmetric but change radio according to slides
% Slides 4!!!
tetha=[0:0.01:2%pi];

Do 4 % 4 4 K ok ks ok ok ok ok ok ok ok ok ok ok ok ok K ok sk sk ko ok ok ok ok ok ok ok ok ok ok K Kk ks ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ks ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok K

3

%+ RADIUS

D=size (tetha); %+  Range
ml=cos (tetha); Jox

m2=sin (tetha); Do+
Contador=D(1,2); Do

radio = zeros(1,Contador) ;

sl = zeros(1,Contador) ;

s2 = zeros(1,Contador) ;

for i=1:Contador
sigma = [ml(i) m2(i) nux(ml(i)4+m2(i))];
s_bar_p = sigma;
s_bar_p (s_bar_p <0)=0;
theta = sum(s_bar_p)/sum(abs(sigma));
fact = theta + (1—theta)/n;
radio(i)= q/(fact*xsqrt ([ml(i) m2(i) O nux(ml(i)+m2(i))]*ce_inv*[ml(i) m2(i) O
nux(m1($)+m2(i))] *));

sl(i)=radio(i)*ml(i);
s2(i)=radio (i)*m2(i);

end
hplot =plot(sl,s2,tipo_linea);

% Comment/delete lines below once you have implemented this case
Tb - ko ok ok ok ok ok ok ok ok ok K oK oK oK K K oK oK oK KK K oK oK K K K oK oK oK KK K oK oK K K K K oK oK K KK K K K K K

% menu ({ "Damage surface "NON-SYMMETRIC” has not been implemented yet. ’;
% "Modify files ”"Modelos_.de_danol” and ”dibujar_criterio_danol”’

% to tnclude this option '},

% ’STOP’ ) ;

% error ("OPTION NOT AVAILABLE’)

end

Do 4 4 4 4 4 ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok Kk ko ok ok ok sk ok sk ok ok ok ok ok ok K Kk ko ko ok sk ok ok ok ok ok ok ok ok K Kk ok sk ko ok ok ok ok ok ok ok ok ok ok K K sk ko k ok ok

Db s % % s % s % s % sk * sk % ok s %k sk %k ok o ok K ok % ok sk %k ok 5k ok o ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok ok o ok ok sk ok sk ok sk ok ok o ok ok ok ok sk ok ok ok o ok ok ok ok ok ok ok ok ok
return
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function [sigma_nl,hvar_nl,aux_var]| = rmap_-danol (eps_n,eps_nl, hvar_n,6 Eprop,ce,MDtype,n, delta_t)

Tk 4 5 3k ok ok ok ok ok ok ok K K K oK ok ok R K K ok ok kR K K oK oK K K oK ok R K K oK oK ok KK K oK oK ok kK K oK oK oK K K oK ok ok K K oK oK ok K K oK oK ok kK K K K R R K K

TB* *

o Integration Algorithm for a isotropic damage model

Tox

Tox *

Tox [sigma_n1 , hvar_nl , auz_var] = rmap-danol (eps_nl,hvar_n , Eprop,ce) *

Do *

%* INPUTS eps_nl(4) strain (almansi) step n+1 *

Do vector R4 (exz eyy exy ezz) *

Jox hvar_n (6) internal wvariables , step n *

Jox hvar_n (1:4) (empty) *

Tox hvar_-n (5) = r ; hvar-n(6)=gq *

Do Eprop (:) Material parameters *

Do

Tox ce(4.4) Constitutive elastic tensor *

Do *

% OUTPUTS: sigma-nl1 (4) Cauchy stress , step n+l *

Tox hvar_n (6) Internal wvariables , step n+l1 *
o auz_var (8) Auziliar wvariables for computing const. tangent tensor x

Do 4 5 k4 4 K ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok sk ko ok ok ok sk ok ok ok ok ok ok K Kk sk ko ok ok ok ok ok ok ok ok ok ok o K Kk ko ok ok sk ok ok ok ok ok ok ok ok Kk ok ok ko ok ok ok ok ok ok K K

hvar_nl = hvar_n;

r-n = hvar_n(5);
q-n = hvar_n(6);
E = Eprop(1);
nu = Eprop(2);

H = Eprop(3);
sigma_-u = Eprop (4);
hard_-type = Eprop(5) ;
eta = Eprop(7);
alpha = Eprop(8);

Dok 4 5 ok ok ok o K oK ok ok ok K K oK oK ok K K K oK ok kK K K oK oK K K K K oK oK K K oK oK oK KK K K oK K K K K oK oK K K K oK oK oK K K oK oK oK KK K K oK K K K K K K K KK K

%*************************************************************************************
o initializing s

r0 = sigma_u/sqrt(E);

zero_q=1.d—6%r0;

q-inf=r0+sign (H)*(r0—zero_q);

A = abs(H);
% if(r-n<=0.d0)
% ron=r0;
% qg-n=r0;
% end

T k% ok ok sk o ok oK ok ok ok K K ok oK oK ok K K K oK oK ok oK K K oK oK oK oK K oK oK oK K K K oK oK ok KK K oK oK oK K K oK oK oK ok K K ok oK oK K K K oK oK oK KK K K oK oK K K oK oK K K K K K

Tk ok ok ok ok o K oK ok ok ok K K oK oK oK KK K oK oK oK K K K oK oK K K oK oK K K K oK oK oK KK K K oK K K K K oK oK K KK K oK oK oK K K oK oK oK KK K K oK K K K K K K K KK K

Do Damage surface Do
[tau_eps_-n] = Modelos_de_danol (MDtype,ce,eps_-n ,n);

[tau_eps_-nl] = Modelos_de_danol (MDtype,ce,eps_-nl ,n);

[rtrial] = (1—alpha)*xtau_eps_n+alphaxtau_eps_nl;

Do 4 4 4 4 K ok ok ko ok ok ok ok ok ok ok ok ok ok ok K ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok K Kk sk ko ok ok ok ok ok ok ok ok o ok K Kk sk ko ok ok ok ok ok ok ok ok ok ok o K Kk sk ko ok ok ok ok ok K

i S YYLLOOLonny

Tox Ver el Estado de Carga %
Tx  —————— > fload=0 : elastic wunload D%
Tx  —————— > fload=1 : damage (compute algorithmic constitutive tensor) 53
fload =0;

if(rtrial > r_n)
Do Loading

fload =1;
r-nl= ((eta—delta_-tx(l—alpha))/(etatalphaxdelta_-t))*r_-n+(delta_-t/(etatalphaxdelta_t))*rtrial

delta_r=r_nl—r_n;
if hard_type == 0
% Linear
q-nl= q-n+ Hxdelta_r;
else
% TASK 1b
% check slides: slidesLecture6.pdf maybe 4/5
% exp(r?) r current or old time step

gq-nl= q-inf —(q-inf—r0)*xexp(Ax(1—r_nl/r0)); %QUESTION 1 r0, q-n???
% Comment/delete lines below once you have implemented this case

T ok ok 3k K ok ok ok sk ok kK K KOk oK K oK K K KK K kK oK K K KK K kK K K K oK K K KOk oK R K oK K K KK K K K K
Imenu ({ "Hardening/Softening exponential law has not been implemented yet.

% "Modify file 7rmap-danol” 7 ;
% ‘to include this option '},
% 'STOP’) ;

%error (’OPTION NOT AVAILABLE’)
end

if (q-nl<zero_q)

q-nl=zero_-q;
end
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else

Jox Elastic load/unload
fload =0;
r-nl= r_n H
gq-nl= qg-n H
end
% Damage variable
% -—
dano_nl 1.d0—(g-nl/r_nl);

% Computing stress

T okok ok ok ok ok ok koK kK R K Kk

sigma-nl =(1.d0—dano-nl)*cexeps-nl ’;
Z%hold on

%plot (sigma_nl(1),sigma-ni(2), bzx’)

% Computing consistent tangent operator

T ok ok ok ok ok ok ok o ok K koK ok o ok K kK o oK K oK K koK o K K K K K K K

C_ana = (1—dano_nl)xce;

%C_inv = C_ana — fload*1/tau_eps_-nilx(qg-nl—Hxr_nl1)/r_-nl 2% (cexeps_nl 'x(cexeps_-nl ’)’);
%Test if C_alg = C_inviscid_-limit

C_alg = C_ana — fload *(alphaxdelta_t)/((etatalphaxdelta_t)*xtau_eps_nl)x(q-nl—Hxr_nl)...
/r_nl"2%(cexeps_nl’x(cexeps_nl’) ’);

Dok s 3 ok 3k sk sk ok sk ok oK K kK sk K oK K K KK K KK oK K KK K KK K R K KK K KK K K K K sk R K KR ok K sk K K KK K KK oK K oK K K KK K K K K K K K K K oK

T ok ok ok 3k sk o ok ok ok ok ok K K ok oK oK ok K K K oK ok ok ok R K oK oK oK sk K K K ok ok ok KK K oK ok ok KK K oK oK oK K R K oK oK oK ok K K K ok ok ok K K K oK ok oK KK oK oK ok oK K R K oK oK oKk K K K

%+ Updating historic wvariables Gk
% hvar-nl(1:4) = eps_-nlip;

hvar_nl(5)= r_nl ;
hvar_nl(6)= q-nl ;
ook o 4 ok ok o ok K ok ok ok ok o ok K ok oK oK oK oK oK K oK K oK K K oK K ok K KK oK K K oK K KK oK oK K oK K ok K KK K K o oK K oK K oK oK o oK K ok K K K K oK K oK K oK K K oK K ok K KK K K K K K

Do 4 % 4 4 K ok ok ok ok ok ok ok ok ok ok sk ok ok ok K ok ok sk ko ok ok ok ok ok ok ok ok ok ok K Kk sk ko ok ok ok ok ok ok ok ok ok ok KKk sk sk ok ok ok ok ok ok ok ok ok ok ok o K Kk sk ok ok ok ok ok ok ok K

% Awuziliar variables Do
aux_var (1) = fload;

aux_var(2) = g-nl/r_nl;

aux._var(3) = (q-nl—-Hx*r_nl)/r_nl"3;

aux._var (4) = C.ana(1,1);

Y%auvz_var (4) = Coinv (1,1);
aux_var (5) = C_.alg(1,1);

T k% ok ok sk o ok oK ok ok ok K K ok oK oK ok K K K oK oK ok oK K K oK oK oK oK K oK oK oK K K K oK oK ok KK K oK oK oK K K oK oK oK ok K K ok oK oK K K K oK oK oK KK K K oK oK K K oK oK K K K K K
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