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Introduction

Damage mechanics is concerned with the representation, or modelling, of damage of materials that is
suitable for making engineering predictions about the initiation, propagation, and fracture of materials
without resorting to a microscopic description that would be too complex for practical engineering
analysis. The term Continuum Damage Mechanics has been used to model materials which are char-
acterized by loss of stiffness, i.e. by a decrease in their stiffness modulus. Damage models have also
been used to simulate different materials (fragile and ductile), which are fundamentally characterized
by irreversible material degradation. Physically, we can describe the degradation of mechanical ma-
terial properties as processes in which the initiation and growth (propagation) of micro-defects such
as micro pores and micro cracks take place.

Part 1:

(a) The continuum isotropic “non-symmetric tension-compression” damage model:

The non-symmetrical damage model is useful to simulate materials, such as concrete, rocks, whose
tension domain differs with respect to compression. The correct modelling of mechanical behaviour of
quasi-brittle materials subject to multi-axial tension-compression stress states still represents a chal-
lenging theme, especially when the prediction of failure is in point. A key dissipative phenomenon
for such materials is certainly micro-cracking which results in non-symmetric, progressive degradation
of mechanical properties under tension and compression conditions. A continuum isotropic “non-
symmetric tension-compression” damage model has been implemented. The code has been delineated
in the Section 1 and 2 of the Annex. The damage surface for the implemented model considering the
ratio of the uni-axial elastic limit stress in compression /tension as 3, has been shown below in the
Figure 1 with principal stresses axes . It can be clearly observed that the elastic limits of the elastic
domain are different for tension and compression.

The “tension-only” damage model:

The tension-only damage model does not take into account failure by compression, i.e. the mate-
rial can only fail by tension. In this case, the material only loses elasticity due to tension, and we
can’t find the elastic limit in compression up to infinite. The region in which all the principal stresses
are negative, the elastic limit can never be experienced (The damage function f is always negative).
The elastic domain is an open domain at infinite for compressive stresses. A “tension-only” damage
model has been implemented. The code has been presented in the Section 1 and 2 of the Annex. The
damage surface for the implemented model has been depicted below in the Figure 2 (with principal
stresses axes). It can be clearly observed that in the third quadrant of the principal stress space, the
elastic domain can’t be reached up to infinite. In the first quadrant where all the principal stresses
are positive, the damage is associated to only the tensile behaviour. For the other two quadrants (II
and IV), the elastic limit for the negative part of the principal stresses is located asymptotically at
infinite, and for the positive counterpart of the principal stresses, the elastic limit can be reached.
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Figure 1: Damage surface/ Failure domain for the implemented non-symmetric tension-compression
damage model

−800 −700 −600 −500 −400 −300 −200 −100 0 100 200 300
−700

−600

−500

−400

−300

−200

−100

0

100

200

300
Damage surface (principal stresses axes)

σ
1

σ 2

 

 

Figure 2: Damage surface/ Failure domain for the implemented Tensile-damage model

The continuum isotropic “symmetric tension-compression damage” model:

This type of damage model is useful, when the material behaves the same both with tension and
compression. The damage surface evolves symmetrically both for tension and compression. For this
type of damage models, in contrast to the other two discussed damage models, the elastic domain is
symmetrically located for both the tensile and compressive stresses. The material loses elasticity both
due to tension and compression.

(b) Exponential hardening/softening:

It can be considered as a type of continuous Hardening/Softening unlike having two sections
(i.e. H = Constant for r < r1 and H = 0 for r > r1) as it was for the linear hardening/softening.
An exponential hardening/softening model has been implemented choosing a suitable value for q∞.
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Figure 3: Variation of q vs. r in the implemented Exponential hardening/softening model

The value of q∞ can never be negative as it will cause the size of the elastic domain to be nega-
tive,which is not feasible. If q∞ = 0 , at the end, elastic domain might shrink to zero and it can create
problems in structural level but can work well in microscopic damage level. A very large value of the
q∞ is also not feasible as it affects the algorithmic constitutive tensor. For the implemented model,
when r → ∞, q → q∞. In the case of hardening the q∞ > r0, and for the case of softening q∞ < r0.
The Figure 3 represented above shows the variation of q with respect to r for the considered cases
where H = 6 for hardening and H = −6 for softening. The implemented code has been presented in
the Section 3 of the Annex.

(c) Accessing the correctness of the implementation of the models:

Case 1

(
¯

∆σ1
(1) = α,

¯
∆σ2

(1) = 0), (
¯

∆σ1
(2) = −β, ¯

∆σ2
(2) = 0), (

¯
∆σ1

(3) = γ,
¯

∆σ2
(3) = 0)

“Non-symmetric tension-compression damage” model:

(
¯

∆σ1
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¯
∆σ2

(1) = 0), (
¯

∆σ1
(2) = −2700,

¯
∆σ2

(2) = 0), (
¯

∆σ1
(3) = 2100,

¯
∆σ2

(3) = 0)

The material is loaded from the initial effective principal stress state (0, 0) to (600, 0) (uni-axial
tensile loading), after which the uni-axial tensile unloading/compressive loading takes place till the ef-
fective principal stress state reaches (-2100, 0), and following that at the end the material is subjected
to uni-axial compressive unloading/ tensile loading up till the effective principal stress state reaches (0,
0). The hardening modulus has been considered to be -0.2 ( linear softening). At the starting, till the
stress state reaches the elastic domain the effective and the actual stresses are same (N=1 to N=5)due
to no evolution of the internal variables inside the elastic domain. After which when the stress path
leaves the elastic domain, the stresses are projected back on to the evolved damage surface (N=5 to
N=11). This case corresponds to the case of loading (ḋ > 0), as we consider H < 0, the elastic domain
shrinks inwards and the stresses are projected on to the new evolved damage surfaces. Following
this when the unloading occurs (ḋ = 0), the actual stress path tends along a straight line with slope
E(Sec−d) = (1 − d1)E along the secant constitutive path that passes through the origin. The actual
stress path continues to be along on the same line till the stress state reaches the elastic limit for the
compression which is higher than that of the elastic limit due to tension for this non-symmetric model
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(N=11 to N=19). After which, when the stress path leaves the elastic limit of compression, again
this case becomes the case of loading and also the elastic domain shrinks inwards and the stresses are
projected back by the integration algorithm on to the new evolved damage surface (N=19 to N=20).
Following this the uni-axial elastic tensile loading occurs. The actual stress path again becomes along
another straight line with a slope E(Sec−d) = (1− d2)E, along the secant constitutive path, with the
new current value of the damage variable d = d2, till it reaches the origin, where the final stress state
reaches (0, 0) (N=20 to N=30). The evolution of the damage surface in the stress space has been
shown in the Figure 4 for this considered loading path. The above explained phenomenon can be
observed from the Figure 5 below in which the principal stress 1(Which is same as Stress for this
uni-axial case) is plotted vs. the principal strain 1 (same as Strain for the uni-axial case).
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Figure 4: Path at the stress space for the “Non-symmetric tension-compression damage” model
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Figure 5: The stress-strain curve for the uni-axial “Non-symmetric tension-compression damage”
model

The “tension-only” damage model:
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The material is loaded from the initial effective principal stress state (0, 0) to (400, 0) (uni-axial
tensile loading), after which the uni-axial tensile unloading/compressive loading takes place till the
effective principal stress state reaches (-600, 0), and following this at the end the material is subjected
to uni-axial compressive unloading/ tensile loading up till the effective principal stress state reaches
(0, 0). The hardening modulus has been considered to be -0.2 ( linear softening). At the starting,
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till the stress state reaches the elastic domain the effective and the actual stresses are same (N=1 to
N=6). After which when the stress path leaves the elastic domain, the stresses are projected back on
to the evolved damage surface (N=6 to N=11). This case corresponds to the case of loading (ḋ > 0),
as we consider H < 0, the elastic domain shrinks inwards and the stresses are projected on to the
new damage surface. Following this when the unloading occurs (ḋ = 0), the actual stress path trends
along a straight line with slope E(Sec−d) = (1 − d1)E along the secant constitutive path that passes
through the origin. The actual stress path continues to be along on the same line throughout till the
effective stress path reaches (-600, 0), as we can’t find the elastic limit in compression up to infinite.
In this case the elastic domain is an open domain at infinite for compressive stresses (ḋ = 0) (N=11 to
N=20). The elastic domain also does not evolve as the stress path does not cross the elastic limit for
compression which is at the infinite. Following this when the uni-axial elastic tensile loading occurs
till the effective stress state reaches (0, 0), the actual stress path again follows the same straight line
having the same slope E(Sec−d) = (1− d1)E in the opposite direction towards the origin till the stress
state reaches (0,0) (N=20 to N=30). The evolution of the damage surface in the stress space has
been shown in the Figure 6 for this considered loading path. The above explained phenomenon can
be observed from the Figure 7 below in which the principal stress 1(Which is same as Stress for the
uni-axial case) is plotted vs. the principal strain 1(same as Strain for the uni-axial case).
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Figure 6: Path at the stress space for the “tension-only” damage model
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Figure 7: The stress-strain curve for the uniaxial “The tension-only damage model”
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Case 2:

(
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¯
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(3) = γ)

“Non-symmetric tension-compression damage” model:

(
¯

∆σ1
(1) = 300,

¯
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(1) = 0), (
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∆σ1
(2) = −1000,

¯
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¯
∆σ2

(3) = 1300)

The material is loaded from the initial effective principal stress state (0, 0) to (300, 0) (uni-axial tensile
loading), after which the biaxial tensile unloading/compressive loading takes place till the effective
principal stress state reaches (-700,-1000), and following this at the end, the material is subjected to
biaxial compressive unloading/tensile loading up till the effective principal stress state reaches (600,
300). The hardening modulus has been considered to be 0. At the starting, during the uni-axial elastic
loading, till the stress state reaches the elastic domain the effective and the actual stresses are same
(N=1 to N=8). After which when the stress path leaves the elastic domain for tension, the stresses
are projected back on to the evolved damage surface (N=8 to N=11). This case corresponds to the
case of loading (ḋ > 0). Following this when biaxial tensile unloading/compressive loading occurs,
the actual stress follows the path shown in the figure from N=11 to N=12; and N =12 to N=17 till
the stress path reaches the biaxial elastic limit for compression. After which, when the stress path
leaves the elastic limit of compression, again this case becomes the case of loading and the stresses
are projected back on to the damage surface (N=17 to N=20). After that, the biaxial compressive
unloading/tensile loading takes place. Until the stress path reaches again the biaxial tensile elastic
limit the actual stress path follows as shown in the figure from N=20 to N=29. After which when
the stress path leaves the elastic domain for tension, the stresses are projected back on to the damage
surface (N=29 to N=30). The evolution of the damage surface in the stress space has been shown in
the Figure 8 for this considered loading path.
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Figure 8: Path at the stress space for the “Non-symmetric tension-compression damage” model for
the Case 2

The above explained phenomenon can be observed from the Figure 9 below in which the norm of
stresses is plotted vs. the norm of the strains.
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Figure 9: The stress-strain curve for the biaxial “Non-symmetric tension-compression damage” model
(Case 2)

The “tension-only” damage model :
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¯
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∆σ1
(3) = 800,

¯
∆σ2

(3) = 800)

The material is loaded from the initial effective principal stress state (0, 0) to (400, 0) (uniaxial
tensile loading), after which the biaxial tensile unloading/compressive loading takes place till the ef-
fective principal stress state reaches (-200,-600), and following this at the end the material is subjected
to biaxial compressive unloading/tensile loading up till the effective principal stress state reaches (600,
200). The hardening modulus has been considered to be 0. At the starting, during the uni-axial elastic
loading, till the stress state reaches the tensile elastic domain the effective and the actual stresses are
same (N=1 to N=6). After which when the stress path leaves the elastic domain for tension, the
stresses are projected back on to the evolved damage surface (N=6 to N=11). This case corresponds
to the case of loading (ḋ > 0). Following this when biaxial tensile unloading/compressive loading
occurs, the actual stress follows the path shown in the figure from N=11 to N=14 and then N=14 to
N=20; as the biaxial elastic limit due to compression can never be reached. After that, the biaxial
compressive unloading/tensile loading takes place. Until the stress path reaches again the biaxial
tensile elastic limit, the actual stress path follows as shown in the figure from N=20 to N=27. After
which when the stress path leaves the elastic domain for tension, the stresses are projected back on
to the damage surface (N=27 to N=30). The evolution of the damage surface in the stress space has
been shown in the Figure 10 for this considered loading path. The above explained phenomenon can
be observed from the Figure 11 below in which the norm of stresses is plotted vs. the norm of the
strains.
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Figure 10: Path at the stress space for the “tension-only” damage model for Case 2
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Figure 11: The stress-strain curve for the biaxial “The tension-only damage model” (Case 2)

Case 3:
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“Non-symmetric tension-compression damage” model:
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∆σ1
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¯
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(2) = −2000), (
¯

∆σ1
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¯
∆σ2

(3) = 1600)

The material is loaded from the initial effective principal stress state (0, 0) to (400, 400) (biaxial
tensile loading), after which the biaxial tensile unloading/compressive loading takes place till the
effective principal stress state reaches (-1600,-1600), and following this at the end the material is
subjected to biaxial compressive unloading/tensile loading up till the effective principal stress state
reaches (0, 0). The hardening modulus has been considered to be 0.2 with the considered case of the
linear hardening. At the starting, during the biaxial elastic loading, till the stress state reaches the
elastic domain due to tension, the effective and the actual stresses are same (N=1 to N=6). After
which when the stress path leaves the elastic domain for tension, the stresses are projected back on to
the new evolved damage surface (N=6 to N=11). As,H > 0, the damage surface expands. This case
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corresponds to the case of loading (ḋ > 0). Following this when biaxial tensile unloading/compressive
loading occurs, the actual stress follows the secant path shown in the figure from N=11 to N=13 and
passes through the stress state (0, 0); and it moves along the same straight line(from N =13 to N=18)
till the stress state reaches the biaxial compressive elastic limit. After which, when the stress path
leaves the elastic limit of compression, again this case becomes the case of loading and the stresses
are projected back on to the new evolved damage surface due to hardening (N=18 to N=20). As,
H > 0, the damage surface expands. Following this, the biaxial compressive unloading/tensile loading
takes place(ḋ = 0). The stress path follows the secant path along the same straight line but in the
opposite direction till it reaches (0, 0). It is shown from N=20 to N=30. The evolution of the damage
surface in the stress space has been shown in the Figure 12 for this considered loading path. The
above explained phenomenon can be observed from the Figure 13 below in which the norm of stresses
is plotted vs. the norm of the strains.
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Figure 12: Path at the stress space for the “Non-symmetric tension-compression damage” model for
the Case 3

The “tension-only” damage model:
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∆σ1
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¯
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(1) = 400), (
¯

∆σ1
(2) = −900,

¯
∆σ2

(2) = −900), (
¯

∆σ1
(3) = 500,

¯
∆σ2

(3) = 500)

The material is loaded from the initial effective principal stress state (0, 0) to (400, 400) (uniax-
ial tensile loading), after which the biaxial tensile unloading/compressive loading takes place till the
effective principal stress state reaches (-500,-500), and following this at the end the material is sub-
jected to biaxial compressive unloading/tensile loading up till the effective principal stress state reaches
(0, 0). The hardening modulus has been considered to be 0.2 with the considered case of the linear
hardening. At the starting, during the uniaxial elastic loading, till the stress state reaches the tensile
elastic domain the effective and the actual stresses are same (N=1 to N=6). After which when the
stress path leaves the elastic domain for tension, the stresses are projected back on to the evolved
damage surface (N=6 to N=11).

This case corresponds to the case of loading (ḋ > 0). Following this when biaxial tensile unload-
ing/compressive loading occurs, the actual stress follows the secant path shown in the figure from
N=11 to N=15 till it reaches origin and then N=15 to N=20; as the biaxial elastic limit due to com-
pression can never be reached. Following this, the biaxial compressive unloading/tensile loading takes
place. The stress path follows the same straight line as this is the case of elastic unloading (ḋ = 0)
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Figure 13: The stress-strain curve for the biaxial “Non-symmetric tension-compression damage” model
(Case 3)

till the stress state reaches origin. It is shown in the figure below from N=20 to N=30. The evolution
of the damage surface in the stress space has been shown in the Figure 14 for this considered loading
path. The above explained phenomenon can be observed from the Figure 15 below in which the norm
of stresses is plotted vs. the norm of the strains.
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Figure 14: Path at the stress space for the “tension-only” damage model for Case 3

The above observations verify the correctness of the implemented damage models.
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Figure 15: The stress-strain curve for the biaxial “The tension-only damage model” (Case 3)

Part 2:

(d) Visco-damage “symmetric tension compression” model:

The integration algorithm (plane strain case) for the continuum isotropic viscous-damage “symmetric
tension compression” model has been implemented successfully. The code is presented in the Section
4 of the Annex. In this type of models the rate effects are accommodated into the in-viscid damage
model. The stresses become dependent on both the strains and the rate of the strains. When the
strain rate is very low, it coincides with the case of inviscid (η = 0) case. In this type of models,
the stress/strain state can lie outside the elastic domain. When the coefficient of viscosity is very
high, points can leave far away from the elastic domain. When the state of the effective stresses lie
inside the elastic domain, there is no evolution of the internal variables takes place. It is similar to
that of the in-viscid model. When the state of the effective stresses lie outside the elastic domain,
the actual stress state might lie outside the elastic domain depending open the value of the viscosity.
The evolution of the stress space is shown in the Figure 16 for the observed case. It can be observed
that the state of the actual stresses can lie outside the elastic domain in the viscid case. For this
observation the effective stress path is chosen such that:

(
¯

∆σ1
(1) = 100,

¯
∆σ2

(1) = 0), (
¯

∆σ1
(2) = 400,

¯
∆σ2

(2) = 0), (
¯

∆σ1
(3) = −500,

¯
∆σ2

(3) = 0)

The viscosity value has been taken η = 10, and other parameters are set as α = 5, γ = 0.3, H =
0.2 (Linear Hardening). The actual stress states, from N=8 to N=14, lie outside the elastic domain.
When the effective stress states lie in the elastic domain, as no evolution of the internal variable take
place, the actual stresses become same as that of the effective stresses (N1 to N7). It can be observed
from the Figure 17 where the norm of the stresses are plotted vs. the norm of the strains.

Another characteristic of this type of model is that the stress tensor might vary even if ε remains
constant while for inviscid models the stress tensors remains constant if strain remains constant. This
property has been shown in the Figure 18, where along the path N=21 to N=30 effective strain re-

mains constant by choosing the effective stress path such that (
¯

∆σ1
(1) = 100,

¯
∆σ2

(1) = 0), (
¯

∆σ1
(2) =

400,
¯

∆σ2
(2) = 0), (

¯
∆σ1

(3) = 0,
¯

∆σ2
(3) = 0); The viscosity value has been taken η = 10, and other

parameters are set as α = 0.5, ν = 0.3, H = −0.025.
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Figure 16: The evolution of the actual stresses for a viscous damage model
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Figure 17: Norm of stresses vs. norm of strains for a viscous damage model

(e) Effect of Different viscosity parameters η:

It is observed that outside the elastic region the larger are the viscosity parameters η, the larger
are the stresses for the same strain value. In the elastic part, there are no differences and the stresses
are independent of the viscosity parameters η. It can be observed from the Figure 19, where stress
norms are plotted vs. strain norms for different values of viscosity parameters η. For the observed
case, the considered parameters are: α = 0.5, H = −0.025 (LinearSoftening); ν = 0.3, The effective
stress path trends: (100,0),(300,0),(600,0)
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Figure 18: Comparison of the evolution of stresses with time for constant strain for viscid and non-
viscid models.
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Figure 19: Variation of Stress vs. Strain for different values of the viscosity parameter η

Effect of different strain rates:

It is observed that outside the elastic region the larger are the strain rate values, the larger are
the stresses for the same strain value. In the elastic part, there are no differences and the stresses
are independent of the values of the strain rates due to the no evolution of the internal variables.
It can be observed from the Figure 20 , where stress norms are plotted vs. strain norms for differ-
ent values of the strain rates. For the observed case the considered parameters are: α = 0.5, H =
−0.025 (LinearSoftening); γ = 0.3, η = 5. The effective stress path: (100,0); (200,0); (300,0). When
the viscosity parameter,η =0, all the strain rate curves collapse in to the curve which corresponds to
the strain rate value of zero.

Effect of different alpha values:

The Effect of different alpha values on the accuracy and the stability of the numerical integration
have been studied. For the observed case the considered parameters are: H = 0; ν = 0.3, η = 10.
The considered effective stress path: (200, 0); (400,0); (700,0).The observations are depicted in the
stress-strain plot below. It is observed that for α=0 the numerical integration scheme is conditionally
stable, and this explicit method gives first order accuracy. With the larger time step size, this scheme
becomes unstable. This observation is shown in the Figure 21, below for a large considered time step
value. The similar effects are also observed for α= 0.25.
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This explicit scheme (α= 0.25) gives first order accuracy and it is conditionally stable and the

Figure 20: Variation of Stress vs. Strain for different values of the strain rates η

stability depends on the size of the time-step. For α= 0.5, the numerical scheme is unconditionally
stable and it gives second order accuracy. In this case the solution converges faster to the exact so-
lution than all other alpha values in[0, 1]. The error does not propagate for any values of the time
step in this case. For α= 0.75, the numerical scheme is unconditionally stable and it gives first order
accuracy. For α= 1, the numerical scheme is unconditionally stable and it gives first order accuracy.
It is an implicit scheme. For α= 1 and η=0, Numerical integration inherits the properties of the
model and recovers the solution of the rate independent problem for the in viscid case and implicit
integration. Inside the elastic region, all the integration schemes corresponding to the different values
of α give same result. For a small time step value, all the alpha methods give similar results with
significantly small variations.
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Figure 21: Stress vs. Strain plot for different values of α for a large time step-size

Effect of α on the evolution of the C11 component of the tangent and algorith-
mic constitutive operators along time:

The evolution of the C11 component of the tangent and algorithmic constitutive operators along
the time has been studied for the different values of the α. The other considered parameters during
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the observation are: H= -0.025 (Linear Softening),ν = 0.3, η = 10. The considered effective stress
path: (100,0); (300,0); (600,0). It is observed that in the elastic domain no evolution takes place for
the C11 component of both the tangent and algorithmic constitutive operators along the time due to
the no evolutions of the internal variables in that regime. Outside the elastic domain it is observed
that for higher alpha values at a particular time, the values of the C11 component of the tangent and
algorithmic constitutive operators gets reduced. The reduction is more for the algorithmic constitutive
operators than the tangent constitutive operators at a particular time. When we consider α =0; both
have same value and both trend same path along the time. These observations can be depicted from
the Figures below. Also for infinitesimal time steps (δt = 0), they are equal. When η = 0 in the
algorithmic constitutive operators, the in-viscid case is recovered for any values of the α.
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Figure 22: Evolution of the C11 component of the tangent constitutive operators along time for the
different values of α
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Figure 23: Evolution of the C11 component of the algorithmic constitutive operators along time for
the different values of α
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ANNEX: 

Modelos_de_dano1.m: (Code: Section 1 and 2) 
 

if (MDtype==1)      % Symmetric (Already implemented) 

     
    rtrial= sqrt(eps_n1*ce*eps_n1'); 

  
elseif (MDtype==2)  % Tension only Damage model 

     
    sigmab=(eps_n1*ce); 
    sigmabpos=sigmab.*(sigmab>0); 

     
    rtrial=sqrt(sigmabpos*eps_n1'); 

     
elseif (MDtype==3)  %Non-symmetric Tension- Compression 

     
    sigma=(eps_n1*ce); 
    sigmapos=sigma.*(sigma>0); 
    sigmaabs=abs(sigma); 
    tita=sum(sigmapos)/sum(sigmaabs); 
    C=(tita+(1-tita)/n); 
    rtrial= C*sqrt(eps_n1*ce*eps_n1'); 

  
end 
return 

 

dibujar_criterio_dano1.m 

elseif MDtype==2 
    tetha=[(-pi/2)*0.9999:0.01:pi*0.9999]; % Angle 

    
    %* RADIUS 
    D=size(tetha);                       
    m1=cos(tetha);                        
    m2=sin(tetha);                        
    Contador=D(1,2);                      

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 

     
    for i=1:Contador 
        sigma= [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 
        sigmapos=sigma.*(sigma>0); 
        radio(i)= q/sqrt(sigmapos*ce_inv*sigma'); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   

         
    end 
    hplot =plot(s1,s2,tipo_linea); 

   
elseif MDtype==3 
    tetha=[0:0.01:2*pi]; 

     



    %* RADIUS 
    D=size(tetha);                        
    m1=cos(tetha);                        
    m2=sin(tetha);                        
    Contador=D(1,2);                      

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 

     

     
    for i=1:Contador 

         
        sigma=[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 
        sigmapos=sigma.*(sigma>0); 
        tita=sum(sigmapos)/sum(abs(sigma)); 

        
        radio(i)= (q/sqrt(sigma*ce_inv*sigma'))/(tita+(1-tita)/n); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   

         
    end 
    hplot =plot(s1,s2,tipo_linea); 

     
end 
return 

Section 3 , 4 (rmap_dano1.m) 

hvar_n1 = hvar_n; 
r_n     = hvar_n(5); 
q_n     = hvar_n(6); 
E       = Eprop(1); 
nu      = Eprop(2); 
H       = Eprop(3); 
sigma_u = Eprop(4); 
hard_type = Eprop(5) ; 
eta = Eprop(7); 
ALPHA_COEFF = Eprop(8); 
HARDSOFT_MOD = Eprop(3); 
%*       initializing                                                 
 r0 = sigma_u/sqrt(E); 
 zero_q=1.d-6*r0; 
%*Damage surface                                                              
[rtrial_n] = Modelos_de_dano1 (MDtype,ce,eps_n0,n); % (Viscous model) 
[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n); 
[rtrial_nalpha]=(1-ALPHA_COEFF)*rtrial_n+ALPHA_COEFF*rtrial ;   

%* 
%*   --------->    fload=0 : elastic unload                                            
%*   --------->    fload=1 : damage (compute algorithmic constitutive 

tensor)         %* 
fload=0; 

  
if viscpr == 1 
    if (rtrial_nalpha > r_n) 
        %*   Loading 
        fload=1; 
        delta_r=rtrial_nalpha-r_n;  



        r_n1=((eta-delta_t*(1-

ALPHA_COEFF))/(eta+ALPHA_COEFF*delta_t))*r_n+... 
            (delta_t*rtrial_nalpha)/(eta+ALPHA_COEFF*delta_t); 
        if hard_type == 0 
            %  Linear 
            q_n1= q_n+ H*delta_r; 
        else 
            %Exponential 

  
            q_inf=r0+(r0-zero_q); 
            if HARDSOFT_MOD>0 
                q_n1=q_n+((H*(q_inf-r0)/r0)*exp(H*(1-

rtrial_nalpha/r0)))*delta_r; 
            else 
                q_n1=q_n+((H*(q_inf-r0)/r0)*(1/exp(H*(1-

rtrial_nalpha/r0))))*delta_r; 
            end 

             
        end 

         
         if(q_n1<zero_q) 
            q_n1=zero_q; 
        end 

         
    else 
        %*     Elastic load/unload 
        fload=0; 
        r_n1= r_n  ; 
        q_n1= q_n  ; 

         

         
    end 

     
else 
    if(rtrial > r_n) 
        %*   Loading 

         
        fload=1; 
        delta_r=rtrial-r_n; 
        r_n1= rtrial  ; 
        if hard_type == 0 
            %  Linear 
            q_n1= q_n+ H*delta_r; 
        else 
            %Exponential 

  
            q_inf=r0+(r0-zero_q); 
            if HARDSOFT_MOD>0 
                q_n1=q_n+((H*(q_inf-r0)/r0)*exp(H*(1-rtrial/r0)))*delta_r; 
            else 
                q_n1=q_n+((H*(q_inf-r0)/r0)*(1/exp(H*(1-

rtrial/r0))))*delta_r; 
            end 
        end 

         
        if(q_n1<zero_q) 
            q_n1=zero_q; 
        end 

         



         
    else 

         
        %*     Elastic load/unload 
        fload=0; 
        r_n1= r_n  ; 
        q_n1= q_n  ; 

         

         
    end 

  
end 

  
% Damage variable 
dano_n1   = 1.d0-(q_n1/r_n1); 
%  Computing stress 
sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 
hvar_n1(5)= r_n1 ; 
hvar_n1(6)= q_n1 ; 
%* Auxiliar 

variables                                                               %* 
aux_var(1) = fload; 
aux_var(2) = q_n1/r_n1; 
 

damage_main.m 

LABELPLOT = {'hardening variable (q)','internal variable(r)','damage 

variable (d)','C11-Tangent','C11-Algorithimic'}; 

  
E      = Eprop(1) ; nu = Eprop(2) ;  
viscpr = Eprop(6) ; 
sigma_u = Eprop(4); 

  

  

  
if ntype == 1 
    menu('PLANE STRESS has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
elseif ntype == 3 
    menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
else 
    mstrain = 4    ; 
    mhist   = 6    ; 
end 

  
% if viscpr == 1 
%     % Comment/delete lines below once you have implemented this case 
%     % ******************************************************* 
%     menu({'Viscous model has not been implemented yet. '; ... 
%         'Modify files "damage_main.m","rmap_dano1" ' ; ... 
%         'to include this option'},  ... 
%         'STOP'); 
%     error('OPTION NOT AVAILABLE') 
% else 
% end 

  



  
totalstep = sum(istep) ; 

  

  
% INITIALIZING GLOBAL CELL ARRAYS 
% ------------------------------- 
sigma_v = cell(totalstep+1,1) ; 
TIMEVECTOR = zeros(totalstep+1,1) ; 
delta_t = TimeTotal./istep/length(istep) ; 

  

  
% Elastic constitutive tensor 
% ---------------------------- 
[ce]    = tensor_elastico1 (Eprop, ntype); 
% Initz. 
% ----- 
% Strain vector 
% ------------- 
eps_n1  = zeros(mstrain,1); 
% Historic variables 
% hvar_n(1:4) --> empty 
% hvar_n(5) = q --> Hardening variable 
% hvar_n(6) = r --> Internal variable 
hvar_n  = zeros(mhist,1)  ; 

  
% INITIALIZING  (i = 1) !!!! 
% ***********i* 
i = 1 ; 
r0 = sigma_u/sqrt(E); 
hvar_n(5) = r0; % r_n  
hvar_n(6) = r0; % q_n  
eps_n1 = strain(i,:) ; 
sigma_n1 =ce*eps_n1'; % Elastic  
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  

sigma_n1(4)];  

  
nplot = 3 ;  
vartoplot = cell(1,totalstep+1) ;  
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 
vartoplot{i}(4) =(1-( 1-hvar_n(6)/hvar_n(5)))*ce(1,1) ;  %%C11 of tangent 
vartoplot{i}(5)=(1-( 1-hvar_n(6)/hvar_n(5)))*ce(1,1)+ 

(Eprop(8)*delta_t)/(Eprop(7)+Eprop(8)*delta_t)... 
    *(Eprop(3)*hvar_n(5)-hvar_n(6))/( hvar_n(5) * 

hvar_n(5) )*sigma_v{i}(1,1)*sigma_v{i}(1,1)/(1-( 1-

hvar_n(6)/hvar_n(5)))^2; %C11 OF algorithm 

  

  
for  iload = 1:length(istep) 
    % Load states 
    for iloc = 1:istep(iload) 
        i = i + 1 ; 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 
        % Total strain at step "i" 
        % ------------------------ 
        eps_n1 = strain(i,:) ; 
        eps_n0 = strain(i-1,:) ; 



        %******************************************************************

******************** 
        %*      DAMAGE MODEL 
        % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
        [sigma_n1,hvar_n,aux_var] = 

rmap_dano1(eps_n1,eps_n0,hvar_n,Eprop,ce,MDtype,n,viscpr,delta_t); 
        % PLOTTING DAMAGE SURFACE 
        if(aux_var(1)>0) 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 

'r:',MDtype,n ); 
            set(hplotSURF(i),'Color',[0 0 

1],'LineWidth',1)                         ; 
        end 

  
        % GLOBAL VARIABLES 
        % *************** 
        % Stress 
        % ------ 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  

sigma_n1(4)]; 
        sigma_v{i} =  m_sigma ; 

  
        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 
        % ---------------- 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)         
        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 
        vartoplot{i}(4) =(1-( 1-

hvar_n(6)/hvar_n(5)))*ce(1,1) ;          %%C11 of Tangent 
         vartoplot{i}(5)=(1-( 1-hvar_n(6)/hvar_n(5)))*ce(1,1)+ 

(Eprop(8)*delta_t)/(Eprop(7)+Eprop(8)*delta_t)... 
    *(Eprop(3)*hvar_n(5)-hvar_n(6))/( hvar_n(5) * 

hvar_n(5) )*sigma_v{i}(1,1)*sigma_v{i}(1,1)/((1-( 1-

hvar_n(6)/hvar_n(5))))^2;  
% c11 of Algorithimic %C11 OF TANGENT 

  

      

 

END 

 


