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Kirchhoff Saint-Venant Material Model

Problem 1

Given elastic energy function is,

W (ε) =
λ

2
(εii)

2 + µεjkεjk

σpq =
∂W

∂εpq
= λεii

∂εii
∂εpq

+ 2µ
∂εjk
∂εpq

εjk

= λ εii δip δiq + 2µ δjp δkq εjk

Using property of δ operator, δabMac = Mbc,

σpq = λεiiδpq + 2µεpq

σ = λ tr(ε)I + 2µε

Which agrees with usual linear elasticity expression.

Problem 2

Given elastic energy function is,

W (E) =
λ

2
(trE)2 + µ tr(E2)

For law to be isotropic, W (QF ) = W (F ) which im-
plies that the energy potential is rotation indepen-
dent.

E =
1

2
(C − I) =

1

2
(F TF − I)

=
1

2
(F TQTQF − I) =

1

2
(F TF − I)

This proves thatE is independent of rotations. Since,
given W (E) is solely a function of E, it can be con-
cluded that given model is isotropic.

Problem 3

W (E) =
λ

2
(trE)2 + µ tr(E2)

tr(EPQEQR) = EPQEQP

The second Piola Kirchhoff Tensor is given as,

SIJ =
∂W

∂EIJ
=
λ

2

∂E2
KK

EIJ
+ µ

∂(EPQEQP )

EIJ

= λEKK
∂EKK

∂EIJ
+ µ

∂EPQ

EIJ
EQP + µEPQ

∂EQP

∂EIJ

Using symmetry of E and δabMac = Mbc,

SIJ = λEKKδKIδKJ + 2µEPQδQIδPJ

= λEKKδIJ + 2µEIJ

S = λ(trE)I + 2µE

Problem 4

Using the given deformation map,

F =
dx

dX
=

Λ 0 0
0 1 0
0 0 1

 , C = F TF =

Λ2 0 0
0 1 0
0 0 1


E = 1

2 (C − I) = 1
2

Λ2 − 1 0 0
0 0 0
0 0 0


S = λ(trE)I + 2µE

= 1
2

(Λ2 − 1)(λ+ 2µ) 0 0
0 (Λ2 − 1)λ 0
0 0 (Λ2 − 1)λ


P = FS

= 1
2

Λ(Λ2 − 1)(λ+ 2µ) 0 0
0 (Λ2 − 1)λ 0
0 0 (Λ2 − 1)λ


P11 =

Λ(Λ2 − 1)(λ+ 2µ)

2

Figure 1 shows normalized value of P11.
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Figure 1: P11 vs Λ

Problem 5

P is not monotonic, which is evident from Figure 1.
The optima of function are at,

dP

dΛ
=

(3Λ2 − 1)(λ+ 2µ)

2
= 0

which occurs at Λ = ± 1√
3
. These values are indepen-

dent of material parameters λ and µ. Since, negative
values of Λ are not feasible, only one optima needs

to be looked at which is at Λ = 1√
3
. Since d2P

dΛ2 => 0

at this point, this is a minima. This is also evident
from Figure 1, that the function has a minimum
value at Λ = 1√

3
≈ 0.58.

Therfore, critical value at which model fails, since
dP
dΛ = 0 is at Λ = 1√

3
. As explained above, this value

is independent of material parameters λ and µ.

J = det(F ) = Λ

W (E) =
λ

2

(
Λ2 − 1

2

)2

+ µ

(
Λ2 − 1

2

)2

Hence, J → 0+ implies λ → 0+. This makes the
energy potential W → 0+. Physically speaking, as
one compresses material incrementally, more energy
should be stored (increase in the potential) and in the
limiting case, where a material becomes concentrated
at single point, W should approach +∞. This is not
observed in Kirchhoff Saint-Venant Model.

Problem 6

For modified model,

W (E) =
λ

2
(ln J)2 + µ tr(E2)

=
λ

2
(ln Λ)2 + µ

(
Λ2 − 1

2

)2

For this model, as J → 0+ or λ → 0+, W → +∞.
Therefore, modified model removes this limitation of

the original Kirchhoff Saint-Venant Model. As shown
in Figure 2, the potential should have a minimum
at natural length Λ = 1. Also, it can be seen that
W → +∞ as λ → 0+ for modified model which is
not the case for original model.
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Figure 2: W vs Λ

Problem 7

The material model has been implemented, code is
in Appendix. To observe the effects of only mate-
rial nonlinearity (and not geometrical nonlinearity),
Y DoF of all nodes was fised. Problem 1 in Matlab
code was simulated. Λ was varied from 1 to 0.01. The
displacement controlled simulation results are shown
in Figure 3.
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Nonlinear elasticity

Linear elasticity

Figure 3: Forces vs δ

As expected, the force reaches a maximum value at
Λ = 1√

3
, δ = 1 − Λ = 0.43. points between δ = 0 to

δ = 1√
3

are stable. But if sufficient energy is provided

(increment in F), the equilibrium point shifts on
the other side of maxima, which would be unstable.
Therefore, the model would snap to some unknown
configuration which indicated the instability.
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To verify this hypothesis, a force controlled model
was simulated, with F varying from 0 to 20 in
compression. As expected, the solution was unstable
at point close to this. Both displacement and forced
controlled simulations are plotted in the same plot
(Figure 4) for comparison. (Note, displacement con-
trolled solution used for comparison was simulated
only until δ = 0.8)

Since, there is no other feasible solution, the model
snaps inside out (δ > 1). This final configuration is
shown in Figure 5, where blue mesh is initial config-
uration and red is final.
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Figure 4: Compressive Force vs Compressive Dis-
placement

Figure 5: Final Configuration: Force Control

Implementation of Line-Search

Line Search has been implemented in MATLAB.
The relevant code can be found in Appendix. The
direction of p was reversed if it was found to move in
the uphill direction where p was defined as,
p = -grad E* inv(Hess E). This was checked using
sum(grad E.*p) > 0, if found true, direction was
reversed.

The results for slender beam under compressive dis-
placement load are shown in Figure 6 which depicts
solution without line search implementation (blue)
and with line search (red). It is evident that line
search method was able to capture buckling. Even
after adding random perturbations, solver without

line search was unable to capture the buckling effect.

Both the methods, try to approach the minimum of
energy function, but since line search is searching
along direction of gradient for a longer distance (us-
age of t), there is a greater chance that it finds the
global minima. On the other hand, there is a high
chance that solver without line search will not find
the global minima. (but will reach local minima, or
even local maxima, if positive definiteness of Hessian
is not checked)
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Figure 6: Line Search Effect

Figure 7: Solution With Line Search

Figure 8: Solution Without Line Search

A similar observation was made for problem with de-
flection of Arch (displacement controlled). Solver
without line search cannot capture buckling and
snaps to infeasible configuration which can be seen
in Figure 11. On the other hand, line search can cap-
ture the buckling effect (Figure 10). Figure 9 shows
load-displacement of line search.
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Figure 9: Load vs Displacement, Line Search

Figure 10: Solution With Line Search

Figure 11: Solution Without Line Search

Implementation of a Material Model

Given, W , it is needed to calculate S and CC which
are second Piola Stress Tensor and Tangent Modulus
respectively. The derivation of these quantities is as

follows. Some preliminaries are,

I1 = CII ,
∂I1
∂C

= I

I3 = det(C),
∂I3
∂C

= I3C
−1

I4 = nInJCIJ

∂I4
∂C

= δIKδJLnInJ =

[
n1n1 n2n1

n2n1 n2n2

]
= N

∂C−1

∂C
= −0.5(C−1

IKC
−1
JL + C−1

ILC
−1
JK) = −0.5A

P = exp(c1(
√
I4 − 1)4)

∂P

∂C
= 2c1

P (
√
I4 − 1)3

√
I4

N = (P 1 fact)N

∂(P 1 fact)

∂C
= (P 2 fact)N

S = 2
∂W

∂C
, CC = 4

∂2W

∂C2

Using the above expressions and given potential,

W =0.5µ(I1 − 2)− µ ln(
√
I3)+

0.25κ(I3 − 1− 2 ln(
√
I3)) + c0(P − 1)

S =2(0.5µI − 0.5µC−1 + 0.25κI3C
−1

− 0.25κC−1 + c0(P 1 fact)N)

CC =4(0.25µA− 0.125κI3A+

0.25κC−1I3C
−1 + 0.125κA

+ c0(P 2 fact)NN)

Where, NN means NIJNKL, NIJ = N(I, J).

Part A

The model has been implemented in MATLAB, code
can be found in Appendix. The material parameters
used for the simulations are as follows,

mod1.mu=1;

mod1.kappa = 100;

mod1.c0 = 80;

mod1.c1 = 5;

As asked, four simulations were performed for θ =
90, 45, 30 and 0. For all simulations, line search
with Newton-Raphson method was used. The exam-
ple used for solving was Example 1 from MATLAB
code. Tensile applied load was 0:0.09:3.

Part B

The derivative check was performed and was found
to be successful. The convergence plot for error in f
using Newton-Raphson (with Line Search) is shown in
Figure 12. The corresponding data points are, x=[1,
2, 3, 4] and y=[-1.56, -1.74, -4.07, -7.36]. From this,
it can be seen that when the iterations double from 2
to 4, the error reduces almost 4 times. This implies
a quadratic convergence.
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Figure 12: Convergence Plot

Part C

As explained previously, four simulations were per-
formed. The results are documented from Figure 13
to Figure 20.

Angle = 90

In this case, material is stronger in Y than in X. But
as load increases, material fibers get squeezed in form
of diamonds, in order to resist load. Once this trans-
formation of shape gets completed, the stiffness of
material changes. This can be seen from jump in the
slope of load vs displacement curve. The deformed
shape confirms the hypothesis about change in shape.
The decrease in the stiffness can be accounted by the
fact, once perturbed, the shear components will come
into picture and due to very less shear resistance, they
would readily deform, reducing the overall stiffness.
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Nonlinear elasticity

Linear elasticity

Figure 13: Load vs Displacement, θ = 90

Figure 14: Final Configuration, θ = 90

Angle = 45

In this case, material fibers are strong along 45 de-
grees with X axis. So Applied load along [1 0]T can be
split using vectors along 45 degree line a = [1 1]T and
one perpendicular to it b = [1 − 1]T . Since, stiffness
along vector a is more, there would be less deflection,
but the stiffness is less along vector b, which results
in more deformation along b. This is evident from
shape plot.
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Linear elasticity

Figure 15: Load vs Displacement, θ = 45

Figure 16: Final Configuration, θ = 45

Angle = 30

In this case, material fibers are strong along 30 de-
grees with X axis. So Applied load along [1 0]T

can be split using vectors along 30 degree line a =
[0.8660 0.5000]T and one perpendicular to it b =
[0.5000 − 0.8660]T . Since, stiffness along vector a is
more, there would be less deflection, but the stiffness
is less along vector b, which results in more deforma-
tion along b. This is evident from shape plot.
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Linear elasticity

Figure 17: Load vs Displacement, θ = 30

Figure 18: Final Configuration, θ = 30

Angle = 0

In this case, material fibers are strong along X di-
rection, so compared to all the cases, displacements
should be less in X direction.
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Linear elasticity

Figure 19: Load vs Displacement, θ = 0

Figure 20: Final Configuration, θ = 0

Comparison

Except, Angle =90, all other graphs could be ex-
plained with simple logic, As angle increases from 0
to 90, the stiffness along X direction decreases, which
is evident from the decreasing slopes of curves. Pos-
sible casue of anomaly in the behavior of angle=90
case, is mentioned above already.
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Figure 21: Load vs Displacement, θ = 90,42,30,0
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Appendix

Kirchhoff Saint-Venant Material Model

The material model NeoHookean 3 was modified.
Also, the calls to NeoHookean 1 and NeoHookean 2

were redirected to NeoHookean 3.

function [W,S,CC]=NeoHookean_3...

(C,lambda,mu,icode)

CMat = [C(1), C(3); C(3), C(2)];

E = 0.5*(CMat-eye(2));

W = lambda/2*trace(E) + mu*trace(E*E);

S = lambda*eye(2)*trace(E) + 2*mu*E;

S = [S(1,1), S(2,2), S(1,2)];

CC=zeros(3);

CC(1,1) = lambda+2*mu;

CC(2,2) = lambda+2*mu;

CC(1,2) = lambda;

CC(2,1) = CC(1,2);

CC(3,3) = 2*mu;

end

Line-Search

Line Search with Newton-Raphson was implemented
in file Equilibrate as a child of command switch

options.method

case 1, %Newton-Raphson

iter=0;

err_x=100;

err_f=100;

[Ener,grad_E,Hess_E]=Ener_short(x_short,3);

while (iter<=options.n_iter_max) & ...

((err_f>options.tol_f))

[Ener,grad_E,Hess_E]=Ener_short(x_short,3);

iter=iter+1;

p = -Hess_E\grad_E;

if sum(grad_E.*p) > 0

p = -p;

end

t=1;

opts=optimset(’TolX’,options.TolX,...

’MaxIter’,options.n_iter_max_LS);

t = fminbnd(@(t) Ener_1D(t,x_short,p),...

0,10,opts);

x_short=x_short+t*p;

err_x=norm(t*p)/norm(x_short);

err_f=norm(grad_E);

err_plot=[err_plot err_x];

err_plot1=[err_plot1 err_f];

end

Transversely Isotropic Material

A new file was written to simulate this material
model.

function [W,S,CC]=transv_isotr_3...

(C,c0,c1,kappa,mu,N_fib)

C = [C(1), C(3); C(3), C(2)];

Cinv = eye(2)/C;

I1 = trace(C);

I3 = det(C);

I4 = N_fib’*C*N_fib;

J = sqrt(I3);

N1 = N_fib(1);

N2 = N_fib(2);

N = [N1*N1, N2*N1; N1*N2, N2*N2];

P = exp(c1*(sqrt(I4)-1)^4);

P_1_fact = 4*c1*P*(sqrt(I4)-1)^3 /2/sqrt(I4);

P_2_fact = 2*c1*(sqrt(I4)*(P_1_fact*(sqrt(I4)-1)^3...

+ 3*P*(sqrt(I4)-1)^2/2/sqrt(I4))...

- P*((sqrt(I4)-1)^3)/2/sqrt(I4))/I4;

%values for fourth order tensor N_i N_j N_k N_l

N11N11 = N(1,1)*N(1,1);

N22N22 = N(2,2)*N(2,2);

N12N12 = N(1,2)*N(1,2);

N11N22 = N(1,1)*N(2,2);

N11N12 = N(1,1)*N(1,2);

N22N12 = N(2,2)*N(1,2);

%values of derivative of Cinv wrt C

A1111 = Cinv(1,1)*Cinv(1,1) + Cinv(1,1)*Cinv(1,1);

A2222 = Cinv(2,2)*Cinv(2,2) + Cinv(2,2)*Cinv(2,2);

A1212 = Cinv(1,1)*Cinv(2,2) + Cinv(1,2)*Cinv(2,1);

A1122 = Cinv(1,2)*Cinv(1,2) + Cinv(1,2)*Cinv(1,2);

A1112 = Cinv(1,1)*Cinv(1,2) + Cinv(1,2)*Cinv(1,1);

A2212 = Cinv(2,1)*Cinv(2,2) + Cinv(2,2)*Cinv(2,1);

W = 0.5*mu*(I1-2) - mu*log(J)...

+ kappa/4*(I3-1-2*log(J)) + c0*(P-1);

S_tensor = 0.5*mu*eye(2) - mu/2*Cinv...

+ kappa/4*I3*Cinv - kappa/4*Cinv + c0*P_1_fact*N;

S_tensor = 2*S_tensor;

S = [S_tensor(1,1) S_tensor(2,2) S_tensor(1,2)];

CC = zeros(3,3);

f1 = mu/4+kappa/8;

f2 = kappa/4;

f3 = kappa/8;

CC(1,1) = f1*A1111 + f2*Cinv(1,1)*Cinv(1,1)*I3 ...

- f3*I3*A1111 + c0*P_2_fact*N11N11;

CC(2,2) = f1*A2222 + f2*Cinv(2,2)*Cinv(2,2)*I3 ...

- f3*I3*A2222 + c0*P_2_fact*N22N22;

CC(3,3) = f1*A1212 + f2*Cinv(1,2)*Cinv(1,2)*I3 ...

- f3*I3*A1212 + c0*P_2_fact*N12N12;

CC(1,2) = f1*A1122 + f2*Cinv(1,1)*Cinv(2,2)*I3 ...

- f3*I3*A1122 + c0*P_2_fact*N11N22;

CC(1,3) = f1*A1112 + f2*Cinv(1,1)*Cinv(1,2)*I3 ...

- f3*I3*A1112 + c0*P_2_fact*N11N12;

CC(2,3) = f1*A2212 + f2*Cinv(2,2)*Cinv(1,2)*I3 ...

- f3*I3*A2212 + c0*P_2_fact*N22N12;

CC(2,1) = CC(1,2);

CC(3,1) = CC(1,3);

CC(3,2) = CC(2,3);

CC = 4*CC;

end

THE END
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