Master's Degree Numerical Methods in Engineering

Computational Solid Mechanics

Homework 2: Implementation of the 1D and J2 Plasticity Models

Author: Luis Ángel AVILÉS MURCIA luis.angel.aviles@upc.edu Professors: Carlos, Agelet de Saracibar

 $\begin{array}{c} {\rm May}\ 1,\ 2020\\ {\rm Academic}\ {\rm Year}\ 2019\mathcharce2020 \end{array}$

Contents

1	Des	cription	1
2	Par	t I - 1D Plasticity Model	1
	2.1	Loading paths	1
	2.2	Material parameters	1
	2.3	Numerical simulations	2
	2.4	Results	2
	2.5	Conclusions Part I	6
3	Par	t II - J2 Plasticity Model	7
	3.1	Material parameters	7
	3.2	Loading path	7
	3.3	Results	8
	3.4	Conclusions Part II	12
A	App	pendix	13
	A.1	Plasticity main 1D	13
	A.2	Function plasticity one	14
	A.3	Function Print results	16
	A.4	J2 Code main	17
	A.5	J2 Subroutines	20

1 Description

This report presents the implementation of two plasticity models. First, the 1D rate-independent and rate-dependent hardening plasticity models, including linear and nonlinear isotropic hardening and linear kinematic hardening. Second, the J2 plasticity model or known as Von Mises models in 3D. Two software were used to carry on the implementation. The 1D plasticity model was implemented using a Matlab code due to the simplicity and J2 model was implemented in a fortran code, following the syntax of a User Material (UMAT) used in Abaqus but at the level of a Gauss point. For this last task, a code called IncrementalDriver.f[1] was used. This code allow test models using a single gauss point.

2 Part I - 1D Plasticity Model

The 1D plasticity model was implemented in Matlab following the algorithm from the slides. The implementation is a strain drive implementation, which means that strain vector is known for any step and stresses and internal variables are computed and updated according with this strain vector.

2.1 Loading paths

In order to validate and assess the correctness of the implementation, the following strain path was used. High values of strains are not necessary because the material to be tested is steel, which have high stress to low strains values.

Figure 1: Strain path used to test the model

2.2 Material parameters

Three sets of material parameters will be used to assess the correctness of the implementation: a reference value, a lower value (under the reference) and a higher value (below of the reference value).

Parameter	Ref value	Value min	Value max
Young Modulus	100 MPa	$50 \mathrm{MPa}$	125 MPa
Isotropic hardening mod- ulus	$50 \mathrm{MPa}$	$20 \mathrm{MPa}$	75 MPa
Kinematic hardening modulus	50 MPa	20 MPa	75 MPa
Yield stress	1.2 MPa	$0.5 \mathrm{MPa}$	2.0 MPa
Viscosity parameter	$0.5 \mathrm{MPa}$	$0.25 \mathrm{MPa}$	1.0 MPa
delta coefficient	0.5	0.3	1.0
Infinite stress	2.5 MPa	2.5MPa	2.5 MPa

Table 1: Material parameters

2.3 Numerical simulations

The following simulations were carry on using the implemented algorithm.

- Perfect Plasticity
- Linear isotropic hardening plasticity
- Nonlinear isotropic hardening plasticity with exponential saturation law
- Linear kinematic hardening plasticity
- Nonlinear isotropic and linear hardening plasticity

2.4 Results

• Perfect Plasticity

For this case, all hardening parameters are set to zero.

Figure 2: Perfect plasticity curves for rate-independent and rate-dependent

It can be seen that for rate-dependent materials, the stress response is higher than for rate-independent. It is because beyond the yield stress the material stiffness increase as plasticity have place. At the same time, for rate-dependent material the transition from elastic to plastic is smoother than for rate-independent.

• Linear isotropic hardening plasticity

Figure 3: Isotropic hardening, variation of stress with strain rate

As the isotropic hardening modulus increase, the stress response increase becoming the material capable of wide the elastic regimen of the load.

Figure 4: Isotropic hardening, variation of stress with strain rate

From figure 4 it can be seen that to rate-dependent material, for smaller time (lower rate strain) results in stiffer response.

• Nonlinear isotropic hardening plasticity

Figure 5: Nonlinear isotropic hardening, variation of isotropic hardening modulus

4.5 -----δ = 100.000 ----δ = 100.000 δ = 100 100 3.5 $\delta = 10$ δ = 10 σ [MPa] σ [MPa] -6.00 4.00% 6.00% 1.5 K = 50 MPa 0.5 K = 50 MPa 2.20% 3.20% 5.20% 6.20% 1.20% 7.20% 4.20% ε**[%]** ε [%] (a) Rate dependent (b) Rate dependent

When the material becomes rate-dependent, the curves shrink along the cycle of load but the strength increase is not significant.

Figure 6: Variation of Nonlinear isotropic hardening with delta coefficient

The influence of the delta coefficient over the stiffness of the material is more marked for higher values of this parameter. Very high values of delta expand the elastic regime, lower values present linear development of the hardening.

Figure 6b shows the evolution of the stress according to an exponential law, however, because of the isotropic and kinematic hardening, the behavior seems linear and it extends beyond the infinite yield stress because of the hardening itself.

The following figure shows the influence of delta parameter over the stress response. It can see that for high values of the delta parameter more quickly the stress reach the yield infinite stress given by the material.

Figure 7: Influence of the delta parameter on the stress response in nonlinear plasticity behaviour

• Linear kinematic hardening plasticity

Figure 8: Kinematic hardening, variation of kinematic hardening modulus

The increase of the kinematic hardening is not as high as isotropic hardening, which means isotropic hardening is more relevant to increase the resistance of materials and expand the elastic regime once the yield state has been overcome.

Figure 9: Kinematic hardening, variation of stress with strain rate

Shorter time in the load application means the material can resist more load. Physically, this is due because there is not time to material experiment a redistribution of the load through the domain. Just a very small time, or strain rate, present significant changes in the material response, from a certain time (in this case approximately 1 seg) the rate-strain does no have a relevant effect on the material response, it can be seen because the almost overlapping in the stress-strain in 9a.

Figure 10: Influence of viscosity on the stress-strain response

• Nonlinear isotropic and linear kinematic hardening plasticity

Figure 11: stress-strain response to nonlinear isotropic and linear kinematic hardening, rate-dependent

The nonlinear behavior is not to clear when materials have hardened, this cause that material becomes stiffener and do not show very clear the exponential law of hardening.

(a) Kinematic variation

(b) Variation kinematic hardening with time

Figure 12: stress-strain response to nonlinear isotropic and linear kinematic hardening, rate-dependent

The figures showed before corresponding to rate-dependent materials, however, rate-independent material behaves similarly. The smooth transition in the stress-strain curves seen between rate-dependent and rate-independent is not to clear when the material has both isotropic and kinematic hardening.

2.5 Conclusions Part I

- The rate-dependent response increase the yield surface and apply a smoothening to the transition between elastic and plastic behavior.
- The linear isotropic parameter, K, play a role more significant in the hardening of the material than the kinematic modulus. Isotropic hardening modulus increase the slope for the plastic deformation and expand the elastic domain faster after each cycle.
- Time or rate-strain have a influence on the behaviour of the material for small values of time. At high values of time the material response in stress-strain does not change.
- For the nonlinear isotropic hardening, the exponential coefficient δ just affects the velocity with which the yield surface is reached, for high values, faster increase.
- As for isotropic hardening, for linear kinematic plasticity, greater values of the kinematic hardening parameter, H, produce that the plastic part of the stresses increase faster.
- The main difference between isotropic and kinematic cycle response is that for isotropic stress-strain the cycle remains open once the strain has complete the loop. For kinematic response, once the strain cycle is complete, the curves look closed.

3 Part II - J2 Plasticity Model

As mentioned before, J2 model is known as Von Mises model. This was implemented in Fortran using the code Incremental Driver, which is used to test material models at a gauss point level. The implementation was done following the algorithm given in class for rate-dependent model. The rate-independent model is a particular case of the model with viscosity equal to zero. Because this is a 3D model, some tensorial and vectorial operations are needed to operate with some stress or strains tensor, these vectorial operations were implemented as subroutines inside the code.

3.1 Material parameters

The following table shows the parameters used to evaluate the correctness of the J2 model implementation.

Parameter	Ref value	Value min	Value max
Young Modulus	20000 MPa	-	-
Isotropic hardening mod- ulus	2000 MPa	1000 MPa	3000 MPa
Kinematic hardening modulus	3000 MPa	1500 MPa	4500 MPa
Yield stress	500 MPa	250 MPa	1200 MPa
Viscosity parameter	500 MPa	250 MPa	1000 MPa
delta coefficient	25	10	100
Infinite stress	2500 MPa	-	-

Table 2: Material parameters

All the state variables (internal variables) are zero at the beginning of the test. A triaxial initial condition was set with 100 MPa in all the three principal directions.

3.2 Loading path

In order to validate and assess the correctness of the implementation, the following strain path was used. The maximum strain is 10% in both compression and extension.

Figure 13: Strain path used to test the J2 model

The total time in the Figure is just orientative because a longer time can be used with the implementation.

3.3 Results

• Perfect Plasticity

For this case, isotropic and kinematic hardening modulus are set to zero. In addition, to consider the rate effects, the mean value of viscosity was considered (500 MPa).

Figure 14: Perfect plasticity curves for rate-independent and rate-dependent

In all the stress-strain figures, the y-axis corresponds to the deviatoric stress (q). The behavior is very similar to 1D plasticity.

• Linear isotropic hardening plasticity

In this case, the isotropic hardening modulus takes different values to see the influence of the parameter in the material response. A linear evolution of the hardening is considered.

Figure 15: Linear variation of stress-strain response with isotropic hardening modulus

As the isotropic hardening modulus increase, the stress response increase becoming the material capable of wide the elastic regimen of the load. At the same time, it is seen as the rate-dependent effect smooth the changes in the path of the cyclic load.

Figure 16: Influence of the viscosity on the stress-strain response for isotropic hardening

Higher values of viscosity increase the stiffness of the material. It can be seen as an additional term that stiffens the material during the load.

• Nonlinear isotropic hardening plasticity

In order to see well the nonlinear behavior, the isotropic hardening modulus (K) was set to zero.

Figure 17: Nonlinear variation of stress-strain response with isotropic hardening modulus

It can be seen how the stress trend to 1000 MPa which is the value of the parameter infinite stress. High values of the parameter delta carry to a faster reach of the infinity yield stress value. Once the infinite stress value has been reached, the remaining parts of the load path behave as perfect plasticity when reaching the new yield stress.

The viscosity effect makes smooth the changes of direction on the load path. For both cases, it can be appreciated that not increment in the yield surface happen over the infinity yield stress, this is because the isotropic hardening parameter is zero.

• Linear kinematic hardening plasticity

Now the isotropic hardening modulus is zero and the kinematic hardening modulus takes different values according with the table of material parameters.

Figure 18: Variation of stress-strain response with kinematic hardening modulus

In kinematic hardening light changes in the hardening, modulus does not make a great change in the stress-strain response as in isotropic hardening. High values of kinematic hardening trend to close or reduce the area created by the curves.

Figure 19: Influence of the viscosity on the stress-strain response for kinematic hardening

• Nonlinear isotropic and linear kinematic hardening plasticity

Figure 20: Nonlinear isotropic and linear kinematic hardening, rate-independent behavior

Changes in isotropic hardening modulus are more representative in the stress-strain response of the material, it increases the strength of the material, especially for the unloading and reloading part of the load cycle.

Figure 21: Nonlinear isotropic and linear kinematic hardening, rate-dependent behavior

There are not huge differences between rate-independent and rate-dependent materials, at least at the level of stress analyzed in this work.

Figure 22: Nonlinear isotropic and linear kinematic hardening, influence of delta parameter and viscosity

• Influence of the time (rate strain)

The influence of the time or rate-strain was considered changing the time between each strain increment. The following figures shows the stress-strain response and the stress-time behaviour for three time increments, for linear and nonlinear isotropic hardening.

Figure 23: Linear rate-dependent isotropic hardening with time variation

Figure 24: Nonlinear rate-dependent isotropic hardening with time variation

It can be seen that the difference in the stress-strain response between Linear and Nonlinear behavior of the isotropic hardening is not significant when the time changes. The change in time or rate-strain controls the behavior of the material completely. A little increase or reduction of the time means an appreciable change in the load response.

Figure 25: Nonlinear rate-dependent isotropic hardening with time variation

The changes in the material response with viscosity changes are not too relevant like changes relate to time. Figure 25 shows that even when viscosity increase in 100 percent, changes are not to huge as when time increases a little.

3.4 Conclusions Part II

- Isotropic hardening have a more relevant effect in the strength of the materials.
- Lower rate-strains (lower time) increase the stiffness of the material and consequently their strength.
- High values of the delta parameter cause that materials reach the infinite stress value faster.
- Viscosity increment can be seen as an additional property that increases the stiffness of materials and smoothes the transition from loading to unloading and vice versa.

A Appendix

A.1 Plasticity_main 1D

```
2 % Implementation of 1D plasticity model
_3 % Perfect plasticity, isotropic hardening and kinematic hardening
4 % Linear and Non linear hardening
5 % Writen by: Luis Angel Aviles Murcia
6 % Computational Solid Mechanics
7 % Master degree on numerical methods
8 % Professor: Carlos Agelet
10 clc
11 clear all
12
13 %% Material properties
14 \text{ E_mod} = 100 \text{ E6};
                      % Eprop(1) Young Modulus Pa
_{15} \text{ K_mod} = 75 \text{ E6};
                      % Eprop(2) Isotropic hardening modulus in Pa
16 H_mod = 0E6;
                   % Eprop(3) Kinematic hardening modulus in Pa
17 sigma_y = 1.2E6; % Eprop(4) Yield stress in Pa
                       % Eprop(5) Viscosity parameter
18 viscosity = 0.5E6;
19 sigma_inf = 3.0E6; % Eprop(6) Sigma infinity used in exponential law
20 delta = 0.1E3;
                       % Eprop(7) delta <- Parameter for exponential law
_{21} hard_law = 1;
                      % Eprop(8) Hardening law 0 = linear 1 = exponential
22 Eprop = [E_mod K_mod H_mod sigma_y viscosity sigma_inf delta hard_law];
23
24 %% Strain path (cycle)
25 timeTotal = 10.0; % time per path
26 nloadstates = 3 ;
                      % tramos de ruta de strain
_{27} npaths = 5;
28 noCycles = 1;
29
30 %% Strain points (just one load cycle)
31 strain(1) =6*10<sup>-2</sup>; % the strain vector start in 0
32 strain(2) =-6*10<sup>-2</sup>; % minimum point of strain vector
33 strain(3) =6*10^-2;
                         % last point of the strain vector
34
35 %% Number of time increments for each npath
36 % ------
37 istep = 10; % increments for each path
38 totalSteps = npaths*istep; % total time
39
40 %% Initialisation strain vector
41 strainVector = zeros(totalSteps+1,1);
42 for i=1:istep
43 strainVector(i+1) = strain(1)*i/istep;
44 strainVector(11+i) = strain(1)-strain(1)*i/istep;
45 strainVector(21+i) = strain(2)*i/istep;
46 strainVector(31+i) = strain(2)+strain(1)*i/istep;
47 strainVector(41+i) = strain(3)*i/istep;
48 end
49
50 %% Initialisation time vector for rate dependent
51 timeVector = zeros(totalSteps+1,1) ;
52 delta_t = timeTotal/totalSteps;
53 for i=2:totalSteps+1
      timeVector(i) = timeVector(i-1)+delta_t;
54
55 end
56
57 %% Initialisation of the plastic state (internal variables)
58 eps_plas = zeros(totalSteps+1,1); % epsilon plastico
         = zeros(totalSteps+1,1);
                                      % isotropic internal variable
59 Xi
60 Xibar
          = zeros(totalSteps+1,1);
                                      % kinematic internal variable
         = zeros(totalSteps+1,1);
                                      % stress vector
61 sigma
         = zeros(totalSteps+1,1);
= zeros(totalSteps+1,1);
                                      % isotropic hardening
62 q
                                      % kinematic hardening
63 gbar
64 plastic_state = zeros(totalSteps+1,1);
_{65} ce = E_mod;
                                      % elastic modulus
66
67
```

```
68
69 %% Problem solution
70
71 for i=2:totalSteps+1
72
     timeVector(i) = timeVector(i-1)+delta_t;
73
74
75
     [stress,eps_plasn1,Xi_n1,Xibar_n1,plastic_state(i)] = plasticity_one(eps_plas(i-1),Xi(i))
76
      -1),Xibar(i-1),strainVector(i),Eprop,i,delta_t);
77
     %****** Updating variables for next step *****
78
     sigma(i)
                 = stress(1);
79
     q(i)
                  = stress(2);
80
     qbar(i)
                 = stress(3);
81
     eps_plas(i) = eps_plasn1;
82
                 = Xi_n1;
     Xi(i)
                = X_1 = ...
= Xibar_n1;
83
84
     Xibar(i)
85
     % Saving data to plot externally
86
87
     %printResults(X,T,elemType,elementDegree,h);
88 end
89 % Printing variables in a .txt file to print data
90 printResults(K_mod,H_mod,viscosity,delta,sigma,q,qbar,strainVector,eps_plas,totalSteps,
  timeVector)
```

A.2 Function plasticity_one

```
1 function [stress, Eplas_n1, Xi_n1, Xibar_n1, plas_sta] = plasticity_one(Eplas, Xi, Xibar, strain,
      Eprop,i,delta_t)
2 % Time-stepping algorithm for a 1D hardening plasticity model
з %
4 % Inputs:
5 % Eplas = epsilon plastico
6 % Xi = isotropic internal variable
7 % Xibar = hardening internal variable
8 % strain = vector with strain
9 % Eprop = material properties
10 %
11 % Outputs:
12 % stress = sigma stress for next step n+1 (contains sigma, q, qbar)
13 % Eplas_n1 = epsilo plastic for next step n+1
    Xi_n1 = isotropic hardening variable (scalar), step n+1
Xibar_n1 = kinematic hardening variable (scalar), step n+1
14 %
15 %
16 %
17 % plas_sta = [isplastic]
18 % isplastic variable that is 1 if plastic case or 0 otherwise
********
20 %
21 Eplas_n
             = Eplas;
            = Xi;
22 Xi n
              = Xibar;
23 Xibar n
24 strain_n1 = strain;
25
           = Eprop(1);
                             % Young Modulus
26 E_mod
                              % Isotropic hardening parameter
27 K_mod
          = Eprop(2);
          = Eprop(3);
                             % Kinematic hardening parameter
28 H mod
29 sigma_y = Eprop(4);
30 h_law = Eprop(8);
                             % Yield stress
                              % Hardening Law O=linear, 1=exponential
                             % Viscocity
31 viscosity = Eprop(5);
32 sigma_inf = Eprop(6);
                             % Sigma infinity
33 delta = Eprop(7);
                              % delta
34
35
37 sigma_trial_n1 = E_mod*(strain_n1 - Eplas_n); %stress
38
39 %*** Isotropic hardening variable
40 if (h_law==0) % Linear hardening law
     q_trial_n1 = -K_mod*Xi;
41
            % Exponential hardening law
42 else
```

```
43
      q_trial_n1 = -(sigma_inf-sigma_y)*(1-exp(-delta*Xi))-K_mod*Xi;
44 end
45
46 %*** Kinematic hardening variable
47 qbar_trial_n1 = -(2/3)*H_mod*Xibar_n;
48
_{49} %*** Trial yield function
50 ftrial_n1 = abs(sigma_trial_n1 - qbar_trial_n1) - (sigma_y - q_trial_n1);
51
*******
53 % Definition of time step
54 if (viscosity==0) % Rate independent plasticity
      delta_t = 1;
55
56 % else
        delta_t = Eprop(10); % Time step
57 %
58 end
60 isplastic = 0; % start with elastic state
61
63 if(ftrial_n1 > 0) % plastic state
      isplastic = 1;
64
65
      %*
         Computing plastic multiplier
66
      if (h_law == 0) % Linear isotropic hardening
67
          gamma_n1 = ftrial_n1/(delta_t*(E_mod + K_mod + H_mod + (viscosity/delta_t))); %
68
      plastic multiplier
69
                     % Exponential isotropic hardening (non linear)
70
      else
71
          \% Solve the equation using <code>Newton_Raphson Algorithm</code>
72
          % Initialize variables
73
          k = 0;
74
          gamma_n1 = 0;
75
          g_n1 = 100; % residual value
76
          % Solve Equation
77
78
          while ((g_n1 > 0.001) && (k < 100))</pre>
79
           \% isotropic hardening with Xi slide 57
80
81
           if (h_law==0) % Linear hardening law
           qXi = -K_mod*Xi_n;
82
83
           else
                          % Exponential hardening law
           qXi = -(sigma_inf-sigma_y)*(1-exp(-delta*Xi_n)) - K_mod*Xi_n;
84
85
           end
86
           % isotropic hardening with Xi+gamma_n1*delta_t slide 57
87
           if (h_law==0) % Linear hardening law
88
           qXi_delta = -K_mod*(Xi_n+gamma_n1*delta_t);
89
           PI_2der = -K_mod;
90
           else
                          % Exponential hardening law
91
           qXi_delta = -(sigma_inf-sigma_y)*(1-exp(-delta*(Xi_n+gamma_n1*delta_t))) - K_mod
92
      *(Xi n+gamma n1*delta t);
           PI_2der = -delta*(sigma_inf-sigma_y)*exp(-delta*(Xi_n+gamma_n1*delta_t)) - K_mod;
93
           end
94
95
           %[mPI12,mPI22] = pot_der(xi_n + gamma_n1*delta_t,Prop,h_law);
96
           g_n1 = ftrial_n1 - gamma_n1*delta_t*(E_mod + H_mod + viscosity/delta_t) - (qXi -
97
      qXi_delta);
           deltag_n1 = -(E_mod - PI_2der + H_mod + viscosity/delta_t)*delta_t;
98
           gamma_n1 = gamma_n1 - (g_n1/deltag_n1);
99
           k = k + 1;
100
101
           if (k == 100)
           fprintf('Maximum number of iterations exceded %d. \n',i)
103
104
           end
          end
106
107
      end
108
      % Return mapping algorithm
109
      sigma_n1=sigma_trial_n1-gamma_n1*delta_t*E_mod*sign(sigma_trial_n1-qbar_trial_n1);
110
```

111

```
112
       if (h_law==0) % Linear hardening law
113
           mPI1 = -K_mod*(Xi_n+gamma_n1*delta_t);
114
                       % Exponential hardening law
       else
           mPI1 = -(sigma_inf-sigma_y)*(1-exp(-delta*(Xi_n+gamma_n1*delta_t))) - K_mod*(Xi_n
116
       +gamma_n1*delta_t);
117
       end
118
       if (h_law==0) % Linear hardening law
119
           mPI2 = -K_mod*(Xi_n);
120
                      % Exponential hardening law
       else
           mPI2 = -(sigma_inf-sigma_y)*(1-exp(-delta*(Xi_n))) - K_mod*(Xi_n);
       end
123
124
       q_n1 = q_{trial_n1} + (mPI1 - mPI2);
       qbar_n1 = qbar_trial_n1 + gamma_n1*delta_t*H_mod*sign(sigma_trial_n1 - qbar_trial_n1);
126
127
       % Update plastic internal variables database at time n+1
128
       Eplas_n1 = Eplas_n + gamma_n1*delta_t*sign(sigma_trial_n1 - qbar_trial_n1);
129
130
       Xi_n1 = Xi_n + gamma_n1*delta_t;
       Xibar_n1 = Xibar_n - gamma_n1*delta_t*sign(sigma_trial_n1 - qbar_trial_n1);
131
132
       % Compute the consistent elastoplastic tangent operator
134
135
136
   else
       %*
             Elastic load/unload
137
       sigma_n1 = sigma_trial_n1;
138
139
       if (h_law==0)
                     % Linear hardening law
140
           q_n1 = -K_mod*(Xi_n);
141
                      % Exponential hardening law
       else
142
            q_n1 = -(sigma_inf-sigma_y)*(1-exp(-delta*(Xi_n))) - K_mod*(Xi_n);
143
144
       end
145
       qbar_n1 = qbar_trial_n1;
146
       Eplas_n1 = Eplas_n;
147
       Xi_n1 = Xi_n;
148
149
       Xibar_n1 = Xibar_n;
150 end
152 %***************
                      153 % Outputs for next step
154 stress(1) = sigma_n1;
155 \, stress(2) = q_n1;
156 stress(3) = qbar_n1;
157 plas_sta(1) = isplastic;
```

A.3 Function Print_results

```
1 function []= printResults(K_mod,H_mod,viscosity,delta,sigma,q,qbar,strain,eps_plas,
      totalSteps, time)
3 fileID = fopen('results.txt','w');
4 fprintf(fileID,'%6s %6i\n','K_mod = ', K_mod);
5 fprintf(fileID,'%6s %6i\n','H_mod = ', H_mod);
6 fprintf(fileID, '%6s %6i\n', 'Visco = ', viscosity);
7 fprintf(fileID,'%6s %6i\n','delta = ', delta);
8 fprintf(fileID, '%6s
                               %6s
                                                           %6s
                                                                         %6s
                                                                                 %6s\n',
                                              %6s
      Sigma', 'iso_q', 'kin_qbar', 'strain', 'strain_plast', 'time'); %printing number of nodes
9 for i = 1:totalSteps+1
      fprintf(fileID,'%6E
                              %6E
                                       %6E
                                              %6E
                                                       %6E
                                                              %6E\n',sigma(i),q(i),qbar(i),
10
      strain(i),eps_plas(i),time(i));
      %fprintf(fileID,'%12E\n', h(I));
11
  end
12
14
15 fprintf(fileID, '\n');
16 fprintf(fileID, '\n');
17
```

18 fclose(fileID); 19 end

A.4 J2 Code main

```
1 *USER SUBROUTINES
2 C
        Heading of UMAT
        SUBROUTINE UMAT (STRESS, STATEV, DDSDDE, SSE, SPD, SCD,
3
       1 RPL, DDSDDT, DRPLDE, DRPLDT,
4
       2 STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME,
5
       3 NDI, NSHR, NTENS, NSTATEV, PROPS, NPROPS, COORDS, DROT, PNEWDT,
6
       4 CELENT, DFGRD0, DFGRD1, NOEL, NPT, LAYER, KSPT, KSTEP, KINC)
7
8 C
        USE subrutinas
9
        INCLUDE 'ABA_PARAM.INC'
10
11 C -----
     Declarating UMAT vaiables and constants
12 C
13
        CHARACTER *80 CMNAME
       DIMENSION STRESS(NTENS), STATEV(NSTATEV),
14
       1 DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS),
15
       2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(1), DPRED(1),
16
       3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRD1(3,3),
17
       4 MAT(2,2)
18
  1
    -----
19
    -----variables usadas en el programa-----variables usadas en el programa------
20 !
       REAL*8 T(3,3), deps(3,3), void, lambda, JAC(3,3,3,3), aiso, akin(3,3)
21
       1 ,delt33(3,3),v,E,jac66(6,6),Nu,T0(3,3),D(3,3),Kc,G, Viscosity
22
23
       2 ,N(3,3),Idev(3,3,3,3),iso4(3,3,3,3),Iun(3,3,3,3),luis(3,3)
       3 ,dgamma, B_f(3,3), B_ft(3,3), H, Ty, T_tr(3,3), normet
24
       4 , eta_tr(3,3), f_tr, Ce(3,3,3,3), Cep(3,3,3,3), ddeps(3,3), qiso_tr
25
26
       5 ,Tdev_tr(3,3),eta(3,3),Tnex_dev(3,3),a2,a1,qkin_tr(3,3),qkin(3,3)
       6 ,Ivol(3,3,3,3),akin_tr(3,3),aiso_tr,deps_tr(3,3),Tdev(3,3),g_n1
27
28
       6 ,countk, qiso, q_prime1, q_prime2, isoType,delta_t, b1, b2
       6 ,deltag_n1, qXi, qXi_delta, qXi_2prime
29
30 ! --
   -----Lectura de Parametros iniciales-----
31 !
32
        v=props(1)
       E=props(2)
33
       H=props(3)
34
35
        Ty=props(4)
       K=props(5)
36
        isoType=props(6) ! 0 = Linear; 1 = Non-linear
37
        sigma_inf=props(7)
38
        deltaParam=props(8)
39
        Viscosity = props(9) ! viscosity for rate dependent plasticity
40
        delta_t = 10.0 ! Use 1.0 when K |=0
41
               -----Variables de Estado------Variables de Estado------
42
        void=statev(1)
43
        aiso=statev(2)
                            ! isotropic hardening evolution
44
        akin(1,1)=statev(3) ! kinematic hardening evolution
45
        akin(2,2)=statev(4)
46
47
        akin(3,3)=statev(5)
        akin(1,2)=statev(6)
48
        akin(1,3)=statev(7)
49
        akin(3,2)=statev(8)
50
51
        akin(3,1)=statev(6)
        akin(2,1)=statev(7)
52
        akin(2,3)=statev(8)
53
54 !
        call Initial(STRESS,T, DSTRAN, DEPS, NTENS,NDI, NSHR)
55
        call D1(DSTRAN, D, dtime, NDI, NSHR, NTENS)
56
57 !
58
       if (v==0.5) then
59
        v=0.49999999
60
        endif
    -----Calculo de Constante-----
61 !
      Kc=E/(3.0d0*(1.0d0-2.0d0*v)) !Modulo volumetrico
62
        G=E/(2.0d0*(1.0d0+v))
63
                                                   !Modulo de corte
        lambda=(v*E)/((1.0d0+v)*(1.0d0-2.0d0*v)) !Constante de LAME
64
       Nu = E/(2.0d0 * (1.0d0 + v))
                                                  !Constante de LAME
65
                                 _____
66 ! -----
```

```
67 ! ------Calculo de tensor Elastico de 4to orden------
68
        call Iunit(Iun)
         call Idesvi(Idev,iso4,Ivol)
69
         Ce=lambda*Iun+(2.0d0*Nu)*iso4
70
71
                                          _____
   1
72 !
        Trial Steps
        if (isoType==0) then
73
74
            qiso_tr=-K*aiso
                                                           ! Scalar value
75
         else
             qiso_tr=-(sigma_inf-Ty)*(1-exp(-deltaParam*aiso))-K*aiso
76
         endif
78
         qkin_tr=-(((2.0d0/3.0d0)*H*Idev).doble.akin) ! Tensorial value
79
         T_tr=T+(Ce.doble.deps)
                                                       ! Trial tensor T = sigma
80
         Tdev_tr = (Idev.doble.T_tr)
                                                       ! 2do order tensor
81
         Eta_tr=Tdev_tr+qkin_tr
                                                       ! 2do order tensor (parte superior de
82
       la norma n)
83
         normet=nrm(eta_tr)
84
   T.
                                                   _____
        -----Funcion de fluencia------
85 !
86
       f_tr=nrm(eta_tr)-sqrt(2.0d0/3.0d0)*(Ty-qiso_tr) ! trial yield function
87
     -----Condicion de fuencia-----
88 !
        if (f_tr.lt.0)then
                                    !El paso de prueba elastica esta bien
89
                                    !Tensor 2do orden
        T = T_tr
90
91
         aiso=aiso
                                    !Escalar
92
         deps=deps
         Cep=Ce
93
         statev(3) = akin(1,1)
94
95
         statev(4) = akin(2,2)
         statev(5) = akin(3,3)
96
         statev(6) = akin(1,2)
97
         statev(7) = akin(1,3)
98
         statev(8) = akin(3,2)
99
         statev(2) = aiso
         JAC=Cep
102
         call Solution(NTENS, NDI, NSHR, T, STRESS, JAC, DDSDDE)
103
         else
                                    !Se aplica corrector plastico (hay plasticidad)
105
             if (isoType==0) then !Linear case for isotropic hardening (include viscosity)
106
                 !dgamma=f_tr/(2.0d0*G+(2.0d0/3.0d0)*(H+K)) !gamma_n+1
                 if (Viscosity==0) then
108
                  gamma_n1=f_tr/((2.0d0*G+(2.0d0/3.0d0)*(H+K))) !gamma_n+1
109
                 else
110
                 gamma_n1=f_tr/(delta_t*(2.0d0*G+(2.0d0/3.0d0)*(H+K)
111
                         +(Viscosity/delta_t))) !gamma_n+1
        &
                 end if
113
114
             else ! Exponential isotropic hardening (include viscosity)
116
                 ! gamma_n+1 using Newton Raphson
117
                 k=0
118
                 gamma_n1=0
119
120
                 g_n1 = 100
121
                 do while ((g_n1>0.001).and.(k<100))
122
124
                     qXi = -(sigma_inf-Ty)*(1-exp(-deltaParam*aiso))-K*aiso
126
                     qXi_delta = -(sigma_inf-Ty)*(1-exp(-deltaParam
127
                     *(aiso+sqrt(2.0d0/3.0d0)*gamma_n1*delta_t)))
128
        &
                        -K*(aiso+sqrt(2.0d0/3.0d0)*gamma_n1*delta_t)
        8.
129
130
                    qXi_2prime = -deltaParam*(sigma_inf-Ty)*exp(-deltaParam
        &
                     *(aiso+sqrt(2.0d0/3.0d0)*gamma_n1*delta_t))-K
                    ! Calculation of g function and gamma step n+1
134
135
                     g_n1 = f_tr - gamma_n1*delta_t*(2*G+(2.0d0/3.0d0)*H
136
```

```
+(Viscosity/delta_t))-sqrt(2.0d0/3.0d0)
        87.
137
138
        &
                      *(qXi-qXi_delta)
139
                      deltag_n1 = -(2*G+(2.0d0/3.0d0)*qXi_2prime
140
        &
                      +(2.0d0/3.0d0)*H+(Viscosity/delta_t))*delta_t
141
142
                      gamma_n1 = gamma_n1 - (g_n1/deltag_n1)
143
144
                     k = k + 1
145
146
                      !if (k==100)then
                          write(,*),'Maximum number of iterations exceeded'
147
                      !endif
148
149
                 end do
150
152
              endif
153
154
                 155
                 eta = eta_tr/nrm(eta_tr)
156
157
                 B_f=eta
                                             ! Vector de flujo plastico
                ! --
158
             ----- Updating state variables -----
159
                 ddeps=gamma_n1*B_f
                                               ! Incrementos de deformaciones plasticas
160
                 deps=deps+ddeps
                                             ! Deformaciones totales
161
                 aiso=aiso+sqrt(2.0d0/3.0d0)*gamma_n1
163
                 akin=akin+gamma_n1*B_f
                 statev(3) = akin(1,1)
164
                 statev(4) = akin(2,2)
165
                 statev(5) = akin(3,3)
166
                 statev(6) = akin(1,2)
167
                 statev(7) = akin(1,3)
168
                 statev(8) = akin(3,2)
169
                 statev(2)=aiso
                 ! sigma n+1
171
                 if (Viscosity==0) then
172
173
                     T = T_tr - gamma_n1*2*G*B_f
174
                 else
                     T = T_tr - gamma_n1*delta_t*2*G*B_f
176
                 endif
177
178
179
                 ! q_n+1
                 if (isoType==0) then
180
                   q_prime1 = - K*(aiso+gamma_n1*delta_t*sqrt(2.0d0/3.0d0))
181
                   q_prime2 = - K*aiso
182
183
                 else
                     q_{prime1} = -(sigma_{inf}-Ty)
184
            *(1-exp(-deltaParam*(aiso+gamma_n1*delta_t*sqrt(2.0d0/3.0d0))))
        &
185
                      -K*(aiso+gamma_n1*delta_t*sqrt(2.0d0/3.0d0))
186
        &
                      q_prime2 = -(sigma_inf-Ty)*(1-exp(-deltaParam*aiso))
187
        &
                       -K*aiso
188
                 endif
189
190
                 qiso = qiso_tr + (q_prime1-q_prime2) !gamma_n1*dtime*sqrt(2.0d0/3.0d0)*K
191
192
193
                 ! gbar n+1
                 qkin = qkin_tr + gamma_n1*delta_t*(2.0d0/3.0d0)*(H)*B_f
194
195
                 ----Calculo de proximo esfuerzo------
196
197
                 Tdev=Tdev_tr-(Ce.doble.ddeps) !ddeps=delta epsilon
                 !T=T_tr-(Ce.doble.ddeps)
198
199
           -----Modulo Elastoplastico consistente-----
200
201
                 call transpuesta(B_f,B_ft)
                 b1=1-((2*G*gamma_n1*delta_t)/(nrm(eta_tr)))
202
203
                 b2=2*G/(2*G+(2.0d0/3.0d0)*(H+K)+(Viscosity/delta_t))
                     - (1-b1)
        &
204
                 Cep = Kc*Iun+2*G*b1*Idev-2*G*b2*(B_f.diad.B_ft)
205
                 JAC=Cep
206
                 call Solution(NTENS, NDI, NSHR, T, STRESS, JAC, DDSDDE)
207
```

Homework 2

208 209 endif 210 END SUBROUTINE UMAT

A.5 J2 Subroutines

1 ! Initial conditions

```
6
        ntens
2
   -100
                     T11
         stress(1)
3
   -100
        stress(2)
                    T22
4
   -100
         stress(3)
                     T33
5
6
   0.0
         stress(4)
                     T12
   0.0
         stress(5)
                     T13
7
   0.0
        stress(ntens) T23
8
9
   8 nstatv number of state variables
   1.0 statev(1) evoid
10
   0.0 statev(2) aiso
11
12
     0 statev(3) akin(1,1)
     0 statev(4) akin(2,2)
13
14
    0 statev(5) akin(3,3)
     0 statev(6) akin(1,3)
15
    0 statev(7) akin(1,2)
16
17
    0 statev(8) akin(3,2)
18
19 ! Parameters
   9 nprops
20
    0.3 props(1) v_Poisson
200000 props(2) E_Elastic Module
21
22
   000 props(3) H_
23
   500 props(4) Ty_esfuerzo de fluencia
2000 props(5) K
24
25
   1 props(6) linear or Non-linear
26
   1000 props(7) sigma_infinity
25.0 props(8) delta parameter
27
28
29
   500000.00 props(9) viscosity
30
31 !
       Modulo de Subprogramas
       MODULE subrutinas
32
33
       DOUBLE PRECISION delta(3,3)
34
       INTEGER i, j, k, l
      Public delta
35
       data delta/1.0d0,0.0d0,0.0d0,0.0d0,1.0d0,0.0d0,0.0d0,0.0d0,1.0d0/
36
37 !
      DECLARACION DE LOS OPERADORES DE LAS FUNCIONES A UTILIZAR
38
  1
39 !
                            _____
       INTERFACE tr
40
       MODULE PROCEDURE traz
41
       END INTERFACE
42
43 !
       44
       INTERFACE operator(.doble.)
      MODULE PROCEDURE doble22, doble42
45
       END INTERFACE
46
47 !
       INTERFACE nrm
48
49
       MODULE PROCEDURE norma
       END INTERFACE
50
      51 !
       INTERFACE operator(.diad.)
52
       MODULE PROCEDURE diada22
53
       END INTERFACE
54
55
56 !
57
       contains
58 !
59 !
       60 !
       _____
61 !
       TRAZA DE UNA MATRIZ DE 3X3
62
                                   _____
63 !
       function traz(a) result (b)
64
65 real*8, intent(IN):: a(3,3)
```

66

```
real*8:: b
67
        b=a(1,1)+a(2,2)+a(3,3)
68
        return
         end function traz
69
70
                      _____
         ____
        NORMA DE UN TENSOR DE SEGUNDO ORDEN DEFINIDA EN FUNCION DE SU DOBLE CONTRACCION
71 !
72 !
         73
        function norma(a) result(b) !ESTA FUNCION NO QUIERE SERVIRME, REVISARLA
        real*8, intent(in):: a(3,3)
74
75
        real*8:: b
        b=sqrt(a(1,1)*a(1,1)+a(1,2)*a(1,2)+a(1,3)*a(1,3)+a(2,1)*a(2,1)
76
       \& +a(2,2)*a(2,2)+a(2,3)*a(2,3)+a(3,1)*a(3,1)+a(3,2)*a(3,2)
77
       & +a(3,3)*a(3,3))
78
        endfunction norma
79
80
   1
         _____
81 !
        DOBLE CONTRACCION DE TENSORES DE 2DO ORDEN
82 !
83
        function doble22(a,b) result(c)
        real*8, intent(in), dimension(3,3)::a,b
84
        real*8:: c
85
86
         c=0.0d0
        do i=1,3
87
88
        do j=1,3
        c=c+a(i,j)*b(i,j)
89
        enddo
90
91
        enddo
92
        end function doble22
93 !
94 !
        DOBLE CONTRACCION DE TENSORES DE 4t0 ORDEN CON 2d0 ORDEN
95 !
        function doble42(a,b) RESULT (c)
96
        DOUBLE PRECISION, INTENT(IN):: a(3,3,3,3),b(3,3)
97
        double precision c(3,3)
98
99
        do i=1,3
        do j=1,3
100
        c(i,j)=a(i,j,1,1)*b(1,1)+
102
        1 a(i,j,1,2)*b(1,2)+
       2 a(i,j,1,3)*b(1,3)+
103
       3 a(i,j,2,1)*b(2,1)+
105
        4 a(i,j,2,2)*b(2,2)+
       5 a(i,j,2,3)*b(2,3)+
106
107
       6 a(i,j,3,1)*b(3,1)+
       7 a(i,j,3,2)*b(3,2)+
108
       8 a(i,j,3,3)*b(3,3)
109
        enddo
110
        enddo
111
112
        return
113
        end function doble42
114 !
       PRODUCTO DIADICO DE DOS TENSORES DE SEGUNDO ORDEN
115 !
116 !
        function diada22(a,b) result(c)
117
118
         real*8, intent(in):: a(3,3),b(3,3)
        real*8 c(3,3,3,3)
119
        integer i,j,k,l
120
121
        c = 0.0 d0
        do i=1,3
122
        do j=1,3
123
         do k=1,3
124
        do 1=1,3
        c(i,j,k,l)=c(i,j,k,l)+a(i,j)*b(k,l)
126
        enddo
127
        enddo
128
129
         enddo
130
         enddo
131
         end function diada22
132 !
133 !
         PRODUCTO PUNTO DE 2 VECTORES SIN USO DEL DK
134 !
         subroutine ppunto (a,b,c)
135
       real a(3),b(3),c
136
```

137		do i=1,3
138		c=c+a(i)*b(i)
139		enddo
140		end subroutine ppunto
141	!	
142	!	PRODUCTO PUNTO DE 2 VECTORES CON DK
143	1	
144		subroutine ppunto2 (a, b, w)
145		integer i j
140		w=0.040
148		do i=1.3
149		do j=1,3
150		w=w+u(i)*v(j)*delta(i,j)
151		enddo
152		enddo
153		end subroutine ppunto2
154	1	
155	1	TRAZA DE UNA MATRIZ DE 3X3
156	!	
157		subroutine traza (a,c)
158		real $a(3,3), c$
160		do i=1.3
161		c = a(1,1) + a(2,2) + a(3,3)
162		end do
163		end do
164		end subroutine traza
165	1	
166	1	TRANSPUESTA DE UNA MATRIZ DE 3X3
167	1	· · · · ·
168		subroutine transpuesta(a,b)
169		real *8 a (3,3), b (3,3)
170		integer 1, j
171		do $i=1,3$
173		h(i i) = a(i i)
174		enddo
175		enddo
176		end subroutine transpuesta
177	1	
178	1	MULTIPLICACION DE MATRICES
179	!	
180		subroutine mmulti (a,b,c)
181		real*o a(3,3),D(3,3),C(3,3)
182		do i=1.3
184		do j=1,3
185		c(i,j)=0.0d0
186		do k=1,3
187		c(i,j)=c(i,j)+a(i,k)*b(k,j)
188		enddo
189		enddo
190		enddo
191		endsubroutine mmulti
192	-	SIIMA DE MATRICES
193	1	JOHR DE MAINIOLD
195		subroutine msum (a,b,c)
196		real *8 a(3,3),b(3,3),c(3,3)
197		integer i,j,k
198		do i=1,3
199		do j=1,3
200		c(i,j)=a(i,j)+b(i,j)
201		enddo
202		enddo and subroutine
203	1	
204		SUBRUTINA DE LA ADJUNTA DE UN TENSOR DE 2DO ORDEN
206	1	
207		subroutine adjunta (A,Adj)

	real *8 A(3 3) Adi(3 3)
208	1641+0 A(3,3), Auj(3,3)
209	integer i,j,k
210	Adi(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
011	$A_{1}(1, 2) = -(A_{1}(2, 1) * A_{2}(2, 2) = A_{1}(2, 2) * A_{2}(2, 1))$
211	$AU_{j}(1,2) = (A(2,1) + A(3,3) + A(2,3) + A(3,1))$
212	Adj(1,3) = A(2,1) * A(3,2) - A(2,2) * A(3,1)
213	Adj(2,1) = -(A(1,2) * A(3,3) - A(1,3) * A(3,2))
914	Adi(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
214	$\mathbf{A} = \{ (1, 1) \in \mathbf{A} \mid (0, 0) \in \mathbf{A} \mid (0, 1) \in \mathbf{A} \}$
215	Adj(2,3) = -(A(1,1)*A(3,2)-A(1,2)*A(3,1))
216	Adj(3,1)=A(1,2)*A(2,3)-A(1,3)*A(2,2)
217	Adi(3,2) = -(A(1,1) * A(2,3) - A(1,3) * A(2,1))
010	$A_{d_1}(3, 2) = A_{d_1}(1, 1) + A_{d_2}(2, 2) = A_{d_1}(1, 2) + A_{d_2}(2, 1)$
218	$AU_{J}(3,3) - A(1,1) + A(2,2) - A(1,2) + A(2,1)$
219	return
220	end subroutine adjunta
221	
221	· · · · · · · · · · · · · · · · · · ·
222	: SUBRUTINA DEL SIMBULU DE PERMUTACIÓN
223	!
224	subroutine simpermu(a)
225	real * 8 a (3 3 3)
220	
226	integer 1, j, k
227	i=1
228	do j=1,3
220	
449	
230	11 (J==1) then
231	a(i,j,k)=0
232	elseif (k==i) then
000	2(i i k) = 0
233	
234	eiseif(K==j) then
235	a(i,j,k)=0
236	elseif (i.gt.k) then
200	
237	a(1, j, k) 1
238	else
239	a(i,j,k)=1
240	end if
9.4.1	anddo
241	
242	enaao
243	i=2
244	do i=1.3
0.45	
245	
246	if (j==1) then
247	a(i,j,k)=0
248	elseif (k==i) then
240	a(i, i, k) = 0
249	
250	eiseir(k==j) then
251	a(i,j,k)=0
	$algorithm{f}(\mathbf{i}, \mathbf{r} + \mathbf{k}) + ban$
252	
252	a(i,i,k)=1
252 253	a(i,j,k)=1
252 253 254	a(i,j,k)=1 else
252 253 254 255	a(i,j,k)=1 else a(i,j,k)=-1
252 253 254 255 256	<pre>a(i,j,k)=1 else a(i,j,k)=-1 endif</pre>
252 253 254 255 256 257	<pre>a(i,j,k)=1 else a(i,j,k)=-1 endif enddo</pre>
252 253 254 255 256 257	<pre>a(i,j,k)=1 else a(i,j,k)=-1 endif enddo enddo</pre>
252 253 254 255 256 257 258	<pre>a(i,j,k)=1 else a(i,j,k)=-1 endif enddo enddo </pre>
252 253 254 255 256 257 258 259	<pre>elsel1 (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo enddo i=3</pre>
252 253 254 255 256 257 258 259 260	<pre>else11 (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3</pre>
252 253 254 255 256 257 258 259 260 261	<pre>else11 (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1.3</pre>
252 253 254 255 256 257 258 259 260 261	<pre>elsel1 (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (i=-i) then</pre>
252 253 254 255 256 257 258 259 260 261 262	<pre>else11 (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then </pre>
252 253 254 255 256 257 258 259 260 261 262 263	<pre>elsell (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264	<pre>elseif (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265	elself (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,i,k)=0
252 253 254 255 256 257 258 259 260 261 262 263 264 265	elsell (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elself (k==i) then a(i,j,k)=0 elself (k==i) then
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266	<pre>elseif (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267	<pre>elsel1 (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0</pre>
252 253 254 255 256 257 258 260 260 260 261 262 263 264 265 266 265 266 267 268	elself (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif(j.lt.k) then
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 265 266 267 268 269	<pre>elseif (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif(k==j) then a(i,j,k)=1</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 266 266 266 267 268 269	<pre>elseif (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif(k==j) then a(i,j,k)=0 elseif(j.lt.k) then a(i,j,k)=1 else</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 266 266 266 266 266 266 269 270	elseif (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif (j,lt.k) then a(i,j,k)=1 else
252 253 254 255 256 257 258 260 261 262 263 264 265 266 265 266 267 268 269 270 271	elseif (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif (j.lt.k) then a(i,j,k)=1 else a(i,j,k)=-1
252 253 254 255 255 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272	<pre>elseif (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif(k==j) then a(i,j,k)=0 elseif(k==j) then a(i,j,k)=1 else a(i,j,k)=1 else a(i,j,k)=-1 endif</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 266 266 266 267 268 269 270 271 272 273	<pre>elseif (j.gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif(k==j) then a(i,j,k)=0 elseif(k==j) then a(i,j,k)=1 else a(i,j,k)=1 else a(i,j,k)=-1 endif enddo</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273	elsell (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif(j.lt.k) then a(i,j,k)=1 else a(i,j,k)=-1 enddo enddo
252 253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274	elseli (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do $j=1,3$ do $k=1,3$ if $(j==i)$ then a(i,j,k)=0 elseif $(k==i)$ then a(i,j,k)=0 elseif $(k==j)$ then a(i,j,k)=0 elseif $(j=1t.k)$ then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo enddo
252 253 254 255 256 257 258 259 260 261 263 264 265 266 266 266 267 268 268 269 270 271 272 273 274 275	elself (j,g).k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif (j.lt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo end subroutine simpermu
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276	<pre>elself (j,g).k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo i=3 do j=1,3 do k=1,3 if (j=i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif(j,lt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo enddo end subroutine simpermu</pre>
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 265 266 267 268 269 270 271 273 274 275 274	<pre>elseif (j,gt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo enddo i=3 do j=1,3 do k=1,3 if (j==i) then a(i,j,k)=0 elseif (k==i) then a(i,j,k)=0 elseif (k==j) then a(i,j,k)=0 elseif(j,lt.k) then a(i,j,k)=1 else a(i,j,k)=-1 endif enddo endd endd</pre>

```
subroutine det (B,detA,a)
279
280
         real*8 B(3,3),detA,a(3,3,3)
         integer i,j,k
281
         call simpermu(a)
282
         detA=0.0d0
283
        do i=1,3
284
        do j=1,3
285
286
         do k=1,3
        detA=detA+a(i,j,k)*B(1,i)*B(2,j)*B(3,k)
287
288
        enddo
        enddo
289
        enddo
290
291
        return
        end subroutine det
292
293 !
        _____
                                               _____
294 !
        SUBRUTINA PARA EL TENSOR DESVIADOR
295 !
296
         subroutine tdesv(T,Td) !subrutina para el tensor desviador
        real *8 T(3,3), Td(3,3)
297
         integer i,j
298
299
         do i=1,3
        do j=1,3
300
        Td(i,j)=T(i,j)-(1.0d0/3.0d0)*tr(T)
301
302
         enddo
        enddo
303
304
        end subroutine tdesv
305 C
        _____
                               _____
      TENSOR DE CUARTO ORDEN ISOTROPICO
306 !
307 !
         subroutine isotropico (a,b,c,d,ISO)
308
309
         real*8 a(3,3),b(3,3),c(3,3),d(3,3),ISO(3,3,3,3)
310
         integer i,j,k,l
         ISO = 0.0d0
311
         do i=1,3
312
        do j=1,3
313
        do k=1,3
314
315
         do 1=1,3
        if (i==k) then
316
        a(i,k)=1
317
318
         else
        a(i,k)=0
319
320
         endif
         if (j==1) then
321
        b(j,1)=1
322
323
         else
         b(j,1)=0
324
325
         endif
         if (i==1) then
326
         c(i, 1) = 1
327
328
         else
         c(i,1)=0
329
         endif
330
331
         if (j==k) then
         d(j,k)=1
332
333
         else
334
         d(j,k)=0
335
         endif
         ISO(i,j,k,l)=ISO(i,j,k,l)+(0.5*(a(i,k)*b(j,l)+c(i,l)*d(j,k)))
336
         enddo
337
        enddo
338
339
        enddo
340
        enddo
        end subroutine isotropico
341
342 !
        _____
343 C
       TENSOR DE CUARTO ORDEN ISOTROPICO
344 !
345 !
346
         subroutine isotro4(iso4)
        real*8 iso4(3,3,3,3)
347
        integer i,j,k,l
348
      iso4=0.0d0
349
```

350	do i=1,3
351	do j=1,3
352	do k=1,3
353	do 1=1,3
354	iso4(i,j,k,l)=iso4(i,j,k,l)+(0.5*(delta(i,k)*delta(j,l)
355	1 +delta(i,l)*delta(j,k)))
356	enddo
357	enddo
358	enddo
359	enddo
360	end subroutine isotro4
361	
362	! TENSOR UNITARIO DE CUARTO ORDEN
363	!
364	subroutine Iunit(Iun)
365	DOUBLE PRECISION Iun(3,3,3,3)
366	integer i,j,k,l
367	Iun=0.0D0
368	Do i=1,3
369	Do j=1,3
370	Do k=1,3
371	Do 1=1,3
372	Iun(i,j,k,l)=delta(i,j)*delta(k,l)
373	Enddo
374	Enddo
375	Enddo
376	Enddo
377	end subroutine Iunit
378	!
379	!
380	! TENSOR DE CUARTO ORDEN DESVIADOR
381	1
382	subroutine Idesvi(Idev,iso4,Ivol)
383	real *8 Ivol(3,3,3,3),delta(3,3),iso4(3,3,3,3),Idev(3,3,3,3)
384	integer i,j,k,l
385	
386	do 1=1,3
387	
388	if (i=j) then
389	aeIta(1, j) = I
390	
391	
392	
393	anddo
205	do i=1 3
206	
390	
308	
399	Tvol(i,i,k,l)=Tvol(i,i,k,l)+1.0d0/3.0d0*(delta(i,i)*delta(k,l))
400	iso4(i,i,k,l)=1.0d0/2.0d0*(delta(i,k)*delta(i,l)
401	1 + delta(i, l) * delta(j, k))
402	Idev(i, j, k, 1) = iso4(i, j, k, 1) - Ivol(i, j, k, 1)
403	enddo
404	enddo
405	enddo
406	enddo
407	end subroutine Idesvi
408	
409	!
410	SUBRUTINA PARA PASAR DE TENSOR DE CUARTO ORDEN A MATRIZ DE 3X3
411	!
412	<pre>subroutine tensortomatrix(a3333, b66) ! returns b(6,6)</pre>
413	double precision a3333(3,3,3,3),b66(6,6)
414	integer i,j,i9(6),j9(6)
415	data i9/1,2,3,1,1,2/
416	. j9/1,2,3,2,3,3/
417	do 1=1,6 ! switch to matrix notation
418	$ \begin{array}{c} ao j=1, b \\ b \in C(i, -i) = 2222 \left(i + 0 \left(i \right) = 12 \left(i + 0 \left(i \right) \right) = 12 \left(i + 0 \left(i + 0 \right) \right) \\ \end{array} $
419	bbb(1,j) = a3333(19(1), j9(1), 19(j), j9(j))
420	enaao

```
enddo
421
422
         return
423
         end subroutine tensortomatrix
424 !
425 !
         SUBRUTINA INITIAL
426 !
                             _____
         subroutine Initial(STRESS,T, DSTRAN, DEPS, NTENS,NDI, NSHR)
427
428
         double precision STRESS(ntens), T(3,3)
        1 ,DSTRAN(ntens), DEPS(3,3)
429
430
         Integer ntens, nshr, ndi
         DEPS = 0.0D0
431
         T = 0.0D0
432
433 C
         do i=1,ndi
434
         T(i,i)=stress(i)
435
         DEPS(i,i)=DSTRAN(i)
436
         enddo
437
438 C
         if (nshr.ge.1) then
439
         T(1,2) = stress(4)
440
441
         T(2,1) = stress(4)
         DEPS(1,2) = 0.5 d0 * DSTRAN(4)
442
443
        DEPS(2,1) = 0.5 d0 * DSTRAN(4)
         endif
444
         if (nshr.ge.2) then
445
446
         T(1,3) = stress(5)
447
         T(3,1) = stress(5)
        DEPS(1,3) = 0.5 d0 * DSTRAN(5)
448
449
        DEPS(3,1) = 0.5 d0 * DSTRAN(5)
         endif
450
         if (nshr.ge.3) then
451
452
         T(2,3) = stress(6)
         T(3,2) = stress(6)
453
         DEPS(2,3) = 0.5d0 * DSTRAN(6)
454
        DEPS(3,2) = 0.5 d0 * DSTRAN(6)
455
        endif
456
457
         return
458
         end subroutine Initial
459 C-----
460 C-----
         subroutine Solution(NTENS, NDI, NSHR, T, STRESS, JAC, DDSDDE)
461
462
         integer NTENS, NDI, NSHR, i, j, k, l
463 C
        Subroutine for filling the stress and Jacobian matrix
         double precision T(3,3), JAC(3,3,3,3), STRESS(NTENS),
464
465
        1 DDSDDE(NTENS, NTENS), JAC66(6,6)
         k=1
466
        1=1
467
468 C-----
                      do i=1,ndi
469
         stress(i)=T(i,i)
470
         enddo
471
472 C
473
         if (nshr.ge.1) then
        stress(ndi+1)=T(1,2)
474
         endif
475
476
         if (nshr.ge.2) then
        stress(ndi+2)=T(1,3)
477
478
         endif
         if (nshr.ge.3) then
479
         stress(ndi+3)=T(2,3)
480
481
         endif
         call tensortomatrix(jac, jac66)
482
          do i=1,ndi
483
484
          do j=1,ndi
            ddsdde(i,j)=jac66(i,j)
485
486
           enddo
487
         enddo
         do i=ndi+1,ndi+nshr
488
          do j=1,ndi
489
            ddsdde(i,j)=jac66(3+k,j)
490
          enddo
491
```

```
k = k + 1
492
493
          enddo
         do i=1,ndi
494
         1=1
495
            do j=ndi+1,ndi+nshr
496
              ddsdde(i,j)=jac66(i,3+1)
497
              1 = 1 + 1
498
499
            enddo
         enddo
500
501
         k=1
         do i=ndi+1,ndi+nshr
502
           1=1
503
504
            do j=ndi+1,ndi+nshr
              ddsdde(i,j)=jac66(3+k,3+1)
505
              1 = 1 + 1
506
            enddo
507
           k = k + 1
508
509
          enddo
          Return
510
          end subroutine Solution
511
512 !
                                                    _____
         SUBRUTINA TENSOR DE RIGIDEZ
513 !
514
                                                          ------
515
          subroutine Trigidez(lambda,Nu,delt33,rig)
         real*8 rig(3,3,3,3),delt33(3,3),lambda,Nu
516
517
         integer i,j,k,l
518
          do i=1,3
         do j=1,3
519
520
         if (i==j) then
521
          delt33(i,j)=1
522
         else
          delt33(i,j)=0
523
         endif
524
525
         enddo
         enddo
526
         do i=1,3
527
528
         do j=1,3
         do k=1,3
529
         do 1=1,3
530
         rig(i,j,k,l)=lambda*(delt33(i,j)*delt33(k,l))
531
        & +2.0d0*Nu*(delt33(i,k)*delt33(j,l)+delt33(i,l)*delt33(k,l))
532
         enddo
         enddo
534
         enddo
535
536
         enddo
537
         end subroutine Trigidez
538 !
                                                           _____
539 !
         SUBRUTINA DEL TENSOR TASA DE DEFORMACIONES
540 !
         SUBROUTINE D1(DSTRAN, D, dtime, NDI, NSHR, NTENS)
541
542 C
         Strain rate tensor D
         integer i,j, NDI, NSHR, NTENS
543
544
          double precision D(3,3), DSTRAN(6), dtime
         if (dtime==0.0d0) then
545
         D = 0.0D0
546
547
         else
         D=0.0D0
548
549
         Do i=1,ndi
         D(i,i)=dstran(i)/dtime ! covariant components, matrix format
         Enddo
551
552
         if (nshr.ge.1) then
         D(1,2) = dstran(4) / (2.0d0 * dtime)
553
         D(2,1) = D(1,2)
554
555
          endif
          if (nshr.ge.2) then
556
         D(1,3) = dstran(5) / (2.0d0 * dtime)
557
558
         D(3,1) = D(1,3)
         endif
559
         if (nshr.ge.3) then
560
         D(2,3) = dstran(6) / (2.0d0 * dtime)
561
         D(3,2) = D(2,3)
562
```

563endif564endif565END SUBROUTINE D1566567END MODULE subrutinas

References

[1] A. Niemunis. *INCREMENTAL DRIVER, user's manual.* Soils Models, Hub for Geotechnical Professionals, 2014. URL: https://soilmodels.com/idriver/.