
Universitat Politècnica de Catalunya
Numerical Methods in Engineering

Computational Solid Mechanics

J2 computational plasticity

Eduard Gómez
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1 Perfect plasticity

We’ll start off perfect plasticity. Much like on the case for one-dimensional plasticity, plastic deformation offers
no resistance, hence stress will be bounded by the yield stress. Unlike 1D, however, stress and strain are
tensors, and while strain might be free unopposed in one direction, it will still act plastically in another. More
specifically, with a J2 model plasticity only affects the deviatoric component of strain and stress, while the
spherical component will always be in the elastic domain.

For this reason we must ensure that our imposed strain path is non-spherical. For simplicity purposes, I
chose the following path:

εεε :

0 0 0
0 0 0
0 0 0

 → 10−3

5 0 0
0 0 0
0 0 0

 → −10−3

5 0 0
0 0 0
0 0 0

 →

0 0 0
0 0 0
0 0 0


t : 1.0s 2.0s 3.0s 4.0s

(1)

The major expected difference between inviscid and viscous plasticity is the curvature of the stress-strain
path within the plastic domain, as well as the fact that the viscous stress is unbounded, unlike its inviscid
counterpart which must stay inside the yield surface.

According to the theory, the stess path must be as shown in this figure. In following sections we’ll make
references to the geometrical properties of the yield surface, which here we can see is a cylinder.

Figure 1: Expected stress paths for perfect plasticity. Note that the cylinder extends to infinity.

And the result is in figure 2. Further analysis of the effects of η and load rate is explored later in section 4.
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Inviscid perfect plasticity
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Viscous perfect plasticity
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Figure 2: Perfect plasticity analysis
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2 Linear kinematic plasticity

This type of plasticity causes the yield surface to move. This can be represented by considering qqq the centerline
of the yield cylinder. The radius of the cylinder, however, will remain constant. This means that stress is now
unbounded, since it pushes the cylinder around. In the viscous case, the stress can move outside the cylinder
and ”pull it” towards itself. In any case, what we expect in the dev σσσ− ε diagram is that the difference between
stretch and compression yield stresses be constant, at least for the inviscid case.

Figure 4 shows the strain-stress plots when following the path outline in equation 5. We can see how
the cylinder radius does not expand in figure 3. We define the yield radius as Ry and the stress radius as Rσ:

Ry =

√
2

3
(σy − q) (2)

Rσ = ||dev σσσ − qqq|| (3)

In this plot kinematic plasticity looks the same as perfect plasticity, as would be expected. Note that figure 3
uses the same physical properties shown in figure 4.
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Figure 3: Radii of stress and yield cylinder for kinematic viscosity
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Inviscid kinematic plasticity
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Viscous kinematic plasticity
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Figure 4: Kinematic plasticity analysis
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3 Isotropic plasticity

3.1 Linear isotropic plasticity

This type of plasticity maintains the centerline of the yield cylinder static but changes its radius. This expansion
is manifested with the introduction of q, which expresses the addition of yield stress to σy. The expansion of
the radius is shown in equation 2. Keep in mind that q is negative.

Once again we use the strain path shown in equation 5. The effect on the radius is clear in figure 5.
The stress-strain plots are shown in figure 6.
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Figure 5: Radii of stress and yield cylinder for linear isotropic viscosity
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Inviscid linear isotropic plasticity
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Viscous linear isotropic plasticity
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Figure 6: Kinematic plasticity analysis
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Eduard Gómez April 29, 2020

3.2 Non-linear isotropic plasticity

For a more exhaustive simmulation of the effects of viscosity, we can introduce a non-linear viscous term. In
particular, we use an exponential model:

q = −(σ∞ − σy) exp(−δξ) +Kξ (4)

the linear term is the same as in the previus section, however we introduced two new ones. σ∞ is an assymp-
totic value and δ is the speed at which it is approached. Once σ ≈ σ∞, the underlying linear (or perfect) model
resurfaces. In this calculation we set the value of K = 0 to highlight this effect.

Inviscid exponential isotropic
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Figure 7: Radii of stress and yield cylinder for exponential isotropic viscosity

Figure 7 shows the expansion of the radius. Notice that the assymptote apears to be close to 400 MPa, however
it is set at σ∞ = 500 MPa. This is because the radius has a factor of

√
2/3 with stress. This puts the radius of

σ∞ at about 408 MPa, which matches the visual result much better. This also explains why despite working
with σy = 350 MPa, it appears to be bellow 300 at t = 0. Its radius is actualy only 286 MPa.

Finally, the stress-strain results are shown in figure 8, where we see how the stress-strain paths curve
even in the inviscid case.

Computational Solid Mechanics 7 Numerical Methods in Engineering
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Inviscid exponential isotropic plasticity
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Viscous exponential isotropic plasticity

-6 -4 -2 0 2 4 6

11 10 -3

-1000

-500

0

500

1000

11
 (

M
pa

)

Strain11-stress11 plot

-6 -4 -2 0 2 4 6

11 10 -3

-400

-300

-200

-100

0

100

200

300

400

de
v(

) 11

Strain11-dev(stress11)

E = 200 GPa ν = 0.25 η = 10 MPa·s K = H = 0
σy = 350 Mpa σ∞ = 500 MPa δ = 500

Figure 8: Kinematic plasticity analysis
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4 Viscosity

So far we’ve seen the different viscosity models but we have not compared the effect of viscosity or load rate.
This is studied in this section. We’ll work with a perfect model to decouple the effects of plasticity models with
those of plasticity. To start we’ll change the strain path to one more apt to show the effects of viscosity:

εεε :

0 0 0
0 0 0
0 0 0

 → 10−3

5 0 0
0 0 0
0 0 0

 → 10−3

5 0 0
0 0 0
0 0 0


t : t0 t0 + ∆t t0 + 2∆t

(5)

That is, it goes from rest to stressed in ∆t, and then it stays there for one more period of length ∆t. We now
have this time step as a way to control for load rate. This way we see the effects during loading and during
relaxation. The effects during unloading are similar to those during relaxation, so there is no need to lengthen
the strain path even further.

4.1 Load-rate comparison

Because the effects of viscosity are more pronounced with higher ε̇εε, we expect smaller values of ∆t to have
more noticeable effects. Figure 9 proves this intuition correct. We see how stress peaks at higher values for
lower values of ∆t. We also see that during relaxation they all approach the same value, which about 300MPa
in the deviatoric space.

4.2 Viscosity comparisson

The effect of the viscosity is reciprocal to that of ∆t. Hence we would expect the effects of viscosity to become
more apparent for larger viscosity parameters. Similarly, we would expect smaller viscosity parameters to
approach the inviscid case.

Figure 10 shows that is the case. The case for η = 1 MPa·s is almost indistinguishable from the invis-
cid case; in all subplots the stress peak is hard to find. Inviscid plasticity makes it so there is no peak
stress.

Computational Solid Mechanics 9 Numerical Methods in Engineering
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Figure 9: Comparison of the same process at different time scales
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5 Appendix

Here the code is appended, except for the post-processing routines since they are only there for aesthetic
purposes.

5.1 Main file

main.m

1 clearvars -except results

2 close all;

3 %% Data entry

4 % Material properties

5 mat.kappa = 166e3;

6 mat.mu = 143e3;

7 mat.yield = 350;

8 mat.K = 0e3;

9 mat.H = 0e3;

10 mat.visc = 1e3;

11

12 % Strain path

13 steps_per_trip = 25;

14 time_per_trip = 1;

15

16 % Hardening

17 hardening.is_linear = true;

18

19 mat.sigma_infty = 500;

20 mat.delta = 500;

21

22 hardening.maxIter = 30;

23 hardening.tol = 1e-10;

24

25 %% Pre-processing

26 % Computing full strain path

27 strain = set_strain_path(steps_per_trip);

28

29 % Support variables

30 n_steps = length(strain);

31 dt = time_per_trip / steps_per_trip;

32 mat = generalized_contitutive_tensor(mat);

33

34 % Initialization of arrays

35

36 Strain_p = cell(3,n_steps);

37 Strain_p{1,1} = zeros(3,3); % Strain tensor

38 Strain_p{2,1} = 0; % xi

39 Strain_p{3,1} = zeros(3,3); % xi bar

40

Computational Solid Mechanics 12 Numerical Methods in Engineering
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41 Stress = cell(3,n_steps);

42 Stress{1,1} = zeros(3,3); % Cauchy stress tensor

43 Stress{2,1} = 0; % q

44 Stress{3,1} = zeros(3,3); % q bar

45

46 S_trial = cell(1,3);

47 elastoplastic_modulus = cell(n_steps,1);

48 elastoplastic_modulus{1} = mat.D;

49

50 %% Computation

51 for i = 2:n_steps

52 % Trial stress

53 S_trial{1} = product42(mat.C{1}, (strain{i} - Strain_p{1,i-1}));

54 S_trial{3} = - mat.C{3} * Strain_p{3,i-1};

55

56 if hardening.is_linear

57 S_trial{2} = - mat.C{2} * Strain_p{2,i-1};

58 else

59 S_trial{2} = Stress{2,i-1};

60 end

61

62 % Trial yield function

63 radial_tensor = deviatoric(S_trial{1}) - S_trial{3};

64 stress_radius = sqrt(sum(radial_tensor.^2,'all')); % Euclidean norm

65 f_trial = stress_radius - sqrt(2/3) * (mat.yield - S_trial{2});

66

67 if f_trial < 0

68 % Elastic load/unload

69 for k=1:3

70 Strain_p{k,i} = Strain_p{k,i-1};

71 Stress{k,i} = S_trial{k};

72 end

73 elastoplastic_modulus{i} = mat.D;

74 else

75 % Plastic load

76 normal = radial_tensor / stress_radius;

77 gamma = calc_hardening(hardening, mat, f_trial, Strain_p{2,i-1}, dt);

78

79 % Strain update

80 Strain_p{1,i} = Strain_p{1,i-1} + gamma * normal;

81 Strain_p{2,i} = Strain_p{2,i-1} + gamma * sqrt(2/3);

82 Strain_p{3,i} = Strain_p{3,i-1} - gamma * normal;

83

84 % Stress update

85 Stress{1,i} = S_trial{1} - gamma * mat.mu * 2 * normal;

86 Stress{3,i} = S_trial{3} + gamma * mat.H * 2/3 * normal;

87

88 if hardening.is_linear

89 Stress{2,i} = S_trial{2} - gamma * mat.K * sqrt(2/3);

Computational Solid Mechanics 13 Numerical Methods in Engineering
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90 else

91 Stress{2,i} = - Pi(Strain_p{2,i},mat,1);

92 end

93

94 % Elastoplastic modulus

95 elastoplastic_modulus{i} = get_elastoplastic(hardening, mat, Strain_p{2,i}, ...

96 dt, gamma, normal, stress_radius);

97 end

98 end

99

100 run post_processing

5.2 Choice of stress path

set_strain_path.m

1 function strain = set_strain_path(steps_per_trip)

2 % First corner must be zeros(3).

3 corners{1} = zeros(3);

4

5 %% Customizeable code

6 a = 0.005;

7

8 corners{2} = zeros(3);

9 corners{2}(1,1) = a;

10

11 corners{3} = corners{2};

12

13 %% Computation of path

14 n_steps = steps_per_trip * (length(corners)-1) + 1;

15 strain = cell(1,n_steps);

16 strain{1} = zeros(3);

17 s = 1;

18 dx = 1 / steps_per_trip;

19 for i = 1:length(corners)-1

20 x = 0;

21 while x<1

22 strain{s} = (1-x)*corners{i} + x*corners{i+1};

23 s = s+1;

24 x = x+dx;

25 end

26 end

27 strain{end} = corners{end};

28 end

Computational Solid Mechanics 14 Numerical Methods in Engineering
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5.3 Obtaining gamma

calc_hardening.m

1 function gamma = calc_hardening(hardening, mat, f_trial, xi, dt)

2 if hardening.is_linear

3 gamma = f_trial / (2*mat.mu + 2/3*mat.K + 2/3*mat.H + mat.visc/dt);

4 else

5 gamma = 0;

6 for k=1:hardening.maxIter

7 g = f_trial - gamma * (2*mat.mu + 2/3* mat.H + mat.visc/dt) ...

8 - sqrt(2/3)*(Pi(xi+sqrt(2/3)*gamma,mat,1) - Pi(xi,mat,1));

9 if abs(g) < hardening.tol

10 break;

11 end

12 Dg = -(2*mat.mu + 2/3*mat.H + mat.visc/dt ...

13 + 2/3*Pi(xi+sqrt(2/3)*gamma,mat,2));

14 gamma = gamma - g/Dg;

15 end

16 if(k==hardening.maxIter)

17 warning(['Maximum number of iterations reached' ...

18 'before convergence. Error %f'],abs(g))

19 end

20 end

21 end

5.4 Non-linear isotropic hardening

Pi.m

1 function z = Pi(xi, mat, derivative)

2 switch derivative

3 case 1

4 % Pi'(xi)

5 z = (mat.sigma_infty - mat.yield) * (1 -exp(-mat.delta * xi))...

6 + mat.K*xi;

7 case 2

8 % Pi"(xi)

9 z = mat.delta * (mat.sigma_infty - mat.yield)...

10 * exp(-mat.delta*xi) + mat.K;

11 otherwise

12 error('Only 1st and 2nd derivatives are implemented');

13 end

14 end

Computational Solid Mechanics 15 Numerical Methods in Engineering
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5.5 Assembly of the constitutive tensor

generalized_contitutive_tensor.m

1 function mat = generalized_contitutive_tensor(mat)

2 global I2_x_I2 I4 % They will be reused to obtain the elastoplastic tensor

3 I2_x_I2 = zeros(3,3,3,3); % 3x3 identity texsor outer product'd with itself

4 I4 = zeros(3,3,3,3); % 4rth order identity tensor

5 for i=1:3

6 I4(i,i,i,i) = 1;

7 for j=1:3

8 I2_x_I2(i,i,j,j) = 1;

9 end

10 end

11 mat.D = mat.kappa * I2_x_I2 + 2*mat.mu*(I4 - 1/3 * I2_x_I2);

12 mat.C{1} = mat.D;

13 mat.C{2} = mat.K;

14 mat.C{3} = mat.H *2/3*eye(3);

15 end

5.6 Elastoplatic modulus

get_elastoplastic.m

1 function D = get_elastoplastic(hardening, mat, xi, dt, gamma, normal, stress_radius)

2 delta = 1 - 2 * mat.mu * gamma / stress_radius;

3 if hardening.is_linear

4 delta_bar = 2 * mat.mu / ...

5 ( 2*mat.mu + 2/3*mat.K + 2/3*mat.H + mat.visc/dt)...

6 - (1 - delta);

7 else

8 delta_bar = 2*mat.mu / ...

9 (2*mat.mu + 2/3*Pi(xi,mat,2) + 2/3*mat.H + mat.visc/dt)...

10 -(1 - delta);

11 end

12 global I2_x_I2 I4 %Recycling them to avoid re-calculating them every iteration

13 outer_nn = zeros(3,3,3,3); % n (x) n

14 for i=1:3

15 for j=1:3

16 outer_nn(:,:,i,j) = normal * normal(i,j);

17 end

18 end

19 D = mat.kappa * I2_x_I2 + 2*mat.mu * delta * (I4 - I2_x_I2/3) ...

20 - 2*mat.mu * delta_bar * outer_nn;

21 end

Computational Solid Mechanics 16 Numerical Methods in Engineering
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5.7 Deviatoric

deviatoric.m

1 function [D, S] = deviatoric(A)

2 % Works only on 3x3 matrices

3 % Returns the deviatoric and spherical tensors

4 S = 1/3 * trace(A) * eye(3);

5 D = A - S;

6 end

5.8 Tensor double-dot product

product42.m

1 function C = product42(A, B)

2 % Tensor product C = A:B

3 % - A is a 4th order tensor

4 % - B is a 2nd order tensor

5 % - C_ij = A_ijkm*B_km

6 C = zeros(3);

7 for k=1:3

8 for m=1:3

9 C = C + A(:,:,k,m) * B(k,m);

10 end

11 end

12 end

Computational Solid Mechanics 17 Numerical Methods in Engineering
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