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1- Introduction 

The first goal of the assignment is to implement and apply tension-only and non-symmetric 

tension-compression damage models with exponential hardening/softening law. Both damage 

models were evaluated under inviscid conditions considering three different stress paths. The 

second goal of the assignment was to implement and evaluate the viscous damage model (rate 

dependent). Such viscous damage model was evaluated with a symmetric elastic domain and 

linear hardening/softening law. Parameters such as viscosity, strain rate and the coefficient alpha 

were varied to analyze the response of the viscous damage model. An evaluation of the evolution 

of component C11 from tangential and algorithmic constitutive tensors along time was also 

considered for different values of the coefficient alpha. 

2 – PART I (Rate Independent Model) 

 For the first part of the assignment, the tensile and the non-symmetric tension-

compression damage models were required to be implemented as options for the characterization 

of the elastic domain (Appendix A). Figure 1 depicts both implemented elastic domains 

considering a Young Modulus of 20000 MPa and a Yield Stress of 200 MPa. 

 

Figure 1. Elastic domain for (A) tensile damage model and (B) non-symmetric tension-

compression damage model. 
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 The exponential law to characterize the hardening/softening behavior was also required 

to be implemented. To present the correctness of such implementation along with the 

implemented elastic domains, three different stress paths will be considered. The stress paths 

were defined according to what was specified in the assignment [1]. The following three sub-

sections will present and evaluate the stress paths. 

 

2.1 – Stress Path 1 

 The chosen elastic domain and hardening law behavior parameters for Stress Path 1 are 

presented in Table 1. The values for the stress path parameters α, β and γ for such case are 

presented in Table 2. 

Table 1. Parameters of elastic domain and hardening law behavior for Stress Path 1. 

Young 

Modulus 

[MPa] 

Yield 

Stress 

[MPa] 

Elastic 

Domain 

Hardening 

Law 

Parameter 

A 

Parameter 

q∞ 

Behavior 

20000 200 Tensile 

damage 

model 

Exponential 1 0.1 Softening 

 

Table 2. Parameters α, β and γ for Stress Path 1. 

Stress Path Parameter α 

[MPa] 

Stress Path Parameter β 

[MPa] 

Stress Path Parameter γ 

[MPa] 

250 950 1100 

 

Considering the data from Tables 1 and 2, Figure 2 presents the stress path in stress 

space, stress-strain curve and damage evolution along time obtained for Stress Path 1. 
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Figure 2. (A) Damage surface, (B) stress-strain curve and (C) damage evolution along time for 

Stress Path 1. 

 According to Figure 2(A), 2(B) and 2(C), the tension only damage model and exponential 

law for softening were implemented correctly. Such observation is based on the reduction of the 

elastic domain (softening) and reduction of the Young Modulus (uniaxial loading) as damage 

evolved (reduction of the slope when unloading phase started). Also, during the unloading/uniaxial 

compression loading increment (between points 11 and 21), there was no evolution of damage 

and no change in the Young Modulus. Both observations are also in agreement with the model 

supposed to be implemented. 

 

2.2 – Stress Path 2 

The chosen elastic domain and hardening law behavior parameters for Stress Path 2 are 

presented in Table 3. The values for the stress path parameters α, β and γ for such case are 

presented in Table 4. 
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Table 3. Parameters of elastic domain and hardening law behavior for Stress Path 2. 

Young 

Modul

us 

[MPa] 

Yield 

Stress 

[MPa] 

Elastic 

Domain 

Ratio 

n  

Hardening 

Law 

Paramete

r A 

Paramete

r q∞ 

Behavior 

20000 100 Non-

symmetric 

2 Exponential 0.5 2 Hardenin

g 

 

Table 4. Parameters α, β and γ for Stress Path 2. 

Stress Path Parameter α [MPa] Stress Path Parameter β [MPa] Stress Path Parameter γ [MPa] 

300 1000 1500 

 

Considering the data from Tables 3 and 4, Figure 3 presents the stress path in stress 

space, stress-strain curve and damage evolution along time obtained for Stress Path 2. 

 

Figure 3.(A) Damage surface, (B) stress-strain curve and (C) damage evolution along time for 

Stress Path 2. 
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 According to Figure 3(A), 3(B) and 3(C), the non-symmetric tension-compression damage 

model together with the exponential law for hardening were implemented correctly. Such 

observation is based on the enlargement of the elastic domain (hardening) and reduction of the 

stiffness of the material (biaxial loading) as the damage grew along time. Also, during the 

unloading/biaxial compression loading increment (between points 18 and 21 in Figures 3 (C)), 

there was an increase of the damage since the compression stress reached the damage surface. 

As expected, the material underwent hardening under compression, as it is depicted in Figure 

2(B) between points 9 and 11. It is also worth mentioning the hardening behavior in Figure 2(B) 

between points 15-16. Between such points, the internal variable q(r) is converging to the value 

q∞ and the increase in stress is greatly reduced while the strain grows rapidly. In such case, the 

stress will converge to a certain value related to q∞ while the strain will continue to grow until the 

damage parameter d reaches the value 1. 

 

2.3 – Stress Path 3 

The chosen elastic domain and hardening law behavior parameters for Stress Path 3 are 

presented in Table 5. The values for the stress path parameters α, β and γ for such case are 

presented in Table 6. 

Table 5. Parameters of elastic domain and hardening law behavior for Stress Path 2. 

Young 

Modul

us 

[MPa] 

Yield 

Stress 

[MPa] 

Elastic 

Domain 

Ratio 

n  

Hardening 

Law 

Paramete

r A 

Paramete

r q∞ 

Behavior 

20000 100 Non-

symmetric  

2 Exponential 0.5 0.1 Softening 

 

Table 6. Parameters α, β and γ for Stress Path 2. 

Stress Path Parameter α 

[MPa] 

Stress Path Parameter β 

[MPa] 

Stress Path Parameter γ 

[MPa] 

50 350 700 
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Considering the data from Tables 5 and 6, the stress path in stress space, stress-strain 

curve and damage evolution along time obtained for Stress Path 3 are presented in Figure 4. 

According to Figure 4(A), 4(B) and 4(C), the non-symmetric tension-compression damage 

model together with the exponential law for softening were implemented correctly. Such 

observation is enforced by the reduction of the elastic domain (softening) and the reduction in 

stiffness of the material when damage started. In the stress increment of biaxial tensile loading, 

the damage surface was not reached, therefore there was no damage, as it is depicted in Figure 

4(C) between points 1 and 6. The second stress increment, which accounted for unloading/biaxial 

compression loading, the compression stresses reached the damage surface, causing the 

softening of the material. For the last stress increment, unloading/biaxial tensile loading, the 

tensile stresses also reached the current damage surface, causing an increase in damage (Figure 

4(C)) and the softening the material. It is also worth mentioning the asymptotic behavior depicted 

in Figure 4(B) between point 14-16. Such behavior characterizes the exponential law for softening 

and indicates that the internal variable q(r) is reaching its value q∞. 

 

Figure 4. (A) Damage surface, (B) stress-strain curve and (C) damage evolution along time for 

Stress Path 3. 
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3. PART II (Rate Dependent Model) 

For the second part of the assignment, the implementation of the rate dependent model 

(Appendix B) for a symmetric elastic domain with linear hardening law was required. To assure 

correctness of the implementation, three parameters (viscosity η, strain rate and alpha coefficient) 

were varied in order to evaluate the response of model. The effect on stress-strain curves for 

each parameter is presented. Also, an evaluation of the evolution of component C11 of both 

tangent and algorithmic constitutive tensors along time was performed. 

3.1 – Effect of Viscosity η 

For such evaluation, three different values of viscosity η were chosen: 0.3, 2 and 5. The 

other input parameters were maintained constant, as well as, the stress path. Table 7 presents 

the values chosen for the input parameters and Table 8 presents the values of the stress path. 

Table 7. Input parameters for evaluation of viscosity η 

Young 

Modulus 

[MPa] 

Yield 

Stress 

[MPa] 

Hardening 

Modulus H 

Behavior  Alpha 

Coefficient 

Total 

Time  

Time 

Increment  

20000 200 0.1 Hardening 1 10 0.66667 

 

Table 8. Stress path chosen for evaluation of viscosity η 

 Point 1 in Stress Space Point 2 in Stress Space Point 3 in Stress Space 

σ1 200 500 300 

σ2 200 500 300 

Case Biaxial tensile loading Biaxial tensile loading Biaxial tensile unloading 

 

Considering the chosen values of viscosity η and the data from Table 7 and 8, three stress-

strain curves were obtained. Figures 5 (A) and (B) depict the stress-strain curves, as well as the 

damage evolution along time for each value of viscosity η. 
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Figure 5. (A) Stress-strain curves and (B) damage evolution along time for different values of 

viscosity η. 

 Figure 5 (A) shows that with increasing values of viscosity η, the stress values also 

increase for the same value of inelastic strain. Such observation is in agreement with the literature 

[2], since the stress in the inelastic region is proportional to the value of viscosity η. Also, the 

damage evolution along time is faster as viscosity η decreases (Figure 5 (B)), which agrees with 

the smaller capability of carrying load in the inelastic regime presented in Figure 5 (A). 

 

3.2 – Effect of Strain Rate  

 For such evaluation, four different values of total time (ToT) were applied to the model: 1, 

5, 10 and 20. Varying the total time of simulation automatically varies the strain rate applied to 

the model considering the same stress path. Table 9 presents the values of the input parameters 

which were maintained constant and Table 10 presents the stress path considered for such study-

case. 

 Table 9. Input parameters for evaluation of strain rate. 

Young 

Modulus [MPa] 

Yield Stress 

[MPa] 

Hardening 

Modulus H 

Behavior  Alpha 

Coefficient 

Viscosity 

η 

2000 200 -0.2 Softening 1 0.8 
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Table 10. Stress path chosen for evaluation of strain rate. 

 Point 1 in Stress Space Point 2 in Stress Space Point 3 in Stress Space 

σ1 300 600 1000 

σ2 0 0 0 

Case Axial tensile loading Axial tensile loading Axial tensile loading 

 

Considering the chosen values of total time (ToT) and the data from Tables 9 and 10, four 

stress-strain curves were obtained. Figures 6 depict the stress-strain curves obtained in such 

study-case. 

 

Figure 6. Stress-strain curves considering different values of Total Time (ToT) (different strain 

rates). 

 The curves presented in Figure 6 show correctness in the implementation of the viscous 

model since the different values of strain rate result in different stress-strain curves. Also, the 

stress carried out in the inelastic region decreases as the strain rate decreases (increase of total 

time). Such behavior is in agreement with the literature [2], since the stress in the inelastic regime 

is proportional to the strain rate. Therefore, the viscous model implemented presented the 

expected behavior.  

 

3.3 – Effect of alpha 

For such evaluation, five different values of alpha were predetermined: 0, 0.25, 0.5, 0.75 

and 1. The other input parameters were maintained constant, as well as, the stress path. Table 

11 presents the values chosen for the input parameters and Table 12 presents the values of the 

stress path. 
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Table 11. Input parameters for evaluation of coefficient alpha (α). 

Young Modulus 

[MPa] 

Yield Stress 

[MPa] 

Hardening Modulus 

H 

Behavior  Viscosity 

η 

20000 200 -0.2 Softening 0.8 

 

Table 12. Stress path chosen for evaluation of coefficient alpha (α). 

 Point 1 in Stress Space Point 2 in Stress Space Point 3 in Stress Space 

σ1 -300 -600 -300 

σ2 0 0 0 

Case Uniaxial compres. load. Uniaxial compres. load. Uniaxial compres.unload. 

 

Considering the determined values of coefficient alpha and the data from Table 11 and 

12, five stress-strain curves were obtained. Figures 7 (A) depict the complete curves while Figure 

7 (B) depicts a highlighted zone of the curves. 

 

Figure 7. (A) Complete stress-strain curves and (B) highlighted portion of the curves for different 

values of coefficient alpha α. 

 According to Figure 7(B), the lower the value of coefficient alpha, higher is the stress 

carried out (in absolute value). It indicates that the damage evolves faster, at first, for higher 

values of alpha. Nevertheless, according to Figure 7 (A), the curves converge to the point where 

the unloading phase starts, indicating a change of damage rate for each value of alpha. Therefore, 
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the value of alpha influences when damage starts and how fast it will develop itself throughout 

loading. Such observation points out the relationship between the coefficient alpha, the time 

integration of the constitutive equation and especially the result of the integration.  

 

3.4 – Evaluation of C11 component  

 To evaluate the behavior of component C11 of the tangential and algorithmic constitutive 

tensors along time, five different values for the coefficient alpha were considered: 0, 1/4, 1/2, 3/4 

and 1. The other input parameters were kept constant and the same stress path was considered 

throughout the entire study-case. Table 14 presents the values of the input parameters and Table 

15 presents the stress path considered for the current study. 

Table 14. Input parameters for evaluation of component C11. 

Young 

Modulus 

[MPa] 

Yield 

Stress 

[MPa] 

Hardening 

Modulus H 

Behavior  Viscosity 

η 

Total 

Time  

Time 

Increment  

20000 200 0.2 Hardening 1 10 0.66667 

 

Table 15. Stress path chosen for evaluation of component C11. 

 Point 1 in Stress 

Space 

Point 2 in Stress 

Space 

Point 3 in Stress Space 

σ1 200 400 -700 

σ2 200 400 -700 

Case Biaxial tensile loading Biaxial tensile loading Unloading / Biaxial compression 

loading 

  

 The evolution of component C11 from the tangential and algorithmic constitutive tensor 

along time for different values of coefficient alpha is depicted in Figure 8. 



 

12 

 

Figure 8. Evolution of component C11 of tangential and algorithmic constitutive tensors for 

different values of coefficient alpha. 

According to Figure 8, the different values of alpha had small impact on the values of 

component C11 from the tangential constitutive tensor (markers in Figure 8) . Such observation 

is reasonable since the tangential constitutive tensor does not depend directly on the coefficient 

alpha. Nevertheless, different values of the coefficient alpha had noticeable impact on the values 

of component C11 from the algorithmic constitutive tensor (solid lines in Figure 8). Such impact 

is due to the algorithmic constitutive tensor direct dependence on the value of alpha. Also, there 

is a noticeable difference between component C11 of both tensors for the same value of the 

coefficient alpha. Such difference between the two constitutive tensors may be seen as the 

deviation caused by the numerical integration of the constitutive equation, which is strongly 

related to the dependence of the algorithmic constitutive tensor on the coefficient alpha. It is also 

worth mentioning that for the coefficient alpha equal to zero, the evolution of component C11 from 

both tensors coincide, which agrees with the literature [2]. However, it is important to point out 

that such outcome does not guarantee better results for alpha equal to zero, because such value 

for alpha has stability issues.  

4 – Conclusions  

 The tension-only and non-symmetric tension-compression damage models implemented 

in the code presented coherent results. Coupled with the implemented exponential 

hardening/softening law, such models provided the expected behavior according to the 

determined stress paths. During damage evolution, there was enlargement of the elastic domain 

when exponential hardening law was applied and shrinkage of the elastic domain when 

exponential softening law was considered. Also, whenever a subsequent stress increment would 

cause unloading, the slope of the curve produced by such increment would be smaller if the 
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damage variable was already different than zero, indicating a decrease in the material stiffness 

due to the damage. Such observations lead to correctness in the implemented codes. The viscous 

damage model implemented in the code also presented coherent results. As the viscosity and the 

strain rate were increased, the stress carried out throughout the stress paths also increased. 

When different values of the coefficient alpha were considered, different stress-strain curves were 

obtained, indicating different damage rates for each value of alpha. Such observation is coherent, 

since the coefficient alpha is related to the numerical time integration and its accuracy. The 

coefficient alpha also presented a noticeable influence on the evolution of component C11 from 

the algorithmic constitutive tensor along time. Such influence is related to the numerical time 

integration of the constitutive equation and it is responsible for the considerable difference 

between the tangent and algorithmic constitutive tensors’ behavior along time in cases where 

alpha is different than zero. 
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Appendix A – Implemented codes for PART I 

% TENSION-ONLY DAMAGE MODEL  
elseif (MDtype==2)   

      stress = ce*eps_n1'; 
      a = stress; 
       if stress(1) < 0 
            stress(1)=0; 
       end 
       if stress(2)<0 
            stress(2) = 0; 
       end 
       stress_plus = stress; 
       rtrial = sqrt(stress_plus'*inv(ce)*a);   

 

% NON-SYMMETRIC TENSION-COMPRESSION DAMAGE MODEL  
elseif (MDtype==3)  %*Non-symmetric 
    stress = ce*eps_n1'; 
        a = sum(stress); 
        b = abs(stress(1)) + abs(stress(2)) +  abs(stress(3))+... 
            +abs(stress(4)); 
        h = a/b; 
        if h==1 
           rtrial = sqrt(stress'*inv(ce)*stress); 
        end 
        if  stress(1) & stress(2) <0 
            rtrial = (sqrt(stress'*inv(ce)*stress))/n; 
        end 
        if stress(1)>0 & stress(2)<0 
            stress(2)=0; 
            rtrial = sqrt(stress'*inv(ce)*stress);  
        end 
        if stress(2)>0 & stress(1)<0 
            stress(1)=0; 
           rtrial = sqrt(stress'*inv(ce)*stress);     
        end 

 
%EXPONENTIAL HARDENING-SOFTENING LAW 
            A=.5; 
            q_inf = 0.1 
            q_n1 = q_inf -(q_inf - q_n)*exp(A*(1 - (rtrial/q_n))) 
        end 
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Appendix B – Implemented codes for PART II 

% MODIFICATION IN CODE DAMAGE_MAIN TO ALLOW VISCOUS CASE 
if viscpr == 1 
    totalstep = sum(istep) ; 
% INITIALIZING GLOBAL CELL ARRAYS 
% ------------------------------- 
sigma_v = cell(totalstep+1,1) ; 
TIMEVECTOR = zeros(totalstep+1,1) ; 
delta_t = TimeTotal./istep/length(istep); 
% Elastic constitutive tensor 
% ---------------------------- 
[ce]    = tensor_elastico1 (Eprop, ntype); 
% Initz. 
% ----- 
% Strain vector 
% ------------- 
eps_n1  = zeros(mstrain,1); 
% Historic variables 
% hvar_n(1:4) --> empty 
% hvar_n(5) = q --> Hardening variable 
% hvar_n(6) = r --> Internal variable 
hvar_n  = zeros(mhist,1)  ; 
% INITIALIZING  (i = 1) !!!! 
% ***********i* 
i = 1 ; 
r0 = sigma_u/sqrt(E); 
hvar_n(5) = r0; % r_n  
hvar_n(6) = r0; % q_n  
eps_n1 = strain(i,:) ; 
sigma_n1 =ce*eps_n1'; % Elastic  
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  

sigma_n1(4)];  
nplot = 3 ;  
vartoplot = cell(1,totalstep+1) ;  
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 
for  iload = 1:length(istep) 
    % Load states 
    for iloc = 1:istep(iload) 
        i = i + 1 ; 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 
        % Total strain at step "i" 
        % ------------------------ 
        eps = strain(i-1,:);   %VECTOR TO STORE STRAIN AT PAST TIME 
        eps_n1 = strain(i,:) ; 
        

%****************************************************************************

********** 
        %*      DAMAGE MODEL 
        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        [sigma_n1,hvar_n,aux_var] = 

rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps,delta_t); 
        % PLOTTING DAMAGE SURFACE 
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        if(aux_var(1)>0) 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 

'r:',MDtype,n ); 
            set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)                         

; 
        end 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  

sigma_n1(4)]; 
        sigma_v{i} =  m_sigma ; 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)         
        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 
    end 
end 

  
else 
% IMPLEMENTATION OF VISCOUS CASE IN CODE RMAP_DANO 

%-----------------------viscous modelling----------------------------- 
    alpha =0; 
    visc = .5; 
    tau_eps_0 = sqrt(eps*ce*eps') ; 
    tau_eps_1 = sqrt(eps_n1*ce*eps_n1'); 
    p = (visc - delta_t*(1-alpha))/(visc + alpha*delta_t); 
    tau_eps_alpha = (1-alpha)*tau_eps_0 + alpha*rtrial; 
    if  tau_eps_alpha> r_n     % loading 
        fload=1; 
         r_n1 = [(visc - delta_t*(1-alpha))/(visc + alpha*delta_t)]*r_n +... 
        + [(delta_t)/(visc + alpha*delta_t)]*tau_eps_alpha; 
        if hard_type == 0 
         %Linear 
            q_n1= q_n+ H*(r_n1-r_n);  
        else 
            A=.5; 
            q_inf =  1; 
              %hardening 
            q_n1 = q_inf -(q_inf - q_n)*exp(A*(1 - (r_n1/q_n))); 
        end 
        if(q_n1<zero_q) 
        q_n1=zero_q; 
        end 
    else    % elastic loading               
        fload=0; 
        r_n1= r_n  ; 
        q_n1= q_n ;  
   end 

 
% IMPLEMENTATION TO EVALUATE COMPONENT C11 

 

ct = (1.d0-dano_n1)*ce; % TANGENT CONSTITUTIVE TENSOR 

ct_1 = ct(1,1); 

 
c_al = 0; % ALGORITHMIC CONSTITUTIVE TENSOR 
sig_eff = ce*eps_n1'; 
sig = sig_eff'*sig_eff; 
f = ((alpha*delta_t)/(visc+alpha*delta_t)); 
g = (1/tau_eps_1)*((q_n1 - 0.1*r_n1)/(r_n1^2)); 
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if  rtrial> r_n  % loading 
    c_al  = (1.d0-dano_n1)*ce -  f*g*sig; 
else 
    c_al = (1.d0-dano_n1)*ce; 
end 
 c_al(1,1); 
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