
Universitat Politecnica De Catalunya

Computational Solid Mechanics

Numerical Integration of
Continuum Damage Models

Perfect Kudakwashe Marenga

March, 2020

Contents
1 Introduction 2

1.1 Isotropic Damage Models . 2

2 Rate-Independent Model 3
2.1 Hardening/Softening Law . 3
2.2 Tension-only damage model . 4
2.3 Non-symmetric tension-compression damage model 4
2.4 Validation of Implementation . 5

2.4.1 Load scenario 1: uni-axial loading/unloading 5
2.4.2 Load scenario 2: uni-axial and bi-axial loading/unloading . . . 6
2.4.3 Load scenario 3: bi-axial loading/unloading 7

3 Rate-Dependent Model 8
3.1 Effects of viscosity on stress-strain curve 9
3.2 Effects of strain rate on stress-strain curve 9
3.3 Effect of α on Tangent and Algorithmic constitutive operator (C11) . 10

A Codes for inviscid Model 11

B Codes for Viscous Model 17

1

1 Introduction

1.1 Isotropic Damage Models

Firstly, it is worth to mention that the term isotropic damage model comes from the
fact that the model depends on a single variable, the damage parameter d, meaning
we are assuming a mechanical behavior in which the degradation is independent of
the orientation. Also these models are key in understanding the behavior of materials
whose mechanical properties are degrading due to the presence of small cracks that
propagate during loading.

In this report two main scenarios have been studied in relation to this model namely,
rate-dependent and rate-independent models. In rate-independent models, only
loading history is of essence, the rate at which the load is being applied is neglected
under the assumption that the load is being applied slowly and material have time
to react and deform.

However, in rate-dependent model, not only loading history but loading time and
material viscosity play significant roles because different materials react differently
to the rate at which the load is being applied to them. Due to the appearance of the
time derivative (since time is now an independent variable) in this model, the finite
difference methods also known as α methods have been implemented to approximate
the resulting differential equation.

2

2 Rate-Independent Model

2.1 Hardening/Softening Law

There are basically two hardening/softening laws namely, linear and exponential
law, their respective equations are shown below,

q(r) =

{
r0 r 6 0

r0 +H(r − r0) r > r0
(1)

q(r) = q∞ − (q∞ − r0) exp
A(1− r

r0
) (2)

The implementation of the exponential law was compared with the linear law which
was implemented before hand for correctness purposes. A symmetric, uni-axial
tensile loading case was considered with the following, stress path ∆σ̄

(1)
1 = 200;

∆σ̄
(2)
1 = 500; ∆σ̄

(3)
1 = 800, Hardening/softening parameter (H) = −1 (implying

softening case). The results are shown below,

Figure 1: Linear Softening Figure 2: Exponential Softening

From the above figures a distinct difference in the laws can be seen from the σ − ε
plots, in Figure 1 we see the material undergoes elastic tensile loading up-to σu =
200, after which tensile loading with damage initiates until the material loses all its
load bearing capacity. In Figure 2, a different scenario is observed were after reaching
σu, exponential softening initiates and continues into an asymptotic behavior. The
corresponding damage variable (d) plots are shown below respectively.

3

Figure 3: Damage with Linear
Softening

Figure 4: Damage with Exponential
Softening

2.2 Tension-only damage model

In this model damage by compression is not taken into account. The effective stress
tensor for this model becomes σ̄+. The surface equation characterising the stress
state then becomes,

τσ =
√
σ+ : Ce−1 : σ (3)

In the given Matlab code this model is implemented by setting all the negative values
of the effective stress tensor (σ̄) to zero in the Modelos_de_dano1 function.

2.3 Non-symmetric tension-compression damage model

The non-symmetrical damage model is important in simulating materials whose
tension domain differs with respect to compression. The implemented surface equation
characterising the stress state is given below,

τσ =

(
θ +

1− θ
n

)√
σ : Ce−1 : σ (4)

where n compression-tension ration and θ is the weight factor given by,

θ =

∑3
i=1〈σi〉∑3
i=1|σi|

(5)

The implementation of this model was also done in the given Matlab Modelos_de_dano1
function.

4

2.4 Validation of Implementation

For validation purposes only the implemented exponential law was used and the
following parameters, hardening parameter (H = 1) (damage with hardening case),
σy = 200, ν = 0.3, E = 20000. The values of α, β, γ, were taken as shown below,

α = 400, β = 700, γ = 1000

2.4.1 Load scenario 1: uni-axial loading/unloading

The loading path for this case is shown below,

∆σ̄
(1)
1 = α ∆σ̄

(1)
2 = 0 (uni-axial tensile loading)

∆σ̄
(2)
1 = −β ∆σ̄

(2)
2 = 0 (uni-axial tensile unloading/compressive loading)

∆σ̄
(3)
1 = γ ∆σ̄

(3)
2 = 0 (uni-axial compressive unloading/ tensile loading)

The figure below shows the damage surfaces and the stress-strain curve for both the
tension-only and the non-symmetrical models. From the figures, it can be noted that

Figure 5: Tension-only damage model Figure 6: Non-symmetrical model

the damage surfaces expands, and this corresponds to the damage with hardening
case chosen for implementation, also we can see the actual stress path (black)
as compared to the theoretical path chosen (red). Considering the stress-strain
curves, for the tension-only damage model we can observe a linear relationship up-to
σu = 200 (elastic region), after which an exponential hardening can be observed
before tensile unloading/compressive loading begins. Since the tension-only damage
model doesn’t take into account damage by compression, a linear (elastic behaviour)
dependence is shown during compressive loading and unloading, after which tensile

5

loading begins again at (σy ≈ 300), and a continued hardening can be observed.
In the non-symmetrical model, damage by compression can be observed due to the
change of slope during compressive loading/unloading.

2.4.2 Load scenario 2: uni-axial and bi-axial loading/unloading

The loading path for this case is shown below,

∆σ̄
(1)
1 = α ∆σ̄

(1)
2 = 0 (uni-axial tensile loading)

∆σ̄
(2)
1 = −β ∆σ̄

(2)
2 = −β (bi-axial tensile unloading/compressive loading)

∆σ̄
(3)
1 = γ ∆σ̄

(3)
2 = γ (bi-axial compressive unloading/tensile loading)

The figure below shows the damage surfaces and the stress-strain curve for both
the tension-only and the non-symmetrical models. From the figures shown the main

Figure 7: Tension-only damage model Figure 8: Non-symmetrical model

difference between this case and the previous one is the fact of unsymmetrical loading
path caused due to change from uni-axial loading to bi-axial loading. This is evident
as the second loading path doesn’t pass through the origin (in the stress-strain
curve) which is the case for symmetrical loading observed in case 1. Otherwise,
similar features as those observed from case 1 can be seen, for example damage with
hardening after the elastic region, in both models.

6

2.4.3 Load scenario 3: bi-axial loading/unloading

The loading path for this case is shown below,

∆σ̄
(1)
1 = α ∆σ̄

(1)
2 = α (bi-axial tensile loading)

∆σ̄
(2)
1 = −β ∆σ̄

(2)
2 = −β (bi-axial tensile unloading/compressive loading)

∆σ̄
(3)
1 = γ ∆σ̄

(3)
2 = γ (bi-axial compressive unloading/tensile loading)

The figure below shows the damage surfaces and the stress-strain curve for both
the tension-only and the non-symmetrical models. In this case symmetrical bi-axial

Figure 9: Tension-only damage model Figure 10: Non-symmetrical model

loading was implemented, and stress-strain curves looks the same as those obtained
in case 1, the only difference is that in this case stress values corresponds to less
values of strains and this is reasonable since we considering a bi-axial stress state.

In concluding, the stress-strain curves obtained in all 3 implementations shows the
correct expected behaviour which validates the correctness of the implementations.

7

3 Rate-Dependent Model
In this model, viscosity is introduced meaning the stress tensor no longer depend
only on strain history but also on time. Since the time is an independent variable an
ordinary first order differential equation for calculating the internal variable r of the
damage variable d has to be solved. A well known numerical technique namely
the finite difference method was implemented for approximating the differential
equation, this technique of integration depends on the parameter α, typical the
values are α = 0 (forward Euler (explicit scheme)), α = 1 (backward Euler (implicit
scheme)) and α = 0.5 (Crank-Nicolson (implicit scheme)).
A symmetric, uni-axial tensile loading case was considered with the following, stress
path ∆σ̄

(1)
1 = 200; ∆σ̄

(2)
1 = 400; ∆σ̄

(3)
1 = 600. Also it is worth to note that in this

model (following the figure below), the actual stress path (in black) is allowed to
surpass the elastic boundary, which is not the case in the inviscid model.

Figure 11: Damage surface Viscous Model

8

3.1 Effects of viscosity on stress-strain curve

In this section the effects of viscosity on the stress-strain curve was studied. For
η = 0 the non-viscous case is retrieved. When viscosity is introduced (see figure
below) the linear softening does not start immediately after reaching the prescribed
yield stress. Rather hardening and a higher maximum stress in form of a rounded
top can be observed.

Figure 12: σ − ε curves for different values of η

3.2 Effects of strain rate on stress-strain curve

In this section the effects of strain rate has been studied. To evaluate the effects of
strain rate, the viscosity coefficient has been set to a constant (η = 0.5). Since the
strain rate is not a direct input parameter, it has been accounted for by manipulating
the total loading time in the code, as it well known from theory that the strain rate
is indirectly proportional to loading time. And the figure below shows the effects of
strain rate on the stress values.

Figure 13: σ − ε curves for different values of ε̇

9

It can be seen from Figure 13, that the strain rate does have the same effect on the
stress-strain curve as the viscosity coefficient.

3.3 Effect of α on Tangent and Algorithmic constitutive operator
(C11)

Finally, the effect of the coefficient α, arising from integration scheme, on the
constitutive operators is studied. Before an in-depth discussion, it is worthwhile
to test the correctness of the implementation, this is done by setting α = 0, for
we know that in this case the constitutive algorithmic operator collapses into the
tangent constitutive operator, the plot for this case is shown below, for a stable ∆t,

Figure 14: C11 Algorithmic and Tangent for α = 0

Having validated the correctness of the implementation, now we can assess the
effects of α on the constitutive operators, having chosen a bigger time step it can
be evidently seen from both Fig. 15 and Fig. 16, that for values of α < 0.5,
oscillations are observed in the solution, this because of the discretization scheme
used (Forward Euler), an explicit scheme which is conditionally stable. For α 6 0.5,
no oscillations are observed, because of the implicit nature of the schemes meaning
they are unconditionally stable.
Also it is worth to note that the constant straight line in the plots represents elastic
loading where damage is absent, and there after damage begins and the values of
both constitutive operators decreases rapidly.

10

Figure 15: C11 Algorithmic for
different values of α

Figure 16: C11 Tangent for different
values of α

A Codes for inviscid Model

Listing 1: Function Modelos de dano1
1 function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n)
2

3 if (MDtype==1) %* Symmetric
4 rtrial = sqrt(eps_n1*ce*eps_n1');
5

6 elseif (MDtype == 2) %* Only tension
7 rtrial = sqrt(eps_n1*ce*eps_n1');
8 rtrial(rtrial < 0) = 0;
9

10 elseif (MDtype == 3) %*Non−symmetric
11 sigma_ = ce * eps_n1';
12 sigma_p = sigma_;
13 sigma_(sigma_p < 0) = 0;
14 theta = sum(sigma_p)/sum(abs(sigma_));
15 coeff = theta + (1 − theta)/n;
16 rtrial = coeff * sqrt(eps_n1*ce*eps_n1');
17

18 end
19

20 return

11

Listing 2: Function rmap dano
1 function [sigma_n1,hvar_n1,aux_var] =...
2 rmap_dano(eps_n1,hvar_n,Eprop,ce,MDtype,n)
3

4 hvar_n1 = hvar_n;
5 r_n = hvar_n(5);
6 q_n = hvar_n(6);
7 E = Eprop(1);
8 nu = Eprop(2);
9 H = Eprop(3);

10 sigma_u = Eprop(4);
11 hard_type = Eprop(5);
12 eta = Eprop(7);
13 alpha = Eprop(8);
14

15 %* initializing
16 r0 = sigma_u/sqrt(E);
17 zero_q = 1.d−6*r0;
18 q_inf = r0 + sign(H)*(r0 − zero_q);
19 A = abs(H);
20

21 %* Damage surface
22

23 [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n);
24

25 %* Ver el Estado de Carga
26 %* −−−−−−−−−> fload=0 : elastic unload
27 %* −−−−−−−−−> fload=1 : damage (compute algorithmic...
28 %constitutive tensor)
29 fload = 0;
30

31 if(rtrial > r_n)
32 %* Loading
33 fload=1;
34 ∆_r=rtrial−r_n;
35 r_n1= rtrial ;
36 if hard_type == 0
37 % Linear
38 q_n1= q_n+ H*∆_r;
39 else
40 % Exponential
41 x = exp(A*(1 − r_n1/r0));
42 q_n1 = q_inf − (q_inf − r0)*x;
43

44 end
45

46 if(q_n1<zero_q)
47 q_n1=zero_q;
48 end
49

50 else
51

52 % Elastic load/unload
53 fload = 0;
54 r_n1 = r_n ;

12

55 q_n1 = q_n ;
56

57 end
58 % Damage variable
59 % −−−−−−−−−−−−−−−
60 dano_n1 = 1.d0−(q_n1/r_n1);
61 % Computing stress
62 % ****************
63 sigma_n1 = (1.d0−dano_n1)*ce*eps_n1';
64

65 % Computing consistent algorithmic and tangent operators
66

67 %* Updating historic variables
68 hvar_n1(5)= r_n1 ;
69 hvar_n1(6)= q_n1 ;
70

71 %* Auxiliar variables
72 aux_var(1) = fload;
73 aux_var(2) = q_n1/r_n1;

Listing 3: Function dibujar criterio dano1
1 function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n)
2

3 %* Inverse ce
4 ce_inv=inv(ce);
5 c11=ce_inv(1,1);
6 c22=ce_inv(2,2);
7 c12=ce_inv(1,2);
8 c21=c12;
9 c14=ce_inv(1,4);

10 c24=ce_inv(2,4);
11

12 % POLAR COORDINATES
13 %*******************************
14 if MDtype==1
15 tetha=[0:0.01:2*pi];
16

17 %* RADIUS
18 D=size(tetha); %* Range
19 m1=cos(tetha); %*
20 m2=sin(tetha); %*
21 Contador=D(1,2); %*
22

23

24 radio = zeros(1,Contador) ;
25 s1 = zeros(1,Contador) ;
26 s2 = zeros(1,Contador) ;
27

28 for i=1:Contador
29 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*...
30 [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]');
31

32 s1(i)=radio(i)*m1(i);

13

33 s2(i)=radio(i)*m2(i);
34

35 end
36 hplot =plot(s1,s2,tipo_linea);
37

38 elseif MDtype==2
39

40 tetha=[0:0.01:2*pi];
41 D = size (tetha);
42 m1 = cos (tetha);
43 m2 = sin (tetha);
44 Contador = D(1,2);
45 m1_p = m1;
46 m2_p = m2;
47 m1_p(m1_p < 0) = 0;
48 m2_p(m2_p < 0) = 0;
49 radio = zeros(1,Contador);
50 s1 = zeros(1,Contador);
51 s2 = zeros(1,Contador);
52

53 for i = 1:Contador
54 radio(i) = q/ sqrt([m1_p(i) m2_p(i) 0 nu*(m1_p(i) + ...
55 m2_p(i))] * ce_inv * [m1(i) m2(i) 0 nu * (m1(i) + m2(i))]');
56 s1(i) = radio(i) * m1(i);
57 s2(i) = radio(i) * m2(i);
58 end
59 hplot =plot(s1,s2,tipo_linea);
60

61 elseif MDtype==3
62

63 tetha=[0:0.01:2*pi];
64 D = size(tetha);
65 m1 = cos (tetha);
66 m2 = sin (tetha);
67 Contador = D(1,2);
68 radio = zeros(1,Contador);
69 s1 = zeros (1,Contador);
70 s2 = zeros (1,Contador);
71 for i =1:Contador
72 sigma_ = [m1(i) m2(i) nu*(m1(i) + m2(i))];
73 sigma_p = sigma_;
74 sigma_p(sigma_p < 0) = 0;
75 theta = sum(sigma_p)/sum(abs(sigma_)) ;
76 coeff = theta + (1 − theta)/n ;
77 radio(i) = q /(coeff * sqrt([m1(i) m2(i) 0 nu * ...
78 (m1(i) + m2(i))] * ce_inv * [m1(i) m2(i) 0 nu *...
79 (m1(i) + m2(i))]'));
80 s1(i) = radio(i) * m1(i);
81 s2(i) = radio(i) * m2(i);
82 end
83 hplot = plot(s1,s2,tipo_linea);
84 end
85 return

14

Listing 4: Function damage main
1 function [sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=...
2 damage_main(Eprop,ntype,istep,strain,MDtype,n,TimeTotal)
3 global hplotSURF
4

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 LABELPLOT = {'hardening variable (q)','internal variable'};
7

8 E = Eprop(1) ; nu = Eprop(2) ;
9 viscpr = Eprop(6) ;

10 sigma_u = Eprop(4);
11

12 if ntype == 1
13 menu('PLANE STRESS has not been implemented yet','STOP');
14 error('OPTION NOT AVAILABLE')
15 elseif ntype == 3
16 menu('3−DIMENSIONAL PROBLEM has not been implemented yet','STOP')
17 error('OPTION NOT AVAILABLE')
18 else
19 mstrain = 4 ;
20 mhist = 6 ;
21 end
22

23 totalstep = sum(istep) ;
24

25 % INITIALIZING GLOBAL CELL ARRAYS
26 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 sigma_v = cell(totalstep+1,1) ;
28 TIMEVECTOR = zeros(totalstep+1,1) ;
29 ∆_t = TimeTotal./istep/length(istep) ;
30

31 % Elastic constitutive tensor
32 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 [ce] = tensor_elastico1 (Eprop, ntype);
34 % Initz.
35 % −−−−−
36 % Strain vector
37 % −−−−−−−−−−−−−
38 eps_n1 = zeros(mstrain,1);
39 hvar_n = zeros(mhist,1) ;
40

41 % INITIALIZING (i = 1) !!!!
42 % ***********i*
43 i = 1 ;
44 r0 = sigma_u/sqrt(E);
45 hvar_n(5) = r0; % r_n
46 hvar_n(6) = r0; % q_n
47 eps_n1 = strain(i,:) ;
48 sigma_n1 =ce*eps_n1'; % Elastic
49 sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2)...
50 0 0 0 sigma_n1(4)];
51

52 nplot = 3 ;
53 vartoplot = cell(1,totalstep+1) ;
54 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)

15

55 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
56 vartoplot{i}(3) = 1−hvar_n(6)/hvar_n(5) ; % Damage variable (d)
57

58 for iload = 1:length(istep)
59 % Load states
60 for iloc = 1:istep(iload)
61 i = i + 1 ;
62 TIMEVECTOR(i) = TIMEVECTOR(i−1)+ ∆_t(iload) ;
63 % Total strain at step "i"
64 % −−−−−−−−−−−−−−−−−−−−−−−−
65 eps_n1 = strain(i,:) ;
66 %**
67 %* DAMAGE MODEL
68 % %%
69 [sigma_n1,hvar_n,aux_var] = ...
70 rmap_dano(eps_n1,hvar_n,Eprop,ce,MDtype,n);
71 % PLOTTING DAMAGE SURFACE
72 if(aux_var(1)>0)
73 hplotSURF(i) = ...
74 dibujar_criterio_dano1(ce, nu, hvar_n(6), 'r:',MDtype,n);
75 set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1);
76 end
77

78 %%%
79 %**
80 % GLOBAL VARIABLES
81 % ***************
82 % Stress
83 % −−−−−−
84 m_sigma=[sigma_n1(1) sigma_n1(3) 0;sigma_n1(3)...
85 sigma_n1(2) 0 ; 0 0 sigma_n1(4)];
86 sigma_v{i} = m_sigma ;
87

88 % VARIABLES TO PLOT (set label on cell array LABELPLOT)
89 % −−−−−−−−−−−−−−−−
90 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
91 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
92 vartoplot{i}(3) = 1−hvar_n(6)/hvar_n(5);%Damage variable (d)
93 end
94 end
95 end

16

B Codes for Viscous Model

Listing 5: Function Modelos de dano1
1 function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n)
2 %**
3 %* Defining damage criterion surface %*
4 %*
5 %* MDtype= 1 : SYMMETRIC %*
6 %* MDtype= 2 : ONLY TENSION %*
7 %* MDtype= 3 : NON−SYMMETRIC %*
8 %* %*
9 %* %*

10 %* OUTPUT: %*
11 %* rtrial %*
12 %***
13

14 %***
15 if (MDtype==1) %* Symmetric
16 rtrial= sqrt(eps_n1*ce*eps_n1');
17 end
18 %***
19 return

Listing 6: Function rmap dano
1 function [sigma_n1,hvar_n1,aux_var,C11_alg,C11_ana] =...
2 rmap_dano1 (eps_n,eps_n1,hvar_n,Eprop,ce,MDtype,n,∆_t)
3

4 hvar_n1 = hvar_n;
5 r_n = hvar_n(5);
6 q_n = hvar_n(6);
7 E = Eprop(1);
8 nu = Eprop(2);
9 H = Eprop(3);

10 sigma_u = Eprop(4);
11 hard_type = Eprop(5) ;
12 eta = Eprop(7);
13 alpha = Eprop(8);
14

15 %***
16 %* initializing
17 r0 = sigma_u/sqrt(E);
18 zero_q = 1.d−6*r0;
19

20 %**
21 %***
22 %* Damage surface
23 [rtrial_1] = Modelos_de_dano1 (MDtype,ce,eps_n,n);
24 [rtrial_n] = Modelos_de_dano1 (MDtype,ce,eps_n1,n);
25 %***
26

27 %**

17

28 %* Ver el Estado de Carga
29 %* −−−−−−−−−> fload=0 : elastic unload
30 %* −−−−−−−−−> fload=1 : damage
31 fload = 0;
32

33 rtrial = (1−alpha)*rtrial_1 + alpha*rtrial_n ;
34 if(rtrial > r_n)
35 % Loading
36

37 fload = 1;
38 ∆_r = rtrial−r_n;
39 %r_n1= rtrial ;
40 r_n1 = (eta−∆_t*(1−alpha))/(eta+alpha*∆_t)*r_n + ...
41 ∆_t/(eta+alpha*∆_t)*rtrial;
42 if hard_type == 0
43 % Linear
44 q_n1 = q_n+ H*∆_r;
45 end
46

47 if(q_n1 < zero_q)
48 q_n1 = zero_q;
49 end
50

51 else
52 %* Elastic load/unload
53 fload = 0;
54 r_n1 = r_n ;
55 q_n1 = q_n ;
56

57 end
58 % Damage variable
59 % −−−−−−−−−−−−−−−
60 dano_n1 = 1.d0−(q_n1/r_n1);
61 % Computing stress
62 % ****************
63 sigma_n1 =(1.d0−dano_n1)*ce*eps_n1';
64

65 %Calculate the constitutive operator
66 if fload == 1
67 C11_alg = (1.d0−dano_n1)*ce + alpha*∆_t/...
68 (eta+alpha*∆_t)*(1/rtrial_1)*(H*r_n1−q_n1)...
69 /(r_n1^2)*(ce*eps_n1')*(eps_n1*ce');
70 else
71 C11_alg = (1.d0−dano_n1)*ce;
72 end
73 C11_ana = (1.d0−dano_n1)*ce;
74 %***
75

76 %* Updating historic variables
77 hvar_n1(5)= r_n1 ;
78 hvar_n1(6)= q_n1 ;
79

80 %**
81 %* Auxiliar variables
82 aux_var(1) = fload;

18

83 aux_var(2) = q_n1/r_n1;
84 %***

Listing 7: Function dibujar criterio dano1
1 function hplot = ...
2 dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n)
3

4 %* Inverse ce
5 ce_inv=inv(ce);
6 c11=ce_inv(1,1);
7 c22=ce_inv(2,2);
8 c12=ce_inv(1,2);
9 c21=c12;

10 c14=ce_inv(1,4);
11 c24=ce_inv(2,4);
12

13 %**
14 % POLAR COORDINATES
15 if MDtype==1
16 tetha=[0:0.01:2*pi];
17 %**
18 %* RADIUS
19 D=size(tetha); %* Range
20 m1=cos(tetha); %*
21 m2=sin(tetha); %*
22 Contador=D(1,2); %*
23

24

25 radio = zeros(1,Contador) ;
26 s1 = zeros(1,Contador) ;
27 s2 = zeros(1,Contador) ;
28

29 for i=1:Contador
30 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2...
31 (i))]*ce_inv*[m1(i) m2(i) 0 ...
32 nu*(m1(i)+m2(i))]');
33

34 s1(i)=radio(i)*m1(i);
35 s2(i)=radio(i)*m2(i);
36

37 end
38 hplot =plot(s1,s2,tipo_linea);
39 end
40 %***
41 return

Listing 8: Function damage main
1 function [sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=...
2 damage_main(Eprop,ntype,istep,strain,MDtype,n,TimeTotal)
3 global hplotSURF
4

19

5 % SET LABEL OF "vartoplot" variables
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 LABELPLOT = {'hardening variable (q)','internal variable'};
8

9 E = Eprop(1) ; nu = Eprop(2) ;
10 viscpr = Eprop(6) ;
11 sigma_u = Eprop(4);
12

13 if ntype == 1
14 menu('PLANE STRESS has not been implemented yet','STOP');
15 error('OPTION NOT AVAILABLE')
16 elseif ntype == 3
17 menu('3−DIMENSIONAL PROBLEM has not been implemented yet','STOP')
18 error('OPTION NOT AVAILABLE')
19 else
20 mstrain = 4 ;
21 mhist = 6 ;
22 end
23

24 totalstep = sum(istep) ;
25

26 % INITIALIZING GLOBAL CELL ARRAYS
27 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 sigma_v = cell(totalstep+1,1) ;
29 TIMEVECTOR = zeros(totalstep+1,1) ;
30 ∆_t = TimeTotal./istep/length(istep) ;
31

32 % Elastic constitutive tensor
33 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 [ce] = tensor_elastico1 (Eprop, ntype);
35 % Initz.
36 % −−−−−
37 % Strain vector
38 % −−−−−−−−−−−−−
39 eps_n1 = zeros(mstrain,1);
40 % Historic variables
41 hvar_n = zeros(mhist,1) ;
42

43 % INITIALIZING (i = 1) !!!!
44 % ***********i*
45 i = 1 ;
46 r0 = sigma_u/sqrt(E);
47 hvar_n(5) = r0; % r_n
48 hvar_n(6) = r0; % q_n
49 eps_n1 = strain(i,:) ;
50 sigma_n1 =ce*eps_n1'; % Elastic
51 sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3)...
52 sigma_n1(2) 0 ; 0 0 sigma_n1(4)];
53

54 nplot = 3 ;
55 vartoplot = cell(1,totalstep+1) ;
56 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
57 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
58 vartoplot{i}(3) = 1−hvar_n(6)/hvar_n(5);%Damage variable (d)
59 vartoplot{i}(4) = ce(1,1); % C11 Component

20

60 vartoplot{i}(5) = ce(1,1); % C11 Component
61 for iload = 1:length(istep)
62 % Load states
63 for iloc = 1:istep(iload)
64 i = i + 1 ;
65 TIMEVECTOR(i) = TIMEVECTOR(i−1)+ ∆_t(iload) ;
66 % Total strain at step "i"
67 % −−−−−−−−−−−−−−−−−−−−−−−−
68 eps_n = strain(i,:) ;
69 eps_n1 = strain(i−1,:) ;
70 %**
71 %* DAMAGE MODEL
72 % %%%
73 [sigma_n1,hvar_n,aux_var,C11_alg,C11_ana] =...
74 rmap_dano1(eps_n,eps_n1,hvar_n,Eprop,ce,...
75 MDtype,n,∆_t(iload));
76 C11_Algorithmic(i) = C11_alg(1,1);
77 C11_Tangent(i) = C11_ana(1,1);
78 % PLOTTING DAMAGE SURFACE
79 if(aux_var(1)>0)
80 hplotSURF(i) =...
81 dibujar_criterio_dano1(ce, nu, hvar_n(6), 'r:',MDtype,n)
82 set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)
83 end
84

85 %%
86 %***
87 % GLOBAL VARIABLES
88 % ***************
89 % Stress
90 % −−−−−−
91 m_sigma = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3)...
92 sigma_n1(2) 0 ; 0 0 sigma_n1(4)];
93 sigma_v{i} = m_sigma ;
94

95 % VARIABLES TO PLOT (set label on cell array LABELPLOT)
96 % −−−−−−−−−−−−−−−−
97 vartoplot{i}(1) = hvar_n(6); % Hardening variable (q)
98 vartoplot{i}(2) = hvar_n(5); % Internal variable (r)
99 vartoplot{i}(3) = 1−hvar_n(6)/hvar_n(5);%Damage variable (d)

100 vartoplot{i}(4) = C11_alg(1,1); % C11 Component
101 vartoplot{i}(5) = C11_ana(1,1); % C11 Component
102 end
103 end

21

