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1 Part 1: Rate Independent Damage Models

1.1 Characterisation of the Elastic Domain

The code initially has the the symmetric tension compression model, we have further im-
plemented the Tension only model and the symmetric Tension compression model. All the
models in this report are run for a Plane Strain case. All of the models are represented in
the High-Westergaard stress space.

(a) Symmetric Tension Compression (b) Tension only model

Figure 2: Tension Compression Model

The behaviour for the curves is similar for the tension only model and the symmentric
tension compression model in the first quadrant. The tension only model approaches the
horizontal and the vertical axes asymptotically. Compressive loading which happens in the
third quadrant is naturally absent. Whereas it is postulated that the compressive loading
occurs at much higher stresses for tension compression model and that can be seen in fig 2 .
This leads to a bigger elastic domain in the third quadrant compared to the first quadrant.
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1.2 Characterization of the Hardening and Softening law

The MATLAB program already had provisions for linear hardening, exponential hardening
was programmed where the hardening variable q has an exponential response with respect
to the damage variable r. The exponential and linear hardening / softening is observed by
plotting the hardening variable q vs internal variable r for a uniaxial tensile loading case.It
was also observed that the evolution of the damage variable with time was slower in the
exponential case compared to the linear case.

(a) Hardening Linear vs exponential (b) Softening Linear vs Exponential

Figure 3: q vs r plots for Hardening and Softening cases

(a) Hardening Linear vs exponential (b) Softening Linear vs Exponential

Figure 4: Stress vs Strain plots for Hardening and Softening cases

1.3 Case 1: Uniaxial Tension Compression loading

The robustness of the code was correctly verified by testing it under several conditions, all
the cases are analyzed using the exponential hardening softening law. The linear case has
already been implemented as stated earlier

The loading path for this case is given by:

∆σ̄
(1)
1 = 250 ∆σ̄

(1)
2 = 0 (1)
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∆σ̄
(2)
1 = −600 ∆σ̄

(2)
2 = 0 (2)

∆σ̄
(3)
1 = 300 ∆σ̄

(3)
2 = 0 (3)

Exponential Hardening of H = −0.5 and poisson ratio ν = 0.3 were selected to illustrate
all the cases in this section.

(a) Symmetric Model loading path and damage
surface

(b) Damage variable evolution

Figure 6: Stress vs Strain curve

Loading paths were chosen to illustrate the response of tensile and compressive damage.
The damage plot fig 5a shows that the material deforms the damage surface in order to
contain the applied tension and compressive stresses. The stress-strain curve 6 shows the
path followed by the material over the application of successive cycles of pressure, first we
see an elastic regime under tension, then the pure loading and the corresponding damage
occurs,we then see tensile unloading and elastic deformation, then pure loading happens
again in order to increase its damage variable. Finally the material is unloaded. The
evolution of the damage variable with time is also plotted which illustrates the evolution of
the damage variable only during the tensile damage and the compressive damage.
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Similar conditions are selected and the tension only model and the non-symmetric tension
compression models are simulated.

(a) Tension only model loading path and damage
surface (b) Tension Compression Model

Figure 8: Stress vs Strain curve

According to the theory both the Tension only model and the non symmetric tension
compression model behave the same way under these loading conditions. The first load step
is similar as seen for the symmetric case where we see elastic response followed by a damage
under the tensile load. In the second step the tensile loading and the compressive unloading
occurs, the load step damage for compression does not occur as we do not encounter the
damage surface during compression. The compressive unloading step also provides an elastic
response.
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1.4 Case 2: Biaxial tension compression loading

The loading path for this case is given by :

∆σ̄
(1)
1 = 250 ∆σ̄

(1)
2 = 0 (4)

∆σ̄
(2)
1 = −250 ∆σ̄

(2)
2 = −250 (5)

∆σ̄
(3)
1 = 100 ∆σ̄

(3)
2 = 100 (6)

Exponential Hardening of H = −0.5 and poisson ratio ν = 0.3 were selected to illustrate
all the cases in this section.

(a) Symmetric Model loading path and damage
surface

(b) Damage variable evolution

(a) Tension Only Model (b) Tension Compression model

The second loading case is characterized by a first tensile loading on the x-axis, sufficiently
large to overcome the elastic limit of the material, with an identical response in the three
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Figure 11: Stress vs Strain curve

models. This causes and damage and due to the negative hardening surface causes contrac-
tion of the damage surface in the stress space. Due to this contraction, the second and the
third steps of biaxial loading gives out an elastic response.

The stress-strain curve illustrates the three load cases sufficiently well, it is fairly similar
for all the three types of loading cases. Also, the damage happens in two load steps, we
can see that the damage variable takes two jumps in step 10 and step 21 in fig 9b. It is
constant otherwise.

1.5 Case 3: Biaxial Tension Compression Loading

The loading path for this case is given by :

∆σ̄
(1)
1 = 250 ∆σ̄

(1)
2 = 250 (7)

∆σ̄
(2)
1 = −600 ∆σ̄

(2)
2 = −600 (8)

∆σ̄
(3)
1 = 400 ∆σ̄

(3)
2 = 400 (9)

Exponential Hardening of H = −0.5 and poisson ratio ν = 0.3 were selected to illustrate
all the cases in this section.

The first load step is similar to the symmetric case, where the elastic behaviour is observed
until the damage surfac is reached and then damage occurs. The second step is biaxial
unloading followed by biaxial compressive loading exhibits elastic like behaviour unlike the
symmetric case where damage under compressive biaxial loading was observed. The Stress
vs Strain cvurve is plotted in figure 14
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(a) Symmetric Model loading path and damage
surface (b) Damage variable evolution

(a) Tension Only Model
(b) Tension Compression model

Figure 14: Stress vs Strain curve
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2 Part 2: Rate Dependent Damage Models

2.1 Effect of variation of viscosity parameters

The continuum isotropic visco-damage model was implemented for the plane strain sym-
metric tension compression model. In this subsection the problem is subjected to uniaxial
tension with the following loading paths and parameters.

∆σ̄
(1)
1 = 100 ∆σ̄

(1)
2 = 0 (10)

∆σ̄
(2)
1 = 100 ∆σ̄

(2)
2 = 0 (11)

∆σ̄
(3)
1 = 300 ∆σ̄

(3)
2 = 0 (12)

additional conditions are as follows H = 0, Time Interval = 1 ν = 0.3 and the viscosity
parameter η = 0, 0.1, 1.

Figure 15: Viscosity variation

The stress vs strain curve 14 shows that the most viscous case offers more elastic behavior
due to lesser damage as compared to the inviscid case. The behavior for viscosity rates
η > 1 follows a similar trend to η = 1.

2.2 Effects of variation of strain rate

The continuum isotropic visco-damage model was implemented for the plane strain sym-
metric tension compression model. The strain rate is inversely proportional to the time
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interval in which the problem is being solved. In this section we vary the Time interval by
keeping the other parameters same.

∆σ̄
(1)
1 = 100 ∆σ̄

(1)
2 = 0 (13)

∆σ̄
(2)
1 = 100 ∆σ̄

(2)
2 = 0 (14)

∆σ̄
(3)
1 = 300 ∆σ̄

(3)
2 = 0 (15)

additional conditions are as follows H = 0, Time Interval = 0.1, 1, 10, 100 ν = 0.3 and the
viscosity parameter η = 1. The integration coefficient was α = 0.5.

Figure 16: Strain rate variation

As the rheological model states that F = ηδ̇ the force is proportional to velocity and
viscosity. The viscosity is a constant for all the cases. We can observe that stress is
proportional to the strain rate.

2.3 Effect of Variation of α

In this subsection we vary the parameter α involved in the integration algorithm and analyze
the effects on the stress strain curve and the evolution of the fi

rst component of the Calg and Ctang constitutive tensors keeping all the other parameters
same.We once again chose a plane strain symmetric tension compression model with similar
load paths as before. The additional parameters are as follows H = 0.1, Time Interval
= 100 ν = 0.3 and the viscosity parameter η = 1. The integration coefficient was α =
0, 0.25, 0.5, 0.75, 1.
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A large value of time is chosen to show the effects of the parameter on the integration
algorithm. We can see that for α < 0.5 we get oscillatory solutions since the stability is
conditional in that interval. Unconditional stability is obtained when α ∈ [0.5, 1]. The
valus of α = 0 corresponds to forward euler which is a first order explcit method, α = 1
corresponds to backward euler, which is first order implicit method and α = 0.5 is Crank-
Nicolson method which is second order in nature.

Figure 17: Stress vs Strain for different Integration Coefficient

Figure 18: Variation of C11
tang

As stress-strain curves tend to be less inclined as time goes by, the value of the algorithmic
constitutive operator will decrease, the lower values of α make the process more similar to
the inviscid case.
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Figure 19: Variation of C11
alg

3 Appendix

A MATLAB code for symbolic matrix multiplication written for this assignment.

Matlab function dibujarcriteriodano1

1 f unc t i on hplot = d i b u j a r c r i t e r i o d a n o 1 ( ce , nu , q , t i p o l i n e a , MDtype
, n)

2 c e i n v=inv ( ce ) ;
3 c11=c e i n v (1 , 1 ) ;
4 c22=c e i n v (2 , 2 ) ;
5 c12=c e i n v (1 , 2 ) ;
6 c21=c12 ;
7 c14=c e i n v (1 , 4 ) ;
8 c24=c e i n v (2 , 4 ) ;
9

10 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

11 % DRAWING OF THE DAMAGE SURFACE OF THE MATERIAL
12 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

13 %∗ D e f i n i t i o n o f the po la r coo rd ina t e s v a r i a b l e s
14 tetha = [ 0 : 0 . 0 1 : 2∗ pi ] ;
15 D=s i z e ( tetha ) ;
16 m1=cos ( tetha ) ;
17 m2=s i n ( tetha ) ;
18 Contador=D(1 , 2 ) ;
19 rad io = ze ro s (1 , Contador ) ;
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20 s1 = ze ro s (1 , Contador ) ; %P r i n c i p a l s t r e s s in x a x i s
21 s2 = ze ro s (1 , Contador ) ; %P r i n c i p a l s t r e s s in y a x i s
22

23 %∗ Evaluat ion o f the e l a s t i c domain in terms o f the MDtype
v a r i a b l e

24 i f MDtype==1 % Symmetric ( tens ion−compress ion ) model case
25 f o r i =1:Contador
26 rad io ( i )= q/ s q r t ( [m1( i ) m2( i ) 0 nu∗(m1( i )+m2( i ) ) ]∗ c e i n v

∗ [m1( i ) m2( i ) 0 nu∗(m1( i )+m2( i ) ) ] ’ ) ;
27 s1 ( i )=rad io ( i )∗m1( i ) ;
28 s2 ( i )=rad io ( i )∗m2( i ) ;
29 end
30

31 hplot =p lo t ( s1 , s2 , t i p o l i n e a ) ;
32

33 e l s e i f MDtype==2 % Tens i l e−damage model case
34 f o r i =1:Contador
35 rad io ( i )= q/ s q r t ( [ mcauley (m1( i ) ) mcauley (m2( i ) ) 0 mcauley

(nu∗(m1( i )+m2( i ) ) ) ]∗ c e i n v ∗ [m1( i ) m2( i ) 0 nu∗(m1( i )+m2
( i ) ) ] ’ ) ;

36 s1 ( i )=rad io ( i )∗m1( i ) ;
37 s2 ( i )=rad io ( i )∗m2( i ) ;
38 end
39

40 hplot =p lo t ( s1 , s2 , t i p o l i n e a ) ;
41

42 e l s e i f MDtype==3 % Non−symmetric tens ion−compress ion model
case

43 f o r i =1:Contador
44 % D e f i n i t i o n o f new v a r i a b l e TETHA
45 TETHA = ( mcauley (m1( i ) )+mcauley (m2( i ) )+mcauley (nu∗(m1( i )+

m2( i ) ) ) ) /( abs (m1( i ) )+abs (m2( i ) )+abs (nu∗(m1( i )+m2( i ) ) ) )
;

46 % D e f i n i t i o n o f new v a r i a b l e COEFF
47 Q = TETHA + (1 − TETHA) /n ;
48 rad io ( i ) = q /(Q∗ s q r t ( [m1( i ) m2( i ) 0 nu∗(m1( i )+m2( i ) ) ]∗

c e i n v ∗ [m1( i ) m2( i ) 0 nu∗(m1( i )+m2( i ) ) ] ’ ) ) ;
49 s1 ( i )=rad io ( i )∗m1( i ) ;
50 s2 ( i )=rad io ( i )∗m2( i ) ;
51 end
52

53 hplot =p lo t ( s1 , s2 , t i p o l i n e a ) ;
54

55 e l s e
56 e r r o r ( ’WRONG INPUT (MDtype) FOR DAMAGE MODEL SELECTION ’ )
57 end
58
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59 r e turn
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Matlab function Modelosdedano1

1 f unc t i on [ r t r i a l ] = Modelos de dano1 (MDtype , ce , eps n , eps n1 , n ,
ALPHA)

2 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 %∗ Def in ing damage c r i t e r i o n s u r f a c e
%∗

4 %∗

%∗
5 %∗
6 %∗ MDtype= 1 : SYMMETRIC

%∗
7 %∗ MDtype= 2 : ONLY TENSION

%∗
8 %∗ MDtype= 3 : NON−SYMMETRIC

%∗
9 %∗

%∗
10 %∗

%∗
11 %∗ OUTPUT:

%∗
12 %∗ r t r i a l

%∗
13 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

14

15

16

17 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

18 i f (MDtype==1) %∗ Symmetric
19

20 r n = s q r t ( eps n ∗ ce∗ eps n ’ ) ;
21 r n1 = s q r t ( eps n1 ∗ ce∗ eps n1 ’ ) ;
22 r t r i a l = (1 − ALPHA)∗ r n + ALPHA∗ r n1 ;
23

24 e l s e i f (MDtype==2) %∗ Only t en s i on
25

26 sigmaB = ce ∗ eps n ’ ;
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27 sigmaB n1 = ce ∗ eps n1 ’ ;
28 f o r i = 1 : l ength ( sigmaB )
29 f o r j = 1 : l ength ( sigmaB n1 )
30 sigmaB ( i ) = mcauley ( sigmaB ( i ) ) ;
31 sigmaB n1 ( j ) = mcauley ( sigmaB n1 ( j ) ) ;
32 end
33 end
34 r n = s q r t ( eps n ∗ sigmaB ) ;
35 r n1 = s q r t ( eps n1 ∗ sigmaB n1 ) ;
36 r t r i a l = (1 − ALPHA)∗ r n + ALPHA∗ r n1 ;
37

38 e l s e i f (MDtype==3) %∗Non−symmetric
39

40 sigmaB = ce ∗ eps n ’ ;
41 TETHA n = ( mcauley ( sigmaB (1) )+mcauley ( sigmaB (2) )+mcauley (

sigmaB (3) )+mcauley ( sigmaB (4) ) ) /( abs ( sigmaB (1) )+abs ( sigmaB
(2) )+abs ( sigmaB (3) )+abs ( sigmaB (4) ) ) ;

42 Q n = TETHA n + (1 − TETHA n) /n ;
43 r n = Q n ∗ s q r t ( eps n ∗ ce ∗ eps n ’ ) ;
44 sigmaB n1 = ce ∗ eps n1 ’ ;
45 TETHA n1 = ( mcauley ( sigmaB n1 (1) )+mcauley ( sigmaB n1 (2) )+

mcauley ( sigmaB n1 (3) )+mcauley ( sigmaB n1 (4) ) ) /( abs (
sigmaB n1 (1) )+abs ( sigmaB n1 (2) )+abs ( sigmaB n1 (3) )+abs (
sigmaB n1 (4) ) ) ;

46 Q n1 = TETHA n1 + (1 − TETHA n1) /n ;
47 r n1 = Q n1 ∗ s q r t ( eps n1 ∗ ce∗ eps n1 ’ ) ;
48 r t r i a l = (1 − ALPHA)∗ r n + ALPHA∗ r n1 ;
49

50 end
51 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

52 r e turn
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Matlab function rmap dano1

1 f unc t i on [ sigma n1 , hvar n1 , aux var ] = rmap dano1 ( eps n , eps n1 ,
hvar n , Eprop , ce , MDtype , n , va r t )

2

3

4

5 hvar n1 = hvar n ;
6 r n = hvar n (5 ) ;
7 q n = hvar n (6 ) ;
8 H n = hvar n (7 ) ;
9 E = Eprop (1 ) ;

10 nu = Eprop (2 ) ;
11 % H = Eprop (3 ) ; Moved to h i s t o r i c v a r i a b l e s vec to r
12 sigma u = Eprop (4 ) ;
13 hard type = Eprop (5 ) ;
14 v i s c p r = Eprop (6 ) ;
15 % D e f i n i t i o n o f the v i s c ou s parameter eta and the i n t e g r a t i o n

parameter
16 % ALPHA, which w i l l be in use in the r e s t o f the subrout ine , even

f o r the
17 % i n v i s c i d model . I f e ta=0 and ALPHA=1, the i n v i s c i d model i s

r ecovered . I t
18 % i s done so in order to use only one code ab le to cover the two

opt ions
19 i f v i s c p r == 1 ;
20 eta = Eprop (7) ;
21 ALPHA = Eprop (8 ) ;
22 e l s e
23 eta = 0 ;
24 ALPHA = 1 ;
25 end
26

27 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

28 %∗ i n i t i a l i z i n g
%∗

29 r0 = sigma u / s q r t (E) ;
30 z e ro q =1.d−6∗r0 ;
31 % i f ( r n<=0.d0 )
32 % r n=r0 ;
33 % q n=r0 ;
34 % end
35 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

36
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37

38 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

39 %∗ Damage s u r f a c e

%∗
40 [ r t r i a l ] = Modelos de dano1 (MDtype , ce , eps n , eps n1 , n ,ALPHA) ;
41 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42

43

44 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

45 %∗ %∗
46 %∗ −−−−−−−−−> f l o a d=0 : e l a s t i c unload

%∗
47 %∗ −−−−−−−−−> f l o a d=1 : damage ( compute a l go r i thmi c

c o n s t i t u t i v e t enso r ) %∗
48 f l o a d =0;
49

50 i f ( r t r i a l > r n )
51 %∗ Loading
52 f l o a d =1;
53 d e l t a r = r t r i a l − r n ;
54 r n1 = ( ( eta − va r t ∗(1−ALPHA) ) /( eta + ALPHA∗ va r t ) )∗ r n + (

va r t /( eta + ALPHA∗ va r t ) )∗ r t r i a l ;
55 i f hard type == 0
56 % Linear
57 q n1 = q n + H n∗ d e l t a r ;
58 q r n1 = q n + H n∗( r n1 − r n ) ; % For the f o l l o w i n g

computation o f a l go r i thmi c c o n s t i t u t i v e operator
59 H n1 = H n ;
60 e l s e
61 % Exponent ia l
62 A = 10 ; %P o s i t i v e va lue that d e f i n e s the shape o f the

curve
63 q i n f = q n + H n∗ d e l t a r ;
64 q n1 = q in f −( q i n f−q n )∗exp (A∗(− d e l t a r /q n ) ) ;
65 q r n1 = q in f −( q i n f−q n )∗exp (A∗(1− r n1 /q n ) ) ; % For the

f o l l o w i n g computation o f a l go r i thmi c c o n s t i t u t i v e
operator

66 H n1 = A∗ ( ( q i n f − q n ) /q n )∗exp (A∗(− d e l t a r /q n ) ) ;
67 end
68
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69 i f ( q n1<z e ro q )
70 q n1=ze ro q ;
71 e l s e
72 end
73

74

75 e l s e
76 %∗ E l a s t i c load / unload
77 f l o a d =0;
78 r n1= r n ;
79 q n1= q n ;
80 H n1= H n ;
81

82 end
83 % Computing damage v a r i a b l e
84 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
85 dano n1 = 1 . d0−(q n1 / r n1 ) ;
86

87 % Computing s t r e s s
88 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
89 sigma n1 =(1.d0−dano n1 )∗ ce∗ eps n1 ’ ;
90 hold on
91 p lo t ( sigma n1 (1 ) , sigma n1 (2 ) , ’ bx ’ )
92

93

94

95 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

96

97

98 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

99 %∗ Updating h i s t o r i c v a r i a b l e s
%∗

100 hvar n1 ( 1 : 4 ) = eps n1 ;
101 hvar n1 (5 )= r n1 ;
102 hvar n1 (6 )= q n1 ;
103 hvar n1 (7 )= H n1 ;
104 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

105

106

107

108
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109 %
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

110 %∗ Aux i l i a r v a r i a b l e s

%∗
111 aux var (1 ) = f l o a d ;
112 aux var (2 ) = q n1 / r n1 ;
113

114 f l o a d = 1
115 % Computing tangent and a l go r i thmi c c o n s t i t u t i v e ope ra to r s
116 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
117 i f f l o a d == 0 %E l a s t i c l oad ing / unloading
118 ce tan = (1 − dano n1 )∗ ce ;
119 c e a l g = ce tan ;
120 e l s e %Pure load ing
121 ce tan = (1 − dano n1 )∗ ce ;
122 c e a l g = ce tan + ( (ALPHA∗ va r t ∗( H n1∗ r n1−q n1 ) ) / ( ( eta+ALPHA

∗ va r t )∗ r n1 ˆ3) ) ∗( eps n1 ∗ eps n1 ’ ) ;
123 end
124 % Stor ing C11 component o f the tangent and a l go r i thmi c

c o n s t i t u t i v e ope ra to r s
125 aux var (3 ) = ce tan (1 , 1 ) ;
126 aux var (4 ) = c e a l g (1 , 1 ) ;
127 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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