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1 Part 1: Rate Independent Damage Models

1.1 Characterisation of the Elastic Domain

The code initially has the the symmetric tension compression model, we have further im-
plemented the Tension only model and the symmetric Tension compression model. All the
models in this report are run for a Plane Strain case. All of the models are represented in
the High-Westergaard stress space.
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Figure 2: Tension Compression Model

The behaviour for the curves is similar for the tension only model and the symmentric
tension compression model in the first quadrant. The tension only model approaches the
horizontal and the vertical axes asymptotically. Compressive loading which happens in the
third quadrant is naturally absent. Whereas it is postulated that the compressive loading
occurs at much higher stresses for tension compression model and that can be seen in fig 2 .
This leads to a bigger elastic domain in the third quadrant compared to the first quadrant.
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1.2 Characterization of the Hardening and Softening law

The MATLAB program already had provisions for linear hardening, exponential hardening
was programmed where the hardening variable q has an exponential response with respect
to the damage variable r. The exponential and linear hardening / softening is observed by
plotting the hardening variable q vs internal variable r for a uniaxial tensile loading case.It
was also observed that the evolution of the damage variable with time was slower in the
exponential case compared to the linear case.
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Figure 3: q vs r plots for Hardening and Softening cases
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Figure 4: Stress vs Strain plots for Hardening and Softening cases

1.3 Case 1: Uniaxial Tension Compression loading

The robustness of the code was correctly verified by testing it under several conditions, all
the cases are analyzed using the exponential hardening softening law. The linear case has
already been implemented as stated earlier

The loading path for this case is given by:

A =250 AGY =0 (1)
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A&\ = —600 A =0 (2)
AP =300 AP =0 (3)
Exponential Hardening of H = —0.5 and poisson ratio v = 0.3 were selected to illustrate

all the cases in this section.

300 - Damage surface (principal stresses axes)

200 -

o
o

100 -
¢
o 04P=R- €5 —— 66— 6 - S-S ANR DR SRCHPIRNBOBI

-100 -

damage variable (d)
o
Y

o
[N}

-200

300 . . . . . . . . . 0

-600 -500 -400 -300 -200 -100 0 100 200 300

(a) Symmetric Model loading path and damage (b) Damage variable evolution
surface

300 -
200

100

STRESS1
o

-100

-200

_300 1 | | | 1 | 1 | | |
-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

STRAIN,

Figure 6: Stress vs Strain curve

Loading paths were chosen to illustrate the response of tensile and compressive damage.
The damage plot fig 5a shows that the material deforms the damage surface in order to
contain the applied tension and compressive stresses. The stress-strain curve 6 shows the
path followed by the material over the application of successive cycles of pressure, first we
see an elastic regime under tension, then the pure loading and the corresponding damage
occurs,we then see tensile unloading and elastic deformation, then pure loading happens
again in order to increase its damage variable. Finally the material is unloaded. The
evolution of the damage variable with time is also plotted which illustrates the evolution of
the damage variable only during the tensile damage and the compressive damage.
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Similar conditions are selected and the tension only model and the non-symmetric tension
compression models are simulated.
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Figure 8: Stress vs Strain curve

According to the theory both the Tension only model and the non symmetric tension
compression model behave the same way under these loading conditions. The first load step
is similar as seen for the symmetric case where we see elastic response followed by a damage
under the tensile load. In the second step the tensile loading and the compressive unloading
occurs, the load step damage for compression does not occur as we do not encounter the
damage surface during compression. The compressive unloading step also provides an elastic
response.
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1.4 Case 2: Biaxial tension compression loading

The loading path for this case is given by :

Asl =250 AssY =0 (4)

A& = —250 AP = —250 (5)

A& =100 AP =100 (6)

Exponential Hardening of H = —0.5 and poisson ratio v = 0.3 were selected to illustrate

all the cases in this section.
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The second loading case is characterized by a first tensile loading on the x-axis, sufficiently
large to overcome the elastic limit of the material, with an identical response in the three
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Figure 11: Stress vs Strain curve

models. This causes and damage and due to the negative hardening surface causes contrac-
tion of the damage surface in the stress space. Due to this contraction, the second and the
third steps of biaxial loading gives out an elastic response.

The stress-strain curve illustrates the three load cases sufficiently well, it is fairly similar
for all the three types of loading cases. Also, the damage happens in two load steps, we
can see that the damage variable takes two jumps in step 10 and step 21 in fig 9b. It is
constant otherwise.

1.5 Case 3: Biaxial Tension Compression Loading

The loading path for this case is given by :

Aslt =250 AcSY = 250 (7)

AP = —600 AP = —600 (8)

A = 400 A = 400 (9)

Exponential Hardening of H = —0.5 and poisson ratio v = 0.3 were selected to illustrate

all the cases in this section.

The first load step is similar to the symmetric case, where the elastic behaviour is observed
until the damage surfac is reached and then damage occurs. The second step is biaxial
unloading followed by biaxial compressive loading exhibits elastic like behaviour unlike the
symmetric case where damage under compressive biaxial loading was observed. The Stress
vs Strain cvurve is plotted in figure 14
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Figure 14: Stress vs Strain curve
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2 Part 2: Rate Dependent Damage Models

2.1 Effect of variation of viscosity parameters

The continuum isotropic visco-damage model was implemented for the plane strain sym-
metric tension compression model. In this subsection the problem is subjected to uniaxial
tension with the following loading paths and parameters.

AaY =100 AsSY =0 (10)
AP =100 AP =0 (11)
AP =300 AGS) =0 (12)

additional conditions are as follows H = 0, Time Interval = 1 v = 0.3 and the viscosity
parameter n = 0,0.1, 1.
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Figure 15: Viscosity variation

The stress vs strain curve 14 shows that the most viscous case offers more elastic behavior
due to lesser damage as compared to the inviscid case. The behavior for viscosity rates
n > 1 follows a similar trend to n = 1.

2.2 Effects of variation of strain rate

The continuum isotropic visco-damage model was implemented for the plane strain sym-
metric tension compression model. The strain rate is inversely proportional to the time
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interval in which the problem is being solved. In this section we vary the Time interval by
keeping the other parameters same.

A =100 AGY =0 (13)
A& =100 AP =0 (14)
AP =300 A =0 (15)

additional conditions are as follows H = 0, Time Interval = 0.1, 1, 10,100 » = 0.3 and the
viscosity parameter n = 1. The integration coefficient was a = 0.5.
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Figure 16: Strain rate variation

As the rheological model states that F' = 775 the force is proportional to velocity and
viscosity. The viscosity is a constant for all the cases. We can observe that stress is
proportional to the strain rate.

2.3 Effect of Variation of «

In this subsection we vary the parameter « involved in the integration algorithm and analyze
the effects on the stress strain curve and the evolution of the fi

rst component of the Cyy and Cyqp,g constitutive tensors keeping all the other parameters
same.We once again chose a plane strain symmetric tension compression model with similar
load paths as before. The additional parameters are as follows H = 0.1, Time Interval
= 100 v = 0.3 and the viscosity parameter n = 1. The integration coefficient was a =
0,0.25,0.5,0.75, 1.

10
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A large value of time is chosen to show the effects of the parameter on the integration
algorithm. We can see that for a < 0.5 we get oscillatory solutions since the stability is
conditional in that interval. Unconditional stability is obtained when a € [0.5,1]. The
valus of @ = 0 corresponds to forward euler which is a first order explcit method, o = 1
corresponds to backward euler, which is first order implicit method and o = 0.5 is Crank-
Nicolson method which is second order in nature.
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Figure 17: Stress vs Strain for different Integration Coefficient
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tang
As stress-strain curves tend to be less inclined as time goes by, the value of the algorithmic

constitutive operator will decrease, the lower values of o make the process more similar to
the inviscid case.

11
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Figure 19: Variation of C;,

3 Appendix

A MATLAB code for symbolic matrix multiplication written for this assignment.

Matlab function dibujarcriteriodanol

function hplot = dibujar_criterio_danol (ce,nu,q, tipo_linea ,MDtype
1)

ce_inv=inv (
cll=ce_inv (
c22=ce_inv (
cl2=ce_inv (
c21=c12;

cld=ce_inv (1,4);
c24=ce_inv (2,4);

%

K3k 3k sk 3k sk sk oskokoskskosk kR kR kR kR sk sk sk sk skoskoskoskosk skosk kR sk ok sk sk Sk sk sk sk sk skoskoskoskosk skok kR kR skosk skosk sk sk sk skosk kR kR sk ok sk

% DRAWING OF THE DAMAGE SURFACE OF THE MATERIAL
%0

sk ok ok ok ok ok ok 3k sk sk ok ok sk ok sk ok sk sk ok sk sk ok ok ok sk sk ok sk sk ok ok ok ok Sk ok sk 3k sk ok ok ok Sk ok ok ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok

%+ Definition of the polar coordinates variables
tetha=[0:0.01:2x%pi|;
D=size (tetha);
ml=cos (tetha);
m2=sin (tetha) ;
Contador=D(1,2) ;
radio = zeros (1,Contador);

12
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sl
s2

= zeros (1,Contador); %Principal stress in x axis
= zeros (1,Contador); %Principal stress in y axis

%« Evaluation of the elastic domain in terms of the MDtype
variable
if MDtype==1 % Symmetric(tension—compression) model case

for

end

i=1:Contador

radio(i)= q/sqrt ([ml(i) m2(i) 0 nux(ml(i)+m2(i))]*ce_inv
«[ml(i) m2(i) 0 nusx(ml(i)+m2(i))]’);

sl(i)=radio(i)*ml(i);

s2(i)=radio(i)*m2(1i);

hplot =plot(sl,s2,tipo_linea);

elseif MDtype== % Tensile—damage model case

for

end

i=1:Contador

radio(i)= q/sqrt ([mcauley (ml(i)) mcauley(m2(i)) 0 mcauley
(nusx(ml(i)+m2(i)))]*xce_inv*[ml(i) m2(i) 0 nux(ml(i)+m2
(i)]°);

sl(i)=radio(i)*ml(i);

s2(i)=radio(i)*m2(1i);

hplot =plot (sl ,s2,tipo_linea);

elseif MDtype==3 % Non—symmetric tension—compression model
case
for i=1:Contador

else

end

end

% Definition of new variable TETHA
TETHA = (mcauley (ml(i))4+mcauley (m2(i))+mcauley (nu*(ml(i)+
m2(i))))/(abs(ml(i))+abs(m2(i))+abs(nu*(ml(i)+m2(i))))

% Definition of new variable COEFF

Q = TETHA + (1 — TETHA) /n;

radio(i) = q/(Qxsqrt ([ml(i) m2(i) 0 nux(ml(i)+m2(i))]x
ce_invsx[ml(i) m2(i) 0 nusx(ml(i)+m2(i))]’));

sl(i)=radio(i)*ml(i);

s2(i)=radio (i)*m2(1i);

hplot =plot(sl,s2,tipo_linea);

error ('WRONG INPUT (MDtype) FOR DAMAGE MODEL SELECTION )

13
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50 return

14
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Matlab function Modelosdedanol

function [rtrial] = Modelos_de_danol (MDtype,ce,eps_.n, eps_nl n,
ALPHA)
%
sk stk sk ok sk ok ok sk ok ok ok ok S sk sk ok sk sk ok sk ok ok sk ok ok sk sk ok sk sk ok s sk sk ok sk sk sk ok sk ok sk sk sk ok sk sk ok s sk ok ok sk sk sk ok sk ok ok ok k ok ok %
Yo Defining damage criterion surface
Yok
Yo
Yox
Yok
Yo MDtype= 1 : SYMMETRIC
Yok
Yo MDtype= 2 : ONLY TENSION
Yox
%k MDtype= 3 . NON-SYMMETRIC
Yox
Yox
Yox
Yok
Yok
Y%+ OUTPUT":
Yox
Yo rtrial

o
o
(0]

ok ok ok ok ok ok ok 3k ok ok ok ok sk ok sk 3k ok sk ok sk sk ok ok sk ok sk ok sk sk ok ok sk ok ok ok sk sk ok ok 3k ok ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok sk sk ok ok sk ok sk ok ok sk ok ok ok ok ok

[0y,
0

K3k 3k 3k 3k Sk sk sk skosk sk skokok skosk sk ok kR Sk ok Sk sk sk skok sk skoskoskosk skosk kR sk ok kR Sk sk sk sk sk skoskoskosk sk skosk kR sk ok kR kR Skok sk sk sk skosk ok ok

if (MDtype==1) Y%+ Symmetric
rn = sqrt(eps_nkcexeps.n’);
rnl = sqrt(eps_.nls*cexeps.nl’);

rtrial = (1 — ALPHA)*r_n + ALPHAxr_nl;
elseif (MDtype==2) %+ Only tension
sigmaB = ce x eps.n’ ;

15
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27 sigmaB_nl = ce % eps.nl’ ;

28 for i =1 : length (sigmaB)

20 for j =1 : length(sigmaB_nl)

30 sigmaB (i) = mcauley (sigmaB(i));

31 sigmaB_nl(j) = mcauley(sigmaB nl(j));
32 end

33 end

34 rn = sqrt(eps_.n x sigmaB);

35 r-nl = sqrt(eps_nl % sigmaB_nl);

36 rtrial = (1 — ALPHA)*r_n + ALPHA%r nl;

37
ss elseif (MDtype==3) %«Non—symmetric

39

10 sigmaB = ce *x eps.n’ ;

a1 TETHAn = (mcauley (sigmaB (1) )+mcauley (sigmaB (2) )+mcauley (
sigmaB (3) )+mcauley (sigmaB (4))) /(abs(sigmaB (1) )+abs (sigmaB
(2) )+abs(sigmaB (3) )+abs (sigmaB (4)));

12 Qn = TETHAn + (1 — TETHAn) /n;

43 rn = Qn % sqrt(eps.n * ce * eps.n’);

44 sigmaB_nl = ce % eps_.nl’ ;

15 TETHA nl = (mcauley(sigmaB_nl(1))+mcauley (sigmaB_nl(2))+

mcauley (sigmaB_nl(3) )+mcauley (sigmaB_nl1(4)))/(abs(
sigmaB_nl(1))+abs(sigmaB_nl(2))+abs(sigmaB_nl(3))+abs(
sigmaB_nl(4)));

46 Qnl = TETHAnl + (1 — TETHAnl) /n;

a7 rnl = Qnl % sqrt(eps.nlscexeps.nl’):;
18 rtrial = (1 — ALPHA)*r_n + ALPHAxr_nl;
49

so end

51 (7()

sk ok ok ok ok ok ok 3k ok ok ok ok sk ok sk ok sk ok sk sk ok ok sk sk sk ok ok sk ok ok ok ok sk ok ok sk ok ok 3k ok ok ok ok 3k sk ok ok sk sk ok sk sk ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok ok

52 return
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Matlab function rmap danol

function [sigma_nl hvar_nl  aux_var| = rmap_danol (eps_n ,eps_nl,
hvar_n ,Eprop, ce ,MDtype,n, var_t)

hvar_.nl = hvar_n;

r_n = hvar.n(5);

q-n = hvar_n(6);

H.on = hvar_n(7);

E = Eprop(1);

nu = Eprop(2);

% H = Eprop(3); Moved to historic variables vector
sigma_u = Eprop(4) ;

hard_type = Eprop(5) ;

viscpr = Eprop(6) ;

% Definition of the viscous parameter eta and the integration
parameter

% ALPHA, which will be in use in the rest of the subroutine, even
for the

% inviscid model. If eta=0 and ALPHA=1, the inviscid model is
recovered. It

% is done so in order to use only one code able to cover the two
options

if viscpr = 1;
eta = Eprop (7);
ALPHA = Eprop (8);

else
eta = 0;
ALPHA = 1;
end
%

>3k skosk kR skosk sk ok 3koskoskoskook skosk sk ok Sk sk sk sk sk Skosk sk sk Skosk sk ok sk Skoskoskosk Skosk kR Sk Skosk sk sk Skosk kR Skosk kR Sk Skosk sk sk Skosk sk ok skosk sk ok sk skok ok ok

Yo initializing
Yok
r0 = sigma_u/sqrt (E);
zero_q=1.d—6x1r0;
% if (r-n<=0.d0)

% r_n=r0;
% q-n=r0;
% end

%

>k 3k >k 3k ok 3k ok Sk ok sk sk sk kosk ok sk ok sk ok sk Sk sk Sk skosk sk Sk skosk skosk sk sk sk skok sk Sk skosk sk ok skosk sk sk skosk sk sk koskoskosk ok skook sk sk sk ok sk sk sk sk sk sk skokokosk
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%

>k 3k >k 3k ok 3k sk Sk ok sk okosk ok sk ok skook sk ok sk Sk sk Sk sk Sk sk Sk sk sk skoskokosk ok sk ok skoSk skoSk sk Sk sk Sk sk Sk skosk sk sk sk sk sk sk okosk ok sk sk ok ok sk Sk sk ko skok skokokosk

Tox Damage surface

Tox
[rtrial] = Modelos_de_danol (MDtype,ce,eps_n,eps_nl n ALPHA);
%

sk ok ok ok ok ok ok 3k ok ok ok ok sk ok sk 3k ok sk ok sk sk ok ok sk ok sk ok ok sk ok ok ok sk ok ok sk sk ok ok 3k ok sk ok sk 3k ok ok ok sk sk ok sk sk sk sk ok ok sk ok ok ok ok sk ok ok sk ok ok ok ok ok

0y
(

ok ok ok ok ok ok ok 3k ok ok ok sk sk ok ok 3 ok sk ok sk sk ok ok sk ok sk ok sk sk ok ok sk ok ok ok sk sk ok ok ok ok ok ok sk sk ok ok ok ok sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok ok sk ok ok ok ok ok

Tox Yo
ox  — fload=0 : elastic unload
o
(0
Yox = —> fload=1 : damage (compute algorithmic
constitutive tensor) Yo
fload =0;

if (rtrial > r_n)

Yo Loading
fload =1;
delta_.r = rtrial — r_n;

rnl = ((eta — var_t*(1—ALPHA)) /(eta + ALPHA*var_t))*r.n + (
var_t /(eta + ALPHAxvar_t))*rtrial;
if hard_type = 0
% Linear
qg.nl = q.n + Hnxdelta_r;
q-r-nl = qn + Hnx(r.nl — r_n); % For the following
computation of algorithmic constitutive operator
Hnl = Hn;
else
% Exponential
A = 10; %Positive value that defines the shape of the
curve
q-inf = q-n + Hnxdelta_r;
q.nl = q_inf —(q_inf—q_n)*exp (Ax(—delta_r/q.n));
q-r-nl = q_inf —(q-inf—q-n)xexp(A*(l—r_-nl/qn)); % For the
following computation of algorithmic constitutive
operator
Hnl = Ax((q-inf — q.n)/q-n)*exp(Ax(—delta_r/q-n));
end
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if (q.nl<zero_q)
q.-nl=zero_q;

else
end
else
Yox Elastic load/unload
fload =0;
rnl=rn ;
q-nl= qn ;
Hnl= Hn ;
end

% Computing damage variable
T 5k ok 3k ok ok ok koK ok KOk K K

dano.nl = 1.d0—(q-nl/r_-nl);
% Computing stress
GO skok ko sk ok ok K koK kKK K K

sigma_nl =(1.d0—dano_nl)*cexeps_nl’;

hold on

plot (sigma_nl (1) ,sigma_-nl(2), bx")

%0

>3k 3Rk kR Skosk sk ok 3k Skosk kR Skosk sk ok SRSk sk ok sk Skosk sk ok SkoSk sk ok sk Sk sk skosk Skosk kR SkoSk sk sk sk Skosk kR Skosk sk sk Sk Skok sk sk Skosk kR skosk sk ok sk skok ok ok

%0

>3k Sk ok kR Skosk kR sk Skoskoskook Skosk sk ok skoSk sk sk 3k Skosk sk ok Skosk sk ok sk Sk sk sk sk Skosk sk ok SkoSkosk sk sk Skosk sk ok Skosk sk ok Sk Skosk sk sk Skosk kR skosk ok sk sk skok ok ok

% Updating historic variables

hvar.nl(1:4) = eps._nl;
hvar_.nl(5)= r_nl ;
hvar_nl (6)= q-nl ;
hvar_nl (7)= H.nl ;

%

K3k 3k 3k 3k Sk sk koskskoskokok skosk kR sk ok Sk sk kR sk skok sk skoskoskosk skosk kR sk ok kR Sk sk sk sk sk skoskoskoskosk skosk kR sk ok Skok Skok sk sk sk skoskokosk
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%

(% *

K3k SRk kR Skosk sk ok sk Skokoskosk skosk sk ok Sk sk sk ok sk Skosk sk ok Skosk sk ok sk Skosk kR Skosk sk ok Sk Sk sk ok sk Skosk sk R Skosk sk ok Sk Skosk kR Skosk kR skoskok ok sk skok ok ok

Auxiliar variables

Yox
aux_var (1) = fload;
aux_var(2) = q.nl/r_nl;

fload =1
% Computing tangent and algorithmic constitutive operators
Do 3 ok ok ok ok ok % K K ok ok ok ok K K
if fload = 0 %Elastic loading / unloading
ce_tan = (1 — dano_nl)xce;
ce_alg = ce_tan;
else %Pure loading
ce_tan = (1 — dano_nl)x*ce;
ce_alg = ce_tan + ((ALPHAxvar_t*(Hnl*r.nl—q.nl))/((etat+ALPHA
xvar_t)*r_nl"3))*(eps_.nlseps.nl’);
end

% Storing Cl1 component of the tangent and algorithmic

constitutive operators

aux_var (3) = ce_tan(1,1);
aux_var (4) = ce_alg(1,1);

%0

K3k 3K 3k R Sk sk sk sk sk sk sk kR kR kR kR kR Sk sk sk sk sk skoskoskosk skosk kR sk ok Skook Sk sk sk sk sk skosk skoskosk skosk kR sk ok kR Skok skok sk skok skok ok sk
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