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1. Abstract

In this report is going to be illustrated the implementation of a code simulating the damage behaviours of a
material, in terms of its main characteristics.

It will be briefly given an overview over the damage models and its features, then will be shown the implemen-
tations done. The code has been written in MatLab. The code has been tested with different situations, in
which the loads will increase or decrease in different way, with different damage models. Then the results will
be commented in order to check the correctness of the implementations.

The situations will be analyzed under the inviscid and viscous hypothesis with different values of the integration
parameter «, viscosity 1 and time of load application.



2. Rate independent models

The Rate independent models are models in which the deformation rate doesn’t depend on the rate at which
loads are applied.

In this part will be considered the inviscid case: the Eprop(6) in the MatLab code will be set equal to zero.

2.1 Damage models

The damage models are the symmetric, only-tension and non-symmetric. The damage surface is different for
any of these models, the code has been implemented in order to be able to plot the right damage surfaces for
each model. Each surface will change after applying a load, depending of the hardening/softening modulus
that will describe if the material is going to harden or soften. This part will be described in section 2.2.

Here are shown the plots of the different models. The elastic region is defined by the plotted damage surface.
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Figure 2.1: Symmetric

In the symmetric model (2.1), the elastic region is the same for compression and traction. This model was
already implemented in the code, so no changing has been done.

In the only tension model (2.2), the compression stresses are set equals to zero. That’s why the plot presents
two asymptotes close to the zeros of 07 and o,. The implementations done are shown between lines 69 and
91 in the Appendix 8.1 in which is shown the code. At the beginning, the characteristic sizes of the domain
are defined, as in the symmetric model. Then the radius is computed considering only the o positives and the
negative ones equals to zero (lines 84-85 in 8.1).

In the non symmetric model (2.3), the damage surface is lead by the compression/traction ratio, defined equal
to three. As a consequence, it can be appreciated in the plot that the compression elastic domain is three times
bigger than the traction one.
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Figure 2.2: Only tension

Figure 2.3: Non symmetric

The implementations of the code are in the Appendix A 8.1 between lines 95 and 124. After initializing all
the variables in the same way as the symmetric and only tension case, it computes the sum of the positives
stresses and the sum of the absolute values in order to compute the coefficient . This coefficient is needed to
compute the 7, and so the radius, in this way:

Taze—i—ﬂ]\/U:C_l:o (2.1)
n

For the application of the load paths, in Appendix C 10.1 is computed the rtrial for each step.

2.2 Hardening/Softening

The hardening or softening process after applying a load can be linear or exponential. It is the process of a
material of changing its yield stress after reaching the previous one and it depends on the material properties,
especially on the hardening/softening modulus. Below there is a simulation done considering the hardening
process, exaggerating the value of the hard/soft modulus H = 1. The softening case will be the opposite.

In Figure 2.4 and Figure 2.5 are presented the new damage surfaces at each iteration. As can be noticed, in
the linear case (Figure 2.4) the damage surface is increasing time by time constantly and the damage surface
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follows the load path. In the exponential case (Figure 2.5, this increment of the o, won’t follow completely the
load path and the damage surface increases less every step.

These behaviours are well describe by the comparison plot in Figure 2.6. This plot shows the changing of
the hardening variable during the load application compared to the internal variable. The red one is the
exponential behaviour, and it coincides with the Figure 2.5 in which the damage surface increases less than
the linear behaviour. In fact the hardening variable of the linear increases constantly, as the damage surface.

The code has been implemented in the function in Appendix 9.1 between lines 78 to 85. It has been defined the
g-nl for the exponential law following the theory and the g-infinite in order to compute the requested variable.
These values are defined as in Figure 2.7.

To assess the correctness of the code, it has been tested for each type of damage model defined above with
three different series of loading path both for the linear and exponential hardening/softening.
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3. Uniaxial loading/unloading

The values chosen are:

E = 2000
Yield stress (o,) = 200
)=0.3 (3.1)
)
)

Poisson ratio (v

Harde/soft ratio (H) = —0.3 (softening)

ratio compression/traction (n) =3
while the increments «, 3,7 are defined as following:
a = 300
B = 1350 (3.2)
~ = 800

Being uniaxial, the increment on oy will be always equal to zero. The increment of o will be the following:

Aot = (a;0)
Ao = (=5;0) (3.3)
Ao} = (v;0)

Symmetric Model: The differences in the symmetric model can be seen very clearly. Figure III in 3.1 shows
the difference in softening of the exponential (red line) from the linear. The correctness can be seen analyzing
the strain-stress plot (Figure IIT 3.1). In the first part the load overcome the yield stress and, because of the
softening situation, the stress goes down. Same situation in the opposite side, but with compression. Here it
happens that for the linear behaviours the material is going to be completely damaged, as it can’t hold any o.
On the other hand, the exponential shows a better behaviour.

Only Tension Model: In the only tension model is in evidence (Figure IT 3.2) the difference in the tension
field in which the linear softening (red line) is lower than the exponential, as expected. In compression it will
always remain in the elastic field. In fact, in the plot in Figure III 3.2 can be noticed that the load path cross
the damage surface only in one point.

Non Symmetric Model: In the non symmetric damage model (Figure 3.3), the exponential (red line) behaves
in the correct way respect to the linear.
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4. Biaxial asymmetric loading/unloading

The values chosen are:

E = 2000
Yield stress (o) = 250
Poisson ratio (v) = 0.3
Harde/soft ratio (H) = 0.3 (hardening)
)

ratio compression/traction (n) =3

while the increments «, 3,7 are defined as following:

a =400
8 = 1000
~ = 800
The increment of o are defined as:
Ac' = (a;0)
Ao = (=B;—P)
Ao3 = (v37)

(4.3)

Symmetric Model: In Figure III of 4.1 is shown the plot in which the red line is the exponential hardening
law. In this case it is an hardening situation as the hard/soft modulus is positive. In fact it can be appreciate
that the o is increasing after reaching the yield stress. During the second load path, there are two o. It can
be seen the effect of the increment of oy that shows the different behaviours of the linear and exponential case,

previously explained in 2.2.

Only Tension and No Symmetric Model: The attention has to be focused on the similarity of the two
cases described in 4.2 and 4.3. The load paths has been chosen small enough in order to show that in the non
symmetric case, considering the compression/traction ratio defined in 2.1, the behaviours should be the same.
In fact, looking at the Figure IT of 4.2 and 4.3 the behaviours are almost the same. In each figure, the red line

is the exponential.
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5. Biaxial symmetric loading/unloading

The values chosen are:

E = 2000
Yield stress (o,) = 250
Poisson ratio (v) = 0.3
)
)

Harde/soft ratio (H) = —0.2 (softening)

ratio compression/traction (n) =3
while the increments «, 3,7 are defined as following:
a =350
B = 1100
~ = 850
The increment of o are defined as:
Aoy = (a; )
Aoy = (—B;—B)

Aoy = (1;7)

(5.2)

(5.3)

Symmetric Model: In figure IT of 5.1 is show the plot in function of the norm of the stress and strain, in
order to take into account both of the ¢. In this case can be better appreciate that the yield stress is the same
after the load cycle. In Figure III of 5.1 it can be seen the changing in time of the hardening variable, that

makes sens considering the softening situation.

Only Tension Model: It can be clearly seen from Figure 5.2 that the material is damaged only during the
first load path. That was expected as is an only tension model and in compression will be always in the
elasticity field. The red line is the exponential law, that is less damaged than the linear. The difference is so
small that for the plot strain-stress will be plotted only the one for exponential. The difference of behaviours

can be better appreciated in Figure II of 5.2.

Non Symmetric Model: As it can be seen, the behaviours are almost the same as the only tension model.

The material doesn’t get really damaged.

14
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6. Rate dependent models

The rate dependent models are the ones in which the deformation rate depends on the rate at which the load
is applied. This models had to be implemented, and the implementations done are shown in the Appendix B
9.1 and D 11.1.

In the function rmap — danol 9.1 the changing has been done in lines 51 to 61. The code computes the needed
values or 7,1 in order to compute the values for the next iteration. Depending if in visco-damage situation or
not, the code will compute this value with the respective law (lines 51-54 if inviscid, lines 55-61 if viscous).
To do so, in the viscous case, the code is taking the values of rtrial from the function Modelos — de — danol
in 10.1 but now it considers two different steps as different inputs: eps — n and eps — nl to define rtrial and
rtrial — n for computing the requested value rtrial — an depending on the integration coefficient factor o and
the time delt.

The eps —n written above is computed (line 143, Appendix D 11.1) as the eps at the step i — 1, so it has been
defined as eps — nl but for the previous step. To compute the o and the other variables, the code calls the
function rmap — danol as said before. To call it, it needs to give as an input also the new eps —n and the time
interval delt defined in line 103 of Appendix D 11.1.

In order to make everything works, the new variables has been given as an input of the function rmap — danol
as can be appreciated in line 148 of Appendix D 11.1 and in line 1 of Appendix B 9.1.

To check the correctness of the implementation, the code has been tested with different values of the viscosity
(6.1), different values of the strain rate (6.2) and different values of the integration factor a (6.3).

6.1 Viscosity 71

In the plot in Figure 6.1 is shown the behaviours of the material while changing the viscous coefficient 7. The
simulation has been run with the linear symmetric damage model with the following values:

E = 2000
v=20.3
lz ; ?.Z(hardemng) 6.1)
t=20
n=3
And it has been considered only one increment of o:
o = (400; 400) (6.2)
Has been chosen three different values of 7:
n = 0.3
2 =3 (6.3)
N3 =9

18



Damage surface (principal stresses axes)
o a

300 -
200
100 -
o Figure |
-100 f

-200

3000 &) ]
-300 -200 -100 0 100 200 300 400

400 —
350 - +-’+/+n:9
A —t
300 - At
Eas
¥
250 —
- n=0.3

o
% 00 -
w
Eos0
n

100 [~

50 —
ok
60 — | 1 1 | 1 1
5 0 5 10 15 20
STRAIN, i
Figure Il

Figure 6.1: Effect of viscosity n

The correctness of the code can be seen as, for  — 0 the behaviours of the plot tends to the inviscid linear one.
While for n — oo, in the inelastic domain, the stress increases proportionally to the viscosity. As a results,
increasing 7 the damage will be smaller.

6.2 Strain rate

The strain rate can be defined as the strain e divided on time. So to test the code it has been chosen different
values of total time in order to simulate different strain rate. The simulation has been run with the linear
symmetric damage model with the following values:

E = 2000
v=203
H = 0.2(hardening)

6.4
o1 (6.4)
n =03
n=3

19



And it has been considered only one increment of o:

o = (400; 400) (6.5)
Has been chosen three different values of time:
t1 =1
to =10 (6.6)
t3 =20
3500 o o

STRESS,

a B2 R 8
(=1 (=1 (=} o
I I I I

-

=

(=
I

=1}
=
I

0 L L L \ L L
] 0.002 0.004 0.006 0.008 0.01 0.012
STRAIN,

Figure 6.2: Effect of the strain rate

In the plot can be clearly seen how the stress increasing change with the strain rate. For t — 0 the strain rate
goes to oo and the material behaved as a fully elastic one. While when time increases, the strain rate decreases
and consequently the o is going to be smaller according to the theory.

6.3 « parameter

The « factor influences the accuracy of the method. From the theory it is stable between [%, 1] and if equal to
1/2 it is second order using crank-nicholson scheme. So it will be expected the best behaviour with ov = 1/2
and the worst one going to zero.

The simulation has been run with the linear symmetric damage model with the following values:

E = 2000
v=0.3
H = —0.2(softenin
(sof 9) 6.7)
t=15
n=203
n=3
And it has been considered only one increment of o:
o = (400; 400) (6.8)

20



Has been chosen five different values of a:

a; =0
ag =1/4
ag =1/2
oy =3/4
as =1
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Figure 6.3: Effect of o parameter

As it can be noticed in Figure 6.3, when o« — 0 the plot has an unusual slope that doesn’t perfect suit the
reality. On the other hand, going to the values of 1/2, it makes sense because is starting from the slope of the
elastic domain. While going to 1, the method can be seen is stable according to the theory, but less accurate

than the blue line because the slope is smoothing a lot.
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7. Conclusions

In conclusion it can be said that the code well simulate the reality. It has been implemented well and in every
situation it gave reasonable results.

While hardening/softening, the damage surface behaved as expected following the linear or exponential laws,
according to the interface window. It gave similar results with similar load path series, even if the model were
different, according to the physical meanings of the model (case in 4 for only-tension and no symmetric).
While evaluating the hardening variable, it was computed in function of time according with the theory and
the hard/soft laws, as well as the damage. The viscous implemented case, showed reasonable results while
changing the parameters, from the material to the integration methods.
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8. Appendix A

8.1 Dibujar-criterio-danol

T [5] function hplot = dibujar criterio danol (ce,nu,q,tipo linea,MDtype,n)

A= axis egual

=g axis sguare

4 %Atti!tti!tti!tti!ttiA1.*1!ttiAtti!tti!tti!tti!tti!ttiAttiAtti!tti!tti!tti!tti!ttiAttil
5 5 PLOT DAMAGE SURFACE CRITERIUM: ISCTRCPIC MODEL

& * *
T t function [ce] = tensor_elastico (Eprop, Ntype) Eh

8 3 | 3
5 * INPUIS il

10 g g
d £ Eprop {4) vector de propiedades de material £
12 £ Eperopill= E-———-— >modulo de Young £
13 5% Eprop({2})= nmu-————— >modulo de Poisson 5%
14 * Eprop{3})= H-———- >modulo de Softenipng/hard. %*
T 3* Eprop(4)=sigma u----- >Lensiiz¥@n igltima

16 £ ntype .

a5 * ntype=1 plane Stress *
18 £ ntype=2 plane strain £
e B ntype=3 3D B
20 :* ce(4,4) Constitutive elastic tensor (PLANE 5. ) 3*
21 % ce(&,6) { 3D) i ik,
22 % ------------------------------------------------------------------------------------ )
23

24

25 %Att!A1.1.1A1.1.1A1.1.1A1.1.1A1.1.1A1.1.1A1.1.1A1.1.1A1.1.1Att(l1.1.1Att!A1.1.1A1.1.1Att!ltt!ltt(lxt!lttqqttq-
28 g Inverse ce g
A= ce inv=inv(ce):

Bii= cll=ce inv(l,1):

A S c22=ce_inv(Z,2);

S cl2=ce_inv(l,2);

2 = c2l=cl2z;

32 - cld=ce inv(l,4):

33— c24=ce inv(2,4):

34 % -------------------------------------------------------------------------------------
35

36

a7

38

39

40

41

42 B L L L L R B P 2 T PP
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51
52
e
54
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56
57

=]
=]

1
&0
6l
62
&3
a4
&5
17
&7

-]
L]

69
70
71
72
73
T4
75
76
71

=]
=]

T8

"
=

gl

% PCLAR CCOORDINATES
if MDtype=—1
tetha=[0:0.01:2*pi];

%% RADIUS
D=size (tetha):
ml=cos (tetha) :
m2=sin (tetha):
Contador=D({1,2)}:

radio = zeros(l,Contador) ;
31 = zeros{l,Contador)
52 = zeros(l,Contador)

for i=l1:Contador

radio(i)= g/sgrt([ml(i) m2(i) O nu*(ml(i)+m2(i))]*ce_inv*[ml(i) m2(i) O

nu* {ml {(i}+m2(i})]"):

sl{i)=radic{i)*ml (i)
82 (i)=radio (i) *m2 (i)

end

hplot =plot(sl,s2,tipo linea);

elseif MDtype—2
eps=0.01;
tetha=j—pi!2+eps:eps:pi—eps]:

D=size (tetha):
ml=cos (tetha):
m2=sin(tetha):
Contador=D{1,2):

radio = zeros(l,Contador) ;
sl
52

zeros {1,Contador)

zeros (1,Contador)
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B2l = for i=1:Contador
8
4 = radio(i}= g/sgrt([max(ml{i},0) max(m2(i),0) 0 max(nu® (ml{i}+m2(i)},0}] *ce inv*[ml({i} m2(i) O
85 nu® (ml (i)+m2Z (i)}]"):
1
Bl = sl ({i)=radio (i) *ml (i)~
88 — 82 (i)=radio (i) *m2 (i) ;
29
80 = = end
O | |= hplot =plot(sl,s82,tipo_linea);
g2
23
44
o5 = elseif MDtype==3
96 — eps=0.01;
97
98 — tethatens=[0:eps:pi/2];
o] (= tethacomp=_[_pi:eps:pil3,.l"2],'
A= tetha=[tethatens tethacomp 2%*pi]:
101
102 — D==ize (tetha); %* Range
LER = ml=cos (tetha); g*
104 — m2=sin (tetha) ; b &
TG = Contador=D{1,2): 3%
106
107
108 = radio = zeros(l,Contador) ;
108 = =1 = zeros (1l,Contador)
TP = =2 = zeros (l,Contador) ;
15115 |
EEZ| = : for i=l:Contador
TER) = | 5_pos=sum{ [max (ml{i},0) max(m2{i},0) 0 max(nu* (ml{i)+m2{i)),0)1):
a5 e s_abs=sum{abs ([ (ml(i}} (m2(i)) O nu*(ml(i)+m2(i)}}1)):
115
116 = tetha nosyvm=s_pos/s_abs;
Wi e radio(i)= a/( (tetha nosym+(l-tetha nosym) /n)*sgrt([ml (i) m2(i) 0 nu* (ml(i)+m2(i))] *ce inv¥[ml{i}) m2(i) O
118 nu® (ml{i)+m2(i})11')):
1518,
120 — sl (i)=radio(i)*ml (i);
2L = s2 (i)=radio (i) *m2 (i)’
122
122
E23— I end
T34 — hplot =plot(sl,s2,tipo_linea):
E2G
5 T end
127 EAA AR AR R R R AR AR A AR AR R AR AR AR A AR AR AR AR AR AR AR R AR R R AR A AR AR AR R AR R A AR AR AR R AR R AR AR AR R R R R A A
128
129
130
131 SRR AR KR KRR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
1 e “return
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Appendix B

rmap-danol
[E function [sigma nl,hvar nl,aux var] = rmap_danol (delta t,eps_n,ceps_nl,hvar n,Eprop,ce,MDtype,n)
[ %8 R R R R R R R R R R R R R R R R R R R R R R R R R
g% .
3 Integration Algorithm for a isotropic damage model
g%
g4
£ [zigma nl,hvar nl,aux var] = rmap danol (eps_nl,hvar n,Eprop,ce)
g
%% INPUTS eps_nl(4) strain (almansi) step n+l
E 1 vector R4 [eXx eyy exy ezz)
3 hvar n (&) internal variables , step n
3 hvar n(l:4) (empty)
L hvar n({s) = r ; hvar n{6)=qg
e Eprop{:) Material paramcters
24
o cef{4,4) Constitutive elastic tensor
g
%% QUTPUTS: gigma nl(4) Cauchy stress , step n+l
3> hvar n (&) Internal wvariables , step n+l
3 aux var (3) Ahuxiliar wvariables for computing const. Cangent CENSOX
—%lAAAA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AAAAAAAAAAAAAAAAAAAAAAAJ
T hvar nl = hvar n:
=) rn = hvar n(5):
= gn = hvar_n(€);
= E = Eprop{l):
7 nu = Eprop(2):
= H = Eprop(3):

== sigma u = Eprop{4):

=5 hard type = Eprop(5) :

g initializing
) r0 = sigma u/sqgrt(E};
== zero_g=1.d-6*rd;

% if(r n<=0.do)

% r n=x0;

% q n=r0;

% end

R L L T

B L E e e L

E
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44
43
46
47

a
=1

49
50
a1
52
53
54
i
56
57

2
=1

59
&0
6l
62
63
4
&5
66
&7
it
&9
70
E
72
3.3
74
i
76
77

a
a

S,
20
g1
a2
g3
34
&5

alpha=Eprop(8) -
eta=Eprop (7):

B B S T D D P S P P P P P P
EAA AR A AR AR R AR A AR AR AR AR R R R R AR AR AR AR R AR A AARA AR AR AR AR ARA AR R R AR AR AR R R R R AR AR AR AR AR
E* Damage surface
if Eprop(é) = 0 %inviscid
[rtrial] = Modelos de danol (MDtype,ce,eps_nl,n);
r nl=rtrial:
% -------------------------------------------------------------------------------------
else
[rtrial] = Modelos de danol (MDtype,ce,eps_nl,n);
[rtrial n]=Modelos de danol (MDtype,ce,eps_n,n);
rerial an= (l-alpha)*rtrial n +alpha*rtrial:
delt=delta_t (1)
r nl= (:eta—delt*tl—alpha}}*I_n+de1t*rtrial_an}/teta+alpha*de1t};
end
% -------------------------------------------------------------------------------------
E* Ver el Estado de Carga
Y S > fload=0 : elastic unload

> fload=1l : damage (compute algorithmic constitutive tensor)

if(rrtrial > r mn)
L3 Loading

fload=1;
delta r=r nl-r n;

if hard type = O
% Linear

g nl= g n+ H*delta r:

else
SCEH
g infinite=zero g:
else
g infinite=2*r0 -zero q:
end

g nl= g infinite - (({g infinite - r0))*exp(abs(H)*(1-r nl/r0)):
end
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if (g nl<zero q)
g nl=zero g:

end

else
b Elastic load/unload
fload=0;

rml=rmn ;
gnl=gmn

end
% Damage wvariable

dano_nl = 1.d0-{g nl/r nl};

% Computing stress

% ----------------

sigma nl =(l.d0-dano nl)*ce*eps nl';
fthold on

tplot (sigma nl{l),sigma nl{(2), 'bx")

%% Updating historic wvariables
% hvar nl{l:4) = eps_nlp;
hvar nl(5)= r nl ;

hvar nl(€)= g _nl ;

%* Buxiliar wvariables

aux var(l) = fload;

aux var(2) = g nl/r mnl;

%*aux var{3) = (g nl-H*r nl)/r nl"3;

T ek ok ok ko ok o ok ko o e ok o o ok o e ok o i o ok o ok o i i ok o ke ok i ok o i ok o ke ke ke
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10. Appendix C

10.1 Modelos-de-danol

1 [ function [rtrial] = Madelos de danol (MDtype,ce,eps_nl,n)

2 1

= E* E*
4 E* 5*
5 £

[ E MDtype= 1 *
7 g MDtype= 2 5*
g E* MDtype= 3 NCN-SYMMETRIC E*
9 £* 5*
10 E 5 F*
=L 3* QUTPUOT: E*
12 E* rtrial ;.
13 B Rl et R Rtk B R S i P iR g pep g
14

15 B L L Tt e R R Ll s Rt R i 2 SR RS st es:
16— if (MDcype==1) %% Symmetric

i rtrial= sgrt(eps_nl*ce*eps nl');

RSk == elseif (MDtype—2)} %* Only ten

AR = sigten=ce*eps_nl';

21

22— for i=1:4

2= if sigten(i)<0

24 — sigten(i)=0;

25 = end

26 — end

2= rtrial=sgrt (eps_nl*sigten);

g

28 — elseif (MDtype=—3) %*Non-symmetric

30 - s_pos=0;

A signosym=ce*eps_nl";

33— for i=1:4

B = if signosym(i)>0

34 — 5_pos=s_pos+signosym(i);

B = end

36 — end

2= s_abs=sum (abs (signosym) ) :

Bii= tetha nosym=s_pos/s_abs;

30 = rtrial={tetha_nosym+{l-tetha_nosym) /n)*sgrt {eps_nl*ce*eps nl'}:

40

41 — end

42 Dt t Rt L L R Lt f R E T s SRl e
43 — = return
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11.

Appendix D

11.1 Damage-main

[ R T B S PR SV

L NN O R O VI 4 I P T o T 6 S 5 T T T 0 B o T o e A O e e e B i
L T e T T = e o X e T T S P A =]

[l function [sigma_w,vartoplot, LABELPLOT, TIMEVECTOR]=damage_main (Eprop,ntype,istep,strain, MDtype,n,TimeTotal)
global hplotS5URF

R R LR R R R R R R R R R R R R R L R R R R R R L R R R R R R R R R R L R R R R LR R R R LR R LR AR R R LR RN RN
% CONTINUUM DAMAGE MODEL

% ______________________
% Given the almansi strain evolution ("strain(totalstep,mstrain)™) and a set of
% paramcters and properties, it returns the evolution of the cauchy stress and other wvariables
% that are listed below.
%
% INPUIS <<<<<<<<<<{4dda{d{ <
% ________________________________________________________________
Eprop{l) = Young's modulus {E)
Eprop{2) = Poisson's coefficient (nu)

Eprop (3} = Hardening(+)/Softening(-} modulus (H)
Eprop(4) = Yield stress (sigma_y)
Eprop(5) = Type of Hardening/Softening law thard type)
0 —-> LINEAR
1 ——> Exponential

Eprop{6} = Rate behavior (viscpr)}

0 —-> Rate-independent (inviscid)

1 ——> Rate—dependent {viscous)
Eprop(7} = Viscosity coefficient ([(eta) {dummy if inwviscid)
Eprop(B8) = ALPHA coefficient {(for time integration), (ALPHA)

O<=ALPHA<=1 , ALPHA = 1.0 --> Implicit
ALPHA = 0.0 --> Explicit
(dummy if inviscid)

ntype = PROBLEM TYPE
1 : plane stress
2 : plane strain
3 .30

istep = steps for cach load state (istepl,istepl,istep3)

strain{i,j) = j-th component of the linearized straimn vector at the i-th
step, i = 1:totalsteptl

MDtype = Damage surface criterion %
1 : SYMMETRIC
2 : ONLY-TENSICHN
3 : NON-SYMMETRIC

of o0 o o M o W o o o o P M o P ol G o O o M o o o o o o o o o o
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46
47
43
45
50
ol
52
53
54
53
E1
o
58
59
&0
€1
62
63
64
65
(17
&7
&3
&9
70
71
72
73
74
73
76
77
78
79
80
a1
82
83
a4
g5
a6
a7
g3

5 n = Ratio compression/tension strength (dummy if MDtype is different from 3)
=

% TimeTotal = Interval length

=

E S ) - S L L L L L L L L L L L L L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L L L L LA L

%

% 1) sigma v{itime} (icomp, jcomp) ——> Component (icomp,jcomp) of the cauchy
= gtress tensor at step "itime™

% REMARK: sigma v is a type of

= wvariable called "cell array”.

£

=

% 2) wvartoplot{itime} ——> Cell array containing variables one| wishes to plot
%

% wvartoplot{itime} (1) = Hardening wvariable (qg)

= vartoplot{itime} (2) = Internal variable (r)%

=

% 3) LABELPLOT{ivar} ——>»> Cell array with the label string for
= variables of "wvarplot™

%

% LABELPLOT{1l} => 'hardening variable (g}’

% LABELPLOT{2} => 'internal variable®

=

-

% 4) TIME VECTOR - >

Lt e R LR A LR R Rt R AL R R R e R L R LR LR R R LR L R R R R L R LA LR R bR LA L R R R LR L R R R R R R R LA LR R LR L R L R L R0 £

% SET LABEL OF "vartoplot"™ wvariables (it may be defined also outside this function)
%

LABELPLOT = {'hardening variable (g)','internal wvariable'}:;

E = Eprop(l) ; nu = Eprop{2) :
Eprop(6)
sigma u = Eprop(4):

viscpr

if ntype = 1
menu ("PLANE STRESS has not been implemented yet', 'STOP'):
error {'CPTICH NOT AVAILABLE')
elzeif ntype = 3
menu (" 3-DIMENSICHNAL PRCELEM has not been implemented yet','STCP'):
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A0 = error ("OPTICN NCOT AVAILABLE')

B8 = else

Ll e mstrain = 4 ;

G5 mhist = & 5

B end

94

95

96 — totalstep = sum(istep)

a7

98

85 % INITIALIZING GLOBAL CELL ARRRYS

100 et e
B sigma v = cell ({totalstep+l,1l) ;

0 i TIMEVECTOR = zeros (totalstep+l,1l)
FO3: = delta t = TimeTotal./istep/length{istep) ;
104

105

10e % Elastic comstitutive temsor

107 3 e

1068 = [ee] = tensor elasticol (Eprop, ntype);
109 % Init=z.

110 % —

111 % Strain vector

112 e

Rl = eps_nl = zeros(mstrain,l):

114 % Historic variables

1E5 % hvar n(l:4) --> empty

116 % hvar n(5) = q --> Hardening variable
117 % hvar n(6) = r --> Internal variable
¥l = hvar n = zeros(mhist,1l) :

139

120 % INITIALIZING (i = 1) !!!1!

121 & RAEAERE AR i#

132 = e | | i

123 — r0 = sigma u/sgrt(E);

e ) hvar n(5}) = r0; 2 r mn

12h:= hvar n(6) = r0: % g_n

126 = eps _nl = strain(i,:) :

2R = sigma nl =ce*eps nl'; % Elastic

1268 = sigma v{i} = [sigma nl(l) sigma nl(3) O;sigma nl(3) sigma nl(2) 0 ; 0 O sigma nl(4)]:
125

130 = nplot = 3 ;
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T30 = nplot = 3 ;

BT = vartoplot = cell{l,totalstep+l} »

il vartoplot{i} (1) = hvar n(6) :; % Hardening variable (q)

T2 = vartoplot{i} (2} = hvar n(5) ; % Internal variable (r)

134 — vartoplot{i} (3} = l—hvaI_nt-G}fhvaI_ntS} ; % Damage wvariable (d)}

135

136 — [Jfor iload = l:length(istep)

137 % Load states

138 - [H for iloc = l:istep(iload)

139 = £ = & ¥ T @

140 — TIMEVECTOR (i) = TIMEVECTOR(i-1)+ delta t(ilead) :

141 % Total straimn at step "i"™

142 e

IaE = eps_n=strain(i-1,:}; %define eps_n at the iteration i-1

144 — eps_nl = strain(i,:) :

145 L S S LRt Lt s s LRt s s LRt LT TR e P T e TR e
148 E* DAMAGE MODEL

147 LRI L LRI LRI LRI R OLTOLLLOLLROLLLLOLLLLLLLLLLLLLLILLLLLLERETETRRLEEY

TER = [sigma nl,hvar n,aux var] = rmap_dancl(delta_t,eps_n,eps_nl,hvar n,Eprop,ce,MDtype,n);
145 % PLOTTING DAMAGE SURFACE

150 = if (aux_var(1l}>0)

351 = hplotSURF (i) = dibujar_ criterio_danol (ce, nu, hvar n(6}, 'r:' MDtype,n }:
a2 = set (hplot5URF (i}, 'Colex', [0 O 1], 'LineWNidth',1}) ;
it end

154

155 R I LI L LR L LI R L L LI L L LR LR LTI LRI LRI LI LI LILIEIRIE R YIRIRIRTY
156 e S R R R R

157 % GLCBAL VARIABLES

153 G REAEEERAAERRRAR

15% % Stress

160 W e

1hl!= m sigma=[sigma nl(l} sigma nl(3) O:;sigma_nl(3) sigma nl(2) O ; O O] sigma nl(4}]:
162 — gigma v{i} = m sigma :

1a3

164 % VARIABLES TO PLOT (scet label on cell array LABELPLOT)

165 %

1hE = vartoplot{i} (1} = hvar_n(6) ; % Hardening variable (g}

AT = vartoplot{i} (2} = hvar n(5}) ; % Internal variable (Ix)

Tal = vartoplot{i} (3} = l-hvar n({6}/hvar n(%} ; % Damage variable (d)

hT = ~ end

120 = ~end

171 tend
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