
Computational solid mechanics

Pol Gomà

Assignment #1:
Continuum damage models

Part I: Rate independent models

In the first part of this assignment the integration algorithms for the continuum isotropic damage
non-symmetric tension-compression damage model and the tension-only damage model have
been implemented. In addition, both linear and exponential hardening/softening cases have
been implemented for both models as well.

After said implementations were done, we assessed the correctness of the results obtained. This
way, for each model we have obtained the path at the stress space and the stress-strain curve

corresponding to appropriate loading paths starting at the point σ
(0)
1 = 0 ; σ

(0)
2 = 0 and described

by three-segment paths in the strain space defined in terms of their corresponding effective stress
increments.

We are going to divide this initial part in 3 cases depending on the values of said effective
stress increments, and for each case we are going to obtain the path at the stress space and
the stress-strain curve for each model and for linear and exponential hardening/softening case.
When dealing with a hardening case the value of the continuum hardening/softening modulus
H is set to 0.6, whereas when dealing with a softening case H has a value of -0.6.

For all the cases that have been studied we have used the following material properties:

E = 20000

ν = 0.3

σy = 200

n = 3 (non− symmetric damagemodel)

Case 1

The first case is characterised by the following effective stress increments:

∆σ̄

(1)
1 = α ; ∆σ̄

(1)
2 = 0 (uniaxial tensile loading)

∆σ̄
(2)
1 = −β ; ∆σ̄

(2)
2 = 0 (uniaxial tensile unloading/compressive loading)

∆σ̄
(3)
1 = γ ; ∆σ̄

(3)
2 = 0 (uniaxial compressive unloading/tensile loading)

This way, we have chosen the following values for these effective stress increments:

∆σ̄

(1)
1 = 400 ; ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = −600 ; ∆σ̄

(2)
2 = 0

∆σ̄
(3)
1 = 300 ; ∆σ̄

(3)
2 = 0

1

0.0.1 The tension-only damage model

In this subsection the results obtained for the tension-only damage model are going to be pre-
sented. These are the results obtained for the hardening case:

Figure 1: Stress path for the tension-only model with exponential hardening

(a) Linear hardening (b) Exponential hardening

Figure 2: Stress-strain curve for the tension-only damage model with linear and exponential
hardening

We can see that in the first stress increment (uniaxial tensile loading) we have surpassed the
yield strength, and consequently damage occurs. This is why we can see an expansion of the
damage surface, since we are in the hardening case, in order to keep the points in the border,
as it is not admissible to be outside the damage surface. This is also why in this same interval
the slopes after the elastic region in the stress-strain curve are positive.

In the second stress increment we performed an uniaxial tensile unloading and a compressive
loading afterwards. Since damage has occurred we are not unloading with the same slope, but
with a less steep one. Since we are in a uniaxial case we know that this less steep slope is
Esec d= (1 − d)E. It is important to remark that unloading does not produce healing. We have
finished the unloading inside the elastic region, and since we are dealing with the only tension
damage model, we remain inside the elastic region during compression, as this model does not
take into account failure by compression.

2

Eventually we have performed an uniaxial compressive unloading and a tensile loading after-
wards. The former follows the less steep slope caused by the damage mentioned before, and
since the tensile loading does not surpass the yield strength, so does it, and we remain therefore
in the elastic region in both cases. We can also see the different behaviour of the linear and
exponential hardening law in the last figure. It may be adequate to comment that the more
steps we use, the more the exponential behaviour can be captured.

0.0.2 The non-symmetric damage model

In this section the results obtained for the non-symmetric damage model are going to be pre-
sented. These are the results obtained for the hardening case:

Figure 3: Stress path for the non-symmetric damage model with exponential hardening

(a) Linear hardening (b) Exponential hardening

Figure 4: Stress-strain curve for the non-symmetric damage model with linear and exponential
hardening

In this first case the results obtained for this model are the same as the ones obtained for the
tension-only model, which was to be expected due to the loading path selected. Even though the
non-symmetric damage model does take into account failure by compression, conversely to the
tension-only model, in both cases we exit the initial damage surface in the first stress increment,
but remain inside the damage surface for the other two.

3

Case 2

The second case is characterised by the following effective stress increments:

∆σ̄

(1)
1 = α ; ∆σ̄

(1)
2 = 0 (uniaxial tensile loading)

∆σ̄
(2)
1 = −β ; ∆σ̄

(2)
2 = −β (biaxial tensile unloading/compressive loading)

∆σ̄
(3)
1 = γ ; ∆σ̄

(3)
2 = γ (biaxial compressive unloading/tensile loading)

Thus, the following values for these effective stress increments have been chosen:

∆σ̄

(1)
1 = 400 ; ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = −600 ; ∆σ̄

(2)
2 = −600

∆σ̄
(3)
1 = 300 ; ∆σ̄

(3)
2 = 300

0.0.3 The tension-only damage model

In this subsection the results obtained for the tension-only damage model are going to be pre-
sented. These are the results obtained for the softening case:

Figure 5: Stress path for the tension-only damage model with exponential softening

(a) Linear softening (b) Exponential softening

Figure 6: Stress-strain curve for the tension-only model with linear and exponential softening

4

We can see that in the first stress increment we surpass the yield strength again, exiting this
way the damage surface, and that is why it contracts, since we are in the softening case now.
Then we perform a biaxial tensile unloading and a compressive loading. Since we have left the
damage surface and therefore damage has occurred, the unloading is done with a less steep slope
again. The tensile unloading and the compressive loading follow the same slope, as we remain
in the elastic region in both cases. Eventually we perform a biaxial compressive unloading and
tensile loading, but again this is done inside the elastic region, so no more damage occurs and
we follow the same slope in the stress-strain curve. Again it can be noted the difference in the
behaviour of the softening when using a linear softening law or an exponential one.

0.0.4 The non-symmetric damage model

In this subsection the results obtained for the non-symmetric damage model are going to be
presented. These are the results obtained for the linear and exponential softening case:

Figure 7: Stress path for the non-symmetric damage model with exponential softening

(a) Linear softening (b) Exponential softening

Figure 8: Stress-strain curve for the non-symmetric damage model with linear and exponential
softening

5

Again the results obtained are the same as in the tension-only case due to the loading path
chosen. They would have differed if in the last stress increment we had surpassed the damage
surface again, for instance, but since we remain in the elastic region we obtain the same results
as with the previous model.

Case 3

The third case is characterised by the following effective stress increments:

∆σ̄

(1)
1 = α ; ∆σ̄

(1)
2 = α (biaxial tensile loading)

∆σ̄
(2)
1 = −β ; ∆σ̄

(2)
2 = −β (biaxial tensile unloading/compressive loading)

∆σ̄
(3)
1 = γ ; ∆σ̄

(3)
2 = γ (biaxial compressive unloading/tensile loading)

This way, the following values for these effective stress increments have been chosen:

∆σ̄

(1)
1 = 400 ; ∆σ̄

(1)
2 = 400

∆σ̄
(2)
1 = −600 ; ∆σ̄

(2)
2 = −600

∆σ̄
(3)
1 = 1200 ; ∆σ̄

(3)
2 = 1200

0.0.5 The tension-only damage model

In this subsection the results obtained for the tension-only damage model are going to be pre-
sented. These are the results obtained for the hardening case:

Figure 9: Stress path for the tension-only model with exponential hardening

6

(a) Linear hardening (b) Exponential hardening

Figure 10: Stress-strain curve for the tension-only damage model with linear and exponential
hardening

In this last case we have chosen a loading path such that we exit the damage surface in the first
stress increment, come back in the second, and exit again in the third one, as to see more clearly
the effects of damage.

We have first carried out a biaxial tensile loading, in which we surpass the yield strength and
therefore an expansion of the damage surface occurs, since we are in the hardening case now.
This is also the reason why the slopes after the initial elastic part of the stress-strain curve are
positive. Afterwards a biaxial tensile unloading and a compressive loading take place, and since
damage has occurred we find again a less step slope in the stress-strain curve. We are dealing
with the only-tension model now, so no matter how much we load in compression we are always
going to descend with the same slope (we remain in the elastic region and therefore no damage
occurs). Eventually we perform a biaxial compressive unloading and a tensile loading, and in
the first one we go up with the last slope we had obtained because we do not exit the damage
surface (with the ’damaged’ slope, as unloading does not produce healing), but with the tensile
loading we eventually exit the damage surface again, and this is why we can see the hardening
behaviour again. This way, had we unloaded again we would have descended with an even less
steep slope, since more damage has occurred.

In this last case the difference in dealing with a linear hardening law or a hardening exponential
one can be seen with much more clarity.

7

0.0.6 The non-symmetric damage model

In this subsection the results obtained for the non-symmetric damage model are going to be
presented. These are the results obtained for the hardening case:

Figure 11: Stress path for the non-symmetric damage model with exponential hardening

(a) Linear hardening (b) Exponential hardening

Figure 12: Stress-strain curve for the non-symmetric damage model with linear and exponential
hardening

We have obtained again the same results as with the only-tension model, which was to be
expected due to the same reason as in the other cases, the loading path chosen. In both cases
we leave the initial damage surface in the first stress increment, come back in the second, and
exit again in the last one.

8

Part II: Rate dependent models

0.1 Part II-1

In the second part of this assignment the integration algorithm for the the continuum isotropic
viscodamage symmetric tension-compression model for the plane strain case has been imple-
mented in the Matlab code provided. In order to validate the implementations that have been
done we have analysed the influence of the viscosity parameter η, the strain rate ε̇ and the α
parameter of the time-integration method in the stress-strain curve for a specific case for the
symmetric damage model with:

E = 20000

ν = 0.3

σy = 200

Linear hardening with H=0.6

And the following loading path:

∆σ̄

(1)
1 = 50 ; ∆σ̄

(1)
2 = 0

∆σ̄
(2)
1 = 50 ; ∆σ̄

(2)
2 = 0

∆σ̄
(3)
1 = 200 ; ∆σ̄

(3)
2 = 0

But first another analysis has been carried out as to check that the code that has been imple-
mented is correct. We know that when dealing with the viscodamage model, if the viscosity
parameter is set to 0 and we use implicit methods for the time integration we recover the invis-
cid model. We know that in the α-family methods we obtain explicit schemes for α < 0.5, and
implicit schemes otherwise. This way, we have analysed the case that has just been introduced
using first the viscid model with η = 0, total time T = 10 s and α = 1, and then with the
inviscid model. These are the results obtained:

(a) Stress-strain curve for the viscous model (b) Stress-strain curve for the inviscid model

Figure 13: Stress-strain curves for the non-symmetric damage model with linear and exponential
hardening

It is easy to see that the results obtained are exactly the same, which is a good indicator in order
to validate our code. Now the results obtained for the analysis of the influence of the viscosity
parameter η are going to be shown. We have chosen α = 1, which corresponds to the Backward
Euler scheme, an implicit method and unconditionally stable therefore. The total time has been
set to 10 s.

9

Thus:

(a) η = 0 (b) η = 0.001

(c) η = 0.1 (d) η = 0.3

Figure 14: Stress-strain curves for the different of values of η

We know beforehand that the viscosity effects make the material able to achieve higher stresses
when in inelastic behaviour. And this fact can be easily seen taking a look at the plots just
presented. We can also see that the hardening behaviour begins later in time as η increases.

10

In order to see the influence of the strain rate ε̇ on the stress-strain curves we have to fix all the
parameters except for the total time T . The results obtained for this analysis can be seen in the
figure below. Again we have used α = 1 and η = 0.3. This way:

(a) T = 1 s (b) T = 10 s

(c) T = 100 s (d) T = 1000 s

Figure 15: Stress-strain curves for the different of values of ε̇

The strain rate ε̇ depends on the total time, i.e the higher the total time is, the lower the strain
rate will be. Analysing the figure above we can see that as we increase the total time (and
decrease ε̇ consequently) we obtain lower stresses for the same values of strain. In addition, we
can see that when dealing with this kind of models the stresses depend on the strain as well as
on the strain rate. Eventually, we can consider that in the last plot of the figure above the total
time is big enough for ε̇ to tend to 0, and we can see that in this case we have recovered the
inviscid case (which can be seen in figure 13), which was to be expected.

11

As far as α is concerned, the results obtained can be seen in the following figures. We have used
η = 0.3 and ε̇ = 10 s:

(a) α = 0 (b) α = 0.25

(c) α = 0.5 (d) α = 0.75

(e) α = 1

Figure 16: Stress-strain curves for the different of values of α

Analysing the results obtained we can see that the election of α plays an important role. We
know that if the value of α is smaller than 0.5 (and we have therefore an explicit method) and the
time step is not small enough the method fails. Eventually we know that the α family methods
are unconditionally stable if α ≥ 0.5 (implicit methods), and conditionally stable otherwise
(explicit methods).

12

0.2 Part II-2

In the last part of this assignment we have studied the effect of the α parameter from the time
integration method on the evolution through time of the C11 component of the tangent and
algorithmic constitutive operators. We have used the same loading path as in case 1 from the
part of this assignment, the symmetric damage model, and:

E = 20000

ν = 0.3

σy = 200

Linear hardening withH = 0.6

η = 0.3

ε̇ = 10 s−1

These are the results obtained for this analysis:

(a) C11 component of the tangent constitutive oper-
ator

(b) C11 component of the algorithmic constitutive
operator

Figure 17: α = 0

(a) C11 component of the tangent constitutive oper-
ator

(b) C11 component of the algorithmic constitutive
operator

Figure 18: α = 0.25

13

(a) C11 component of the tangent constitutive oper-
ator

(b) C11 component of the algorithmic constitutive
operator

Figure 19: α = 0.5

(a) C11 component of the tangent constitutive oper-
ator

(b) C11 component of the algorithmic constitutive
operator

Figure 20: α = 0.75

(a) C11 component of the tangent constitutive oper-
ator

(b) C11 component of the algorithmic constitutive
operator

Figure 21: α = 1

14

Taking a look at these plots the first fact that can be mentioned is that for α = 0 the C11

component of the analytical and the algorithmic tangent constitutive operators is exactly the
same, which was definitely to be expected, since in this particular case the additional term in
the definition of the algorithmic tangent constitutive operator for loading conditions is 0. This
is not the case for any α different than 0, as there would be an additional term to add to the
algorithmic tangent constitutive operator.

Another thing that one can realise is that in the elastic case and for loading conditions the C11

components of both tangent constitutive operators are the same, which was again utterly to be
expected. This way, these C11 components just differ in loading conditions, which also matches
the theory. It can also be seen that as we keep increasing the value of α the C11 components of
the algorithmic and analytical constitutive tangent operators differ more from one another.

15

Appendix

In this appendix the code that has been written in order to implement the features needed to
carry out this assignment is going to be shown. It is important to remark that just the routines
modified as to solve the assignment are included in this appendix.

16

function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n)
%***
%* PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL
 %*
%*
 %*
%* function [ce] = tensor_elastico (Eprop, ntype)
 %*
%*
 %*
%* INPUTS
 %*
%*
 %*
%* Eprop(4) vector de propiedades de material
 %*
%* Eprop(1)= E------>modulo de
 Young %*
%* Eprop(2)= nu----->modulo de
 Poisson %*
%* Eprop(3)= H----->modulo de
 Softening/hard. %*
%* Eprop(4)=sigma_u----->tensi???
n ???ltima %*
%* ntype %*
%* ntype=1 plane stress
 %*
%* ntype=2 plane strain
 %*
%* ntype=3 3D
 %*
%* ce(4,4) Constitutive elastic tensor (PLANE
 S.) %*
%* ce(6,6) (3D)
 %*
%***

%***
%* Inverse ce
 %*
ce_inv=inv(ce);
c11=ce_inv(1,1);
c22=ce_inv(2,2);
c12=ce_inv(1,2);
c21=c12;
c14=ce_inv(1,4);
c24=ce_inv(2,4);
%**

1

%**
% POLAR COORDINATES
if MDtype==1
 tetha=[0:0.01:2*pi];

 %**
 %* RADIUS
 D=size(tetha); %* Range
 m1=cos(tetha); %*
 m2=sin(tetha); %*
 Contador=D(1,2); % Number of points

 radio = zeros(1,Contador) ;
 s1 = zeros(1,Contador) ;
 s2 = zeros(1,Contador) ;

 for i=1:Contador
 radio(i)= q/sqrt([m1(i) m2(i) 0
 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ...
 nu*(m1(i)+m2(i))]');

 s1(i)=radio(i)*m1(i);
 s2(i)=radio(i)*m2(i);

 end
 hplot =plot(s1,s2,tipo_linea);

elseif MDtype==2

 tetha=(-pi/2)*0.9999:0.01:pi*0.9999;

 D=size(tetha); %* Range
 m1=cos(tetha); %*
 m2=sin(tetha); %*
 Contador=D(1,2); % Number of point

 radio = zeros(1,Contador) ;
 s1 = zeros(1,Contador) ;
 s2 = zeros(1,Contador) ;

 for i=1:Contador
 sigma = [m1(i) m2(i) 0 nu*(m1(i)+m2(i))];
 sigmapos = sigma.*(sigma>0);
 radio(i)= q/sqrt(sigmapos*ce_inv*[m1(i) m2(i) 0 ...
 nu*(m1(i)+m2(i))]');

 s1(i)=radio(i)*m1(i);
 s2(i)=radio(i)*m2(i);

2

 end
 hplot =plot(s1,s2,tipo_linea);

elseif MDtype==3

 tetha=0:0.01:2*pi;
 D=size(tetha); %* Range
 m1=cos(tetha); %*
 m2=sin(tetha); %*
 Contador=D(1,2); % Number of points

 radio = zeros(1,Contador) ;
 s1 = zeros(1,Contador) ;
 s2 = zeros(1,Contador) ;

 for i=1:Contador

 sigma = [m1(i) m2(i) 0 nu*(m1(i)+m2(i))];
 sigmapos = sigma.*(sigma>0);
 sigmaabs= abs(sigma);
 theta= sum(sigmapos)/sum(sigmaabs);
 coef= theta + (1-theta)/n;

 radio(i)= (q/sqrt([m1(i) m2(i) 0
 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ...
 nu*(m1(i)+m2(i))]'))/coef;

 s1(i)=radio(i)*m1(i);
 s2(i)=radio(i)*m2(i);

 end
 hplot =plot(s1,s2,tipo_linea);

end
%**

%**
return

Not enough input arguments.

Error in dibujar_criterio_dano1 (line 25)
ce_inv=inv(ce);

Published with MATLAB® R2017a

3

function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n)
%**
%* Defining damage criterion surface
 %*
%*
 %*
%*
%* MDtype= 1 : SYMMETRIC
 %*
%* MDtype= 2 : ONLY TENSION
 %*
%* MDtype= 3 : NON-SYMMETRIC
 %*
%*
 %*
%*
 %*
%* OUTPUT:
 %*
%* rtrial
 %*
%**

%**
if (MDtype==1) %* Symmetric

rtrial= sqrt(eps_n1*ce*eps_n1');

elseif (MDtype==2) %* Only tension

 sigma_bar = eps_n1*ce;
 sigma_barpos = sigma_bar.*(sigma_bar>0);
 rtrial = sqrt(sigma_barpos*eps_n1');

elseif (MDtype==3) %*Non-symmetric

 sigma = eps_n1*ce;
 sigmapos = sigma.*(sigma>0);
 sigmaabs = abs(sigma);
 theta = sum(sigmapos)/sum(sigmaabs);
 coef = theta + (1-theta)/n;
 rtrial = coef*sqrt(eps_n1*ce*eps_n1');

end
%**
return

Not enough input arguments.

Error in Modelos_de_dano1 (line 18)

1

if (MDtype==1) %* Symmetric

Published with MATLAB® R2017a

2

function [sigma_n1,hvar_n1,aux_var,C_algoritmico,C_algebraico] =
 rmap_dano1 (eps_n1,eps_n0,hvar_n,Eprop,ce,MDtype,n,viscpr,delta_t)

%**
%* *
%* Integration Algorithm for a isotropic damage model
%*
%*
 *
%* [sigma_n1,hvar_n1,aux_var] = rmap_dano1
 (eps_n1,hvar_n,Eprop,ce) *
%*
 *
%* INPUTS eps_n1(4) strain (almansi) step n+1
 *
%* vector R4 (exx eyy exy ezz)
 *
%* hvar_n(6) internal variables , step n
 *
%* hvar_n(1:4) (empty)
 *
%* hvar_n(5) = r ; hvar_n(6)=q
 *
%* Eprop(:) Material parameters
 *
%*
%* ce(4,4) Constitutive elastic tensor
 *

%*
 *
%* OUTPUTS: sigma_n1(4) Cauchy stress , step n+1
 *
%* hvar_n(6) Internal variables , step n+1
 *
%* aux_var(3) Auxiliar variables for computing
 const. tangent tensor *
%***

hvar_n1 = hvar_n;
r_n = hvar_n(5);
q_n = hvar_n(6);
E = Eprop(1);
nu = Eprop(2);
H = Eprop(3);
sigma_u = Eprop(4);
hard_type = Eprop(5)
eta = Eprop(7);
ALPHA_COEFF = Eprop(8);
HARDSOFT_MOD = Eprop(3);
%***

1

%***
%* initializing
 %*
 r0 = sigma_u/sqrt(E);
 zero_q=1.d-6*r0;
% if(r_n<=0.d0)
% r_n=r0;
% q_n=r0;
% end
%***

%***
%* Damage surface
 %*
[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n);
[rtrial_n] = Modelos_de_dano1 (MDtype,ce,eps_n0,n); % (for viscous)
[rtrial_nplusalpha] = (1-ALPHA_COEFF)*rtrial_n
+ALPHA_COEFF*rtrial ; %(for viscous)
%***

%***
%* Ver el Estado de Carga
 %*
%* ---------> fload=0 : elastic unload
 %*
%* ---------> fload=1 : damage (compute algorithmic constitutive
 tensor) %*
fload=0;

if viscpr == 1
 if (rtrial_nplusalpha > r_n)
 %* Loading
 fload =1;
 delta_r = rtrial_nplusalpha-r_n;
 r_n1 =((eta-delta_t*(1-ALPHA_COEFF))/(eta-
ALPHA_COEFF*delta_t))*r_n+...
 (delta_t*rtrial_nplusalpha)/(eta+ALPHA_COEFF*delta_t);
 if hard_type == 0
 % Linear
 q_n1 = q_n+ H*delta_r;
 else
 %Exponential
 qinf = r0+(r0-zero_q);
 if HARDSOFT_MOD > 0
 q_n1 = q_n+((H*(qinf-r0)/r0)*exp(H*(1-rtrial_nplusalpha/
r0)))*delta_r;
 else
 q_n1 = q_n+((H*(qinf-r0)/r0)*(1/exp(H*(1-
rtrial_nplusalpha/r0))))*delta_r;
 end
 end
 if(q_n1 < zero_q)

2

 q_n1 = zero_q;
 end
 else
 %* Elastic load/unload
 fload=0;
 r_n1 = r_n ;
 q_n1 = q_n ;
 end
else
 if(rtrial > r_n)
 %* Loading
 fload = 1;
 delta_r = rtrial-r_n;
 r_n1 = rtrial ;
 if hard_type == 0
 % Linear
 q_n1 = q_n+H*delta_r;
 else % Exponential
 qinf = r0+(r0-zero_q);
 if HARDSOFT_MOD > 0
 q_n1 = q_n+((H*(qinf-r0)/r0)*exp(H*(1-rtrial/r0)))*delta_r;
 else
 q_n1 = q_n+((H*(qinf-r0)/r0)*(1/exp(H*(1-rtrial/
r0))))*delta_r;
 end
 end

 if(q_n1 < zero_q)
 q_n1 = zero_q;
 end

else

 %* Elastic load/unload
 fload=0;
 r_n1 = r_n ;
 q_n1 = q_n ;
 end
end
% Damage variable
% ---------------
dano_n1 = 1.d0-(q_n1/r_n1);
% Computing stress
% ****************
sigma_n1 = (1.d0-dano_n1)*ce*eps_n1';
%hold on
%plot(sigma_n1(1),sigma_n1(2),'bx')

%***

if viscpr == 1
 if (rtrial_nplusalpha > r_n)
 sigma_bar = ce*eps_n1';

3

 C_algoritmico = (1-dano_n1)*ce + ...
 (ALPHA_COEFF*delta_t)/((eta+ALPHA_COEFF*delta_t)*r_n1)*((H*r_n1-
q_n1)/r_n1^2)*(sigma_bar'*sigma_bar);
 else
 C_algoritmico = (1-dano_n1)*ce;
 end
 C_algebraico = (1-dano_n1)*ce;

else
 C_algoritmico = (1-dano_n1)*ce;
 C_algebraico = (1-dano_n1)*ce;
end

%***
%* Updating historic variables
 %*
% hvar_n1(1:4) = eps_n1p;
hvar_n1(5) = r_n1 ;
hvar_n1(6) = q_n1 ;
%***

%***
%* Auxiliar variables
 %*
aux_var(1) = fload;
aux_var(2) = q_n1/r_n1;
%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3;
%***

Not enough input arguments.

Error in rmap_dano1 (line 26)
hvar_n1 = hvar_n;

Published with MATLAB® R2017a

4

function
 [sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,istep,strain,MDtype,n,TimeTotal)
global hplotSURF
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CONTINUUM DAMAGE MODEL
% ----------------------
% Given the almansi strain evolution ("strain(totalstep,mstrain)") and
 a set of
% parameters and properties, it returns the evolution of the cauchy
 stress and other variables
% that are listed below.
%
% INPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
% --
% Eprop(1) = Young's modulus (E)
% Eprop(2) = Poisson's coefficient (nu)
% Eprop(3) = Hardening(+)/Softening(-) modulus (H)
% Eprop(4) = Yield stress (sigma_y)
% Eprop(5) = Type of Hardening/Softening law (hard_type)
% 0 --> LINEAR
% 1 --> Exponential
% Eprop(6) = Rate behavior (viscpr)
% 0 --> Rate-independent (inviscid)
% 1 --> Rate-dependent (viscous)
%
% Eprop(7) = Viscosity coefficient (eta) (dummy if inviscid)
% Eprop(8) = ALPHA coefficient (for time integration), (ALPHA)
% 0<=ALPHA<=1 , ALPHA = 1.0 --> Implicit
% ALPHA = 0.0 --> Explicit
% (dummy if inviscid)
%
% ntype = PROBLEM TYPE
% 1 : plane stress
% 2 : plane strain
% 3 : 3D
%
% istep = steps for each load state (istep1,istep2,istep3)
%
% strain(i,j) = j-th component of the linearized strain vector at the
 i-th
% step, i = 1:totalstep+1
%
% MDtype = Damage surface criterion %
% 1 : SYMMETRIC
% 2 : ONLY-TENSION
% 3 : NON-SYMMETRIC
%
%
% n = Ratio compression/tension strength (dummy if MDtype is
 different from 3)
%

1

% TimeTotal = Interval length
%
% OUTPUTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
% --
% 1) sigma_v{itime}(icomp,jcomp) --> Component (icomp,jcomp) of the
 cauchy
% stress tensor at step "itime"
% REMARK: sigma_v is a type of
% variable called "cell array".
%
%
% 2) vartoplot{itime} --> Cell array containing
 variables one wishes to plot
%

% vartoplot{itime}(1) = Hardening variable (q)
% vartoplot{itime}(2) = Internal variable (r)%

%
% 3) LABELPLOT{ivar} --> Cell array with the label
 string for
% variables of "varplot"
%
% LABELPLOT{1} => 'hardening variable (q)'
% LABELPLOT{2} => 'internal variable'
%
%
% 4) TIME VECTOR - >
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SET LABEL OF "vartoplot" variables (it may be defined also outside
 this function)
% ----------------------------------
 LABELPLOT = {'hardening variable (q)','internal variable'};

E = Eprop(1) ; nu = Eprop(2) ;
viscpr = Eprop(6) ;
sigma_u = Eprop(4);

if ntype == 1
 menu('PLANE STRESS has not been implemented yet','STOP');
 error('OPTION NOT AVAILABLE')
elseif ntype == 3
 menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP');
 error('OPTION NOT AVAILABLE')
else
 mstrain = 4 ;
 mhist = 6 ;
end

totalstep = sum(istep) ;

2

% INITIALIZING GLOBAL CELL ARRAYS
% -------------------------------
sigma_v = cell(totalstep+1,1) ;
TIMEVECTOR = zeros(totalstep+1,1) ;
delta_t = TimeTotal./istep/length(istep) ;

% Elastic constitutive tensor
% ----------------------------
[ce] = tensor_elastico1 (Eprop, ntype);
% Initz.
% -----
% Strain vector
% -------------
eps_n1 = zeros(mstrain,1);
% Historic variables
% hvar_n(1:4) --> empty
% hvar_n(5) = q --> Hardening variable
% hvar_n(6) = r --> Internal variable
hvar_n = zeros(mhist,1) ;

% INITIALIZING (i = 1) !!!!
% ***********i*
i = 1 ;
r0 = sigma_u/sqrt(E);
hvar_n(5) = r0; % r_n
hvar_n(6) = r0; % q_n
eps_n1 = strain(i,:) ;
sigma_n1 =ce*eps_n1'; % Elastic
sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0
 0 sigma_n1(4)];

nplot = 3 ;
vartoplot = cell(1,totalstep+1) ;
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d)

for iload = 1:length(istep)
 % Load states
 for iloc = 1:istep(iload)
 i = i + 1 ;
 TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ;
 % Total strain at step "i"
 % ------------------------
 eps_n1 = strain(i,:);
 eps_n0 = strain(i-1,:);

 %**
 %* DAMAGE MODEL
 % %%
%%%%%%%%%%%

3

 [sigma_n1,hvar_n,aux_var,C_algoritmico,C_algebraico] =
 rmap_dano1(eps_n1,eps_n0,hvar_n,Eprop,ce,MDtype,n,viscpr,delta_t);
 % PLOTTING DAMAGE SURFACE
 if(aux_var(1)>0)
 hplotSURF(i) = dibujar_criterio_dano1(ce, nu,
 hvar_n(6), 'r:',MDtype,n);
 set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)
 ;
 end

 %%
%%%%%%%%%%%

 %**
 % GLOBAL VARIABLES
 % ***************
 % Stress
 % ------
 m_sigma=[sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2)
 0 ; 0 0 sigma_n1(4)];
 sigma_v{i} = m_sigma ;

 % VARIABLES TO PLOT (set label on cell array LABELPLOT)
 % ----------------
 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable
 (d)
 vartoplot{i}(4) = C_algoritmico(1,1);
 vartoplot{i}(5) = C_algebraico(1,1);
 end
end

Not enough input arguments.

Error in damage_main (line 77)
E = Eprop(1) ; nu = Eprop(2) ;

Published with MATLAB® R2017a

4

