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Background 
 

There are many engineering problems in which the emergence of micro-cracks and its propagation 

cause large differences between the actual and the “elastic” behaviour. For that reason, the classical 

linear elastic models are not appropriate to represent the physics of this kind of problems, and some 

deeper analysis is required. Along this report, some continuum damage models are computed in order 

to predict this damage propagation, and in this way, a complex and computationally-expensive 

microscopic description of the problem is avoided. The analysis is focused on the damage evolution, 

therefore, the strain history of the problem is prescribed as an input of the model. 

 

Aim 
 

The objective of the survey is to compute an inviscid damage model, as well as a viscous one capable 

of predict the propagation of the damage under several loading paths. In order to assess the 

correctness of the models, the evolution of the damage surface on the stress-space as well as the 

stress-strain curves are analysed to compare the results with the theory.   

 

Rate independent models 
 

Regarding this type of non-viscous models, three of them are implemented in the code.  

• Symmetric (tension/compression) model 

• Tensile-damage model 

• Non-symmetric (tension/compression) model 

The symmetric model has already been previously implemented, therefore, the following assessment 

is focused on the correctness of the tensile model and the non-symmetric one, as well as on the 

modifications of the routines to compute them.  

 

Tensile-damage model 
 

This model characterizes materials which only fail under tension, and does not take into account 

compression failure. To represent this behaviour, the elastic domain is open in the compression space 

and the elastic limit cannot be reached when all the principal stress are negative. In order to compute 

this special case of elastic domain the following expression is implemented on the code. 

 

τ𝜀 = √𝜎+: 𝜀 

Where 𝜎  = ℂ: 𝜀  and 𝜎+ makes zero the negative eigenvalues of 𝜎  . 
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Non-symmetric tension-compression model 
 

This model is intended to capture the behaviour of materials whose tensile strength differs 

significantly from its compression strength. For that reason the elastic domain is not symmetric and 

is enlarged in the compression space. Some new parameters are added to “modelos_de_dano1” and 

“dibujar_criterio_dano” routines. The implemented expression is described below. 

 

 

𝜏𝜀 = [𝜃 +
1 − 𝜃

𝑛
] √𝜀: ℂ: 𝜀 (1) 
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1
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=
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Being theta and n parameters which control the shape of the compression part.  

 

Exponential hardening/softening law 
 

An exponential hardening/softening law is implemented by means of an appropriate selection of 

different parameters which are presented below  

 

 

𝐻(𝑟) =
𝑑𝑞(𝑟)

𝑑𝑟
= 𝐴

(𝑞∞ − 𝑟0)

𝑟0
𝑒

𝐴(1−
𝑟
𝑟0

)
     𝑏𝑒𝑖𝑛𝑔 𝐴 > 0 (3) 

 

If the parameter “delta_t” is small enough the previous expression can be linearized and 𝑞𝑛+1 can 

be computed as follows 

 

𝑞𝑛+1 = 𝑞𝑛 + 𝐴
𝑞∞ − 𝑟0

𝑟0
𝑒

𝐴(1−
𝑟𝑛+1

𝑟0
)
(𝑟𝑛+1 − 𝑟𝑛) (4) 

 

where A is a prescribed hardening/softening constant. 

After applying the appropriate modifications to the code, some results of the q-r curve are plotted to 

ensure the proper implementation of the exponential law. 
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Figure 1: Exponential Hardening/Softening law 

 

The value of 𝑞∞ has been parametrized as follows 

 

𝑞∞ = 𝑟0 + (𝑟0 − 𝑧𝑒𝑟𝑜_𝑞) (5) 

 

being zero_q a bound for 𝑞(𝑟) to avoid negative values. 

 

Verification 
 

With the aim of verifying the code some loading paths are applied to check the response of the non-

symmetric and tension-only damage models. The loading paths are composed of three-segment paths 

in the strain space, which are defined in terms of their corresponding effective stresses.  

The different loading paths are shown in the following table 

 

Table 1: Loading paths applied to verify the models 

Model Path Seg.1 (∆𝝈̅𝟏, ∆𝝈̅𝟐) Seg. 2 (∆𝝈̅𝟏, ∆𝝈̅𝟐) Seg. 3 (∆𝝈̅𝟏, ∆𝝈̅𝟐) 

 #1 (400,0)  (−900,0) (500,0) 
Tension-only #2 (400,0)  (−700, −700) (800,800) 
 #3 (400,400)  (−600, −600) (800,800) 
 #1 (500,0)  (−2500,0) (2000,0) 
Non-symm.  #2 (400,0)  (−1200, −1200) (1000,1000) 
 #3 (400,400)  (−1900, −1900) (2500,2500) 

  

The total simulation time is set to 10, and the number of time steps is 10 per segment. 

 

Tensile-model 

 

Path 1     

 

The evolution of the damage surface as well as the loading path are shown below 
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Figure 2: Damage surface of the path 1 (only-tension model) 

As can be noted from the above plot, this loading path only works along the axis of the principal 

stress σ1. At time step n=7 the load exceeds the elastic domain and the damage surface responds 

accordingly growing. Then, it keep expanding up to the end of the first path segment (n=11). This 

behaviour corresponds to the expected one, as the theory suggests. 

The stress-strain curve of the loading path is presented below 

 

 

Figure 3: Stress-strain curve of the path 1 (only-tension model) 

 

It is worth noting that the slope of the curve along the second and the third segment (blue and green 

respectively) remains constant and differs from the one of the first segment (red). As the first load 

goes beyond the elastic limit, the damage (d) starts to grow. Then, when the second path starts to 

discharge on the opposite direction, the damage remains constant and the slope is reduced by a factor 

(1-d). Finally, as the theory sustains, the compressive load don’t reach the elastic limit and the third 

segment (tension) keep the same slope. 

 

) 
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Path 2 

 

At this point, the model is tested by applying a loading path that combines stresses and deformation 

of both principal stresses axis. 

 

Figure 4: Damage surface of the path 2 (only-tension model) 

   

Here, the plot does not clearly show the loading path, but it is focused on the damage surface 

evolution (black solid line). During the first segment the damage surface grows. After that, there is a 

discharge during the second segment, and finally, the third segment ends out of the previous damage 

surface forcing it to expand. 

 

 

Figure 5: Stress-strain curve of the path 2 (only-tension model) 

In this plot the first loading segment exceeds the elastic domain and damage starts to propagate by 

means of a linear hardening law. After that, the second segment returns to the (0,0) point and after 

the time step n=17 the compression load begins to grow linearly as it was expected. 

) 
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Path 3 

 

The last loading path to asses the implementation of the model is a symmetric path respect to both 

principal stresses axis.  

 

 

Figure 6: Damage surface of the path 3 (only-tension model) 

The evolution of the damage surface is symmetric respect to the principal axis. Firstly, the damage 

surface grows up to n=11 and after that, as the previous loading paths have shown, the compression 

segment (blue) is entirely elastic. Finally, the third segment increases the size of the damage model in 

the same way. 

 

 

Figure 7: Stress-strain curve of the path 3 (only-tension model) 

The first segment shows a linear hardening law (from n=6 to n=11). After that, the second segment 

goes to the neutral point elastically and grows in their last three points. Finally, the third segment 

) 
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increases linearly and after n=28 the damage propagates. This behaviour is the same that the theory 

sustains. 

 

 

Non-symmetric model 
 

Path 1 

 

 

Figure 8: Damage surface of the path 1 (Non-symmetric model) 

It is worth noting that the damage surface behaves growing its size during the first and the second 

segment (red & blue), as it was expected. The particular shape of this non-symmetric damage surface 

involves an elastic domain more extended along the compression part. This non-symmetry can be 

controlled trough the factor n.  

 

Figure 9: Stress-strain curve of the path 1 (non-symmetric model) 

As can be seen, the first segment (red) arrives quickly to the non-elastic domain (n=5), meanwhile 

the second segment (blue) needs about four times more compression loading to reach the boundary 

of the elastic domain. This behaviour is due to the non-symmetry nature of the model, and is 

consistent with the theory presented. 

) 
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Path 2 

 

 

Figure 10: Damage surface of the path 2 (non-symmetric model) 

This plot shows how a high compression loading remains on the elastic domain (blue), and 

furthermore, how two lower tension loadings (red & green) exceed the elastic domain due to the non-

symmetry. Therefore, regarding the consistency with the theory, this loading path does not add 

anything in this sense 

 

 

Figure 11: Stress-strain curve of the path 2 (non-symmetric model) 

More conclusions can be extracted of the stress-strain curve. As can be seen, the damage starts to 

grow from n=6, and the slope is affected by this issue during the following segments. As it was 

expected due to the non-symmetry, the second segment (blue), which is a compression loading, does 

not produce more damage and the discharge (green) is carried out keeping the same slope. 
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Path 3 

 

 

Figure 12: Damage surface of the path 3 (non-symmetric model) 

This loading path makes the damage surface grow symmetrically as shown with a similar path in the 

tensile-damage model. All the three segments exceed the elastic domain, and in consequence, the 

damage surface grows accordingly. 

 

Figure 13: Stress-strain curve of the path 2 (non-symmetric model) 

  

The stress-strain curve shows clearly the three periods when the elastic domain is exceeded and the 

damage parameter grows. The slopes are affected by the factor (1-d), and it is worth noting that the 

after every damage period, the following slope decreases. To sum up, the results of the assessment 

of the non-symmetric damage model correspond to the ones that the theory states. 
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Rate dependent model 
 

After the implementation of the rate independent model, a further step is taken by computing a visco-

damage model. In order to check the correctness of this implementation, some parameters are fixed 

to evaluate the evolution of different variables such as the viscosity parameter 𝜂, the strain rate 𝜀̇, and 

the 𝛼 value. 

Visco-damage “symmetric tension-compression model 
 

First of all, it is worth checking how the damage surface evolves in order to ensure a proper 

behaviour. As the theory sustains, the stress/strain state can lay outside the elastic domain as can be 

seen in the following figure. 

 

Figure 14: Damage surface & stress-strain curve of the viscous model 

Another prove of this behaviour is the discharging segment (n=12 to n=20) of the stress-strain curve. 

Here it can be proven that this segment is not linear up to n=16 when the stress-strain state returns 

to the elastic domain.  

In order to verify the rate dependency, the time evolution of the stress is compared with the one of 

the rate independent model 

 

Figure 15: Stress evolution of rate dependent/independent models 

The figure clearly shows that in the rate dependent model the stress tensor can change even if the 

strain remains constant. 
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Verification 
 

Effect of different viscosity parameters 𝜼 
 

Fixed parameters: 

𝜈 = 0.3 𝐻 = −0.02 𝛼 = 1 Loading path: (150,0);(300,0);(600,0) 

 

 

Figure 16: Stress-strain curve of the viscosity study 

It is worth noting that the higher the viscosity value the smoother is the softening segment. In other 

words, the increasing of this parameter delays the softening and therefore, higher values of stress 

appear for the same values of strain. Furthermore, the results for null viscosity match with the ones 

obtained with the rate independent model, proving that when this parameter tends to zero the 

previous model is recovered. 

 

Effect of different strain rates 

 

Fixed parameters: 

 

𝜈 = 0.3 

 

𝐻 = −0.02 

 

𝛼 = 1 

 

𝜂 = 5 

Loading path1: (330,0);(660,0);(1000,0) 
Loading path2: (0,0);(500,0);(1000,0) 
Loading path3: (0,0);(0,0);(1000,0) 
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Figure 17: Stress-strain curve of the strain rate study 

As can be seen, the increasing of the strain rate retards the softening of the material and provokes 

the appearance of higher stress values for the same strain. If the analysis is divided into the elastic 

and the damage region, the first part does not depend on the strain rate since there is no evolution 

of the internal variables. However, along the damage part, the influence of the strain rate generates 

larges differences on the corresponding stresses. If the figure is compared with the previous one, it 

could be noted a similitude between the viscosity and the strain rate influence on the stresses. 

 

Effect of different alpha values 
 

The following analysis tries to develop the influence of the numerical scheme on the results of the 

model. The purpose is to show what the theory states about the stability of the different schemes of 

the alpha method. 

 

𝜈 = 0.3 

 

𝐻 = 0 

 

𝛼 = {0, 0.25, 0.5, 0.75, 1} 

 

𝜂 = 0.1 

Loading path: 
(200,0);(400,0);(600,0) 
 

 

 

Figure 18: Stress-strain curve of the alpha method analysis 

𝜀1̇ 

𝜀2̇ 

𝜀3̇ 

𝜀1̇ < 𝜀2̇ < 𝜀3̇ 
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The results with the explicit method (𝛼 = 0) and 𝛼 = 0.25 show instabilities. By making further 

experiments with several time steps it can be state that these methods can reach stable results with 

an appropriate refinement of the time discretization. From 𝛼 = 0.5 to 1 the presented results are 

consistent and stable, which coincides with the theory. It is worth noting that the higher the viscosity 

value the more stable the model turns to be, which results logical when the internal variable 

expression is analysed. 

 

Effect of alpha on the evolution of the tangent and algorithmic constitutive operators 

 

The following pictures show the time evolution of the C11 component of the tangent and algorithmic 

constitutive operators for different alpha values 

 

 

Figure 19: Time evolution of component (1,1) of the algorithmic operator 

 

Figure 20: Time evolution of component (1,1) of the tangent operator 
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As can be seen, when 𝛼 = 0 the tangent and the algorithmic operators match. However, when alpha 

increases, the operators give values lower than the ones of the explicit case. 

In order to go deeper in the analysis the time step is refined to check the response of the algorithmic 

operator. 

 

 

Figure 21: Time evolution of algorithmic operator for different time steps 

The results clearly show that a refinement of the time discretization makes the algorithmic operator 

match with the analytic tangent one. In this way the consistency is checked. 

Also, it is worth noting that if the viscosity parameter tends to zero the algorithmic operator ends up 

matching the one of the non-viscous model.  

 

The parameters used to calculate the previous results are 

 

𝜈 = 0.3 

 

𝐻 = −0.02 

 

𝛼 = {0, 0.25, 0.5, 0.75, 1} 𝜂 = 10 

Loading path: 
(200,0);(400,0);(600,0) 
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Annex 
 

Only the modified parts of the code are reported along this part. 

Damage_main.m 
 
% INITIALIZING  (i = 1) !!!! 
% ***********i* 
i = 1 ; 
r0 = sigma_u/sqrt(E); 
hvar_n(5) = r0; % r_n  
hvar_n(6) = r0; % q_n  
eps_n1 = strain(i,:) ; 
sigma_n1 =ce*eps_n1'; % Elastic  
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 

0  sigma_n1(4)];  

  
nplot = 3 ;  
vartoplot = cell(1,totalstep+1) ;  
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 
CTANG=zeros ( totalstep +1 ,1);  %  Tangent operator 
CALG=zeros ( totalstep +1 ,1);  %  Algorithmic operator 

  
for  iload = 1:length(istep) 
    % Load states 
    for iloc = 1:istep(iload) 

         
        eps_n0=strain(i,:); 
        i = i + 1 ; 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 
        % Total strain at step "i" 
        % ------------------------ 
        eps_n1 = strain(i,:) ; 
        

%*********************************************************************

***************** 
        %*      DAMAGE MODEL 
        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
        [sigma_n1,hvar_n,aux_var,Calg,Ctang] = 

rmap_dano1(eps_n0,eps_n1,hvar_n,Eprop,ce,MDtype,n,delta_t); 
        % PLOTTING DAMAGE SURFACE 
        if(aux_var(1)>0) 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 

'-',MDtype,n ); 
            set(hplotSURF(i),'Color',[0 0.2 1],'LineWidth',0.1)                         

; 
        end 

         
        CALG(i)=Calg(1,1); 
        CTANG(i)=Ctang(1,1); 

  
        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
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%*********************************************************************

* 
        % GLOBAL VARIABLES 
        % *************** 
        % Stress 
        % ------ 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 

; 0 0  sigma_n1(4)]; 
        sigma_v{i} =  m_sigma ; 

  
        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 
        % ---------------- 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)         
        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable 

(d) 
        vartoplot{i}(4)=CTANG(i); % C11 Tangent 
        vartoplot{i}(5)=CALG(i); % C11 Algorithmic 
        vartoplot{i}(6)=hvar_n(6)/hvar_n(5); %  q/r 
    end 
end 

 

rmap_dano1.m 
 

function [sigma_n1,hvar_n1,aux_var,Calg,Ctang] = rmap_dano1 

(eps_n0,eps_n1,hvar_n,Eprop,ce,MDtype,n,delta_t) 

  
% Viscous parameters 

  

viscpr  = Eprop(6); 
eta     = Eprop(7); 
ALPHA_COEFF = Eprop(8); 

  
%*********************************************************************

**************** 
%*       initializing                                                

%* 
 r0 = sigma_u/sqrt(E); 
 zero_q=1.d-6*r0; 
% if(r_n<=0.d0) 
%     r_n=r0; 
%     q_n=r0; 
% end 
%*********************************************************************

**************** 

  
%*       Damage surface                                                              

%* 
[rtrial_n] = Modelos_de_dano1 (MDtype,ce,eps_n0,n); % Viscous model 

parameter 
[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n); 
[rtrial_nalpha]=(1-ALPHA_COEFF)*rtrial_n+ALPHA_COEFF*rtrial ; % 

Viscous model parameter 

  
%*********************************************************************

**************** 
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%*   Ver el Estado de Carga                                                           

%* 
%*   --------->    fload=0 : elastic unload                                           

%* 
%*   --------->    fload=1 : damage (compute algorithmic constitutive 

tensor)         %* 
fload=0; 

  
if viscpr == 1 
    if(rtrial> r_n) 
        % Loading 
        fload=1;  
        r_n1=((eta-delta_t*(1- 

ALPHA_COEFF))/(eta+ALPHA_COEFF*delta_t))*r_n+... 
        (delta_t*rtrial_nalpha)/(eta+ALPHA_COEFF*delta_t); % r(n+1) 
        delta_r=r_n1-r_n; 

     
    if hard_type==0 
        %Linear 
        H_n1=H; 
        q_n1= q_n+ H*delta_r; 
    else 
        %Exponential 
        q_inf=r0+(r0-zero_q); 
        if H>0 
            H_n1 = H*((q_inf-r0)/r0)*exp(H*(1-rn1/r0)); 
            q_n1=q_n+((H*(q_inf-r0)/r0)*exp(H*(1- rn1/r0)))*delta_r; 
        else 
            H_n1 = H*((q_inf-r0)/r0)*(1/exp(H*(1-rn1/r0))); 
            q_n1=q_n+((H*(q_inf-r0)/r0)*(1/exp(H*(1- 

rn1/r0))))*delta_r; 
        end 
    end 

     
    if  q_n1<zero_q 
        q_n1=zero_q; 
    end 

     

  
    else 
        %Elastic load/Unload 

         
        fload=0; 
        r_n1=r_n; 
        q_n1=q_n; 
    end 

     

else 
    % No viscous model 

     
    if(rtrial > r_n) 
        %*   Loading 

  
    fload=1; 
    delta_r=rtrial-r_n; 
    r_n1= rtrial  ; 
    if hard_type == 0 
        %  Linear 
        H_n1=H; 
        q_n1= q_n+ H*delta_r; 
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    else 
        % Exponential 
        q_inf = r0+(r0-zero_q); 

  
         if H>0 
            H_n1 = H*((q_inf-r0)/r0)*exp(H*(1-rtrial/r0)); 
            q_n1= q_n+ ((H*(q_inf-r0)/r0)*exp(H*(1-

rtrial/r0)))*delta_r; 
         elseif H<0 
            H_n1 = H*((q_inf-r0)/r0)*(1/exp(H*(1-rtrial/r0))); 
            q_n1 = q_n+ ((H*(q_inf-r0)/r0)*(1/exp(H*(1-

rtrial/r0))))*delta_r; 
         end 
    end        

  
    if(q_n1<zero_q) 
        q_n1=zero_q; 
    end 

  

  
else 

  
    %*     Elastic load/unload 
    fload=0; 
    r_n1= r_n  ; 
    q_n1= q_n  ; 

  

  
    end 

  
end 

  

  
% Damage variable 
% --------------- 
dano_n1   = 1.d0-(q_n1/r_n1); 
%  Computing stress 
%  **************** 
sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 
sigmab_n1=ce*eps_n1'; 
%hold on  
%plot(sigma_n1(1),sigma_n1(2),'bx') 

  
%*********************************************************************

**************** 

  

% Analytic/Algorithmic tangent operator 

  
if(rtrial>r_n) 
    Ctang=(1-dano_n1)*ce; 
    

Calg=Ctang+((ALPHA_COEFF*delta_t)/(eta+ALPHA_COEFF*delta_t))*(1/rtrial

)*... 
    ((H_n1*r_n1-q_n1)/(r_n1^2))*(sigmab_n1*sigmab_n1'); 
else 
    Calg=(1-dano_n1)*ce; 
    Ctang=Calg ;  
end 
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%*********************************************************************

**************** 
%* Updating historic variables                                            

%* 
%  hvar_n1(1:4)  = eps_n1p; 
hvar_n1(5)= r_n1 ; 
hvar_n1(6)= q_n1 ; 
%*********************************************************************

**************** 

  

  

  

  
%*********************************************************************

**************** 
%* Auxiliar variables                                                               

%* 
aux_var(1) = fload; 
aux_var(2) = q_n1/r_n1; 
%aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 
%*********************************************************************

**************** 

 

 

Dibujar_criterio_dano1 
 

function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 

   
%*********************************************************************

***************** 
% POLAR COORDINATES 
if MDtype==1 
    tetha=[0:0.01:2*pi]; 
    

%*********************************************************************

***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 

     
    for i=1:Contador 
        radio(i)= q/sqrt([m1(i) m2(i) 0 

nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 
            nu*(m1(i)+m2(i))]'); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   

         
    end 
    hplot =plot(s1,s2,tipo_linea); 

     



 21 

     
elseif MDtype==2 
    % Comment/delete lines below once you have implemented this case 
    % ******************************************************* 
%     menu({'Damage surface "ONLY-TENSION" has not been implemented 

yet. '; ... 
%         'Modify files "Modelos_de_dano1" and 

"dibujar_criterio_dano1"' ; ... 
%         'to include this option'},  ... 
%         'STOP'); 
%     error('OPTION NOT AVAILABLE') 

     
    tetha=[0:0.01:2*pi]; 
    

%*********************************************************************

***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 

     
    for i=1:Contador 
        sigma= [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 
        sigma_pos=sigma.*(sigma>0); 
        radio(i)=q/sqrt(sigma_pos*ce_inv*sigma'); 

         

        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i); 
    end 

     
    hplot=plot(s1,s2,tipo_linea); 

   

   

     
elseif MDtype==3 
    % Comment/delete lines below once you have implemented this case 
    % ******************************************************* 
%     menu({'Damage surface "NON-SYMMETRIC" has not been implemented 

yet. '; ... 
%         'Modify files "Modelos_de_dano1" and 

"dibujar_criterio_dano1"' ; ... 
%         'to include this option'},  ... 
%         'STOP'); 
%     error('OPTION NOT AVAILABLE') 

  
tetha=[0:0.01:2*pi]; 
    

%*********************************************************************

***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
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    Contador=D(1,2);                     %* 

     

     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 

     
    for i=1:Contador 
        sigma= [m1(i) m2(i) 0 nu*(m1(i)+m2(i))]; 
        sigma_pos=sigma.*(sigma>0); 
        Th=sum(sigma_pos)/sum(abs(sigma)); 

         
        radio(i)= (q/sqrt(sigma*ce_inv*sigma'))/(Th+(1-Th)/n); 

         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i); 
    end 

     
    hplot=plot(s1,s2,tipo_linea); 

   

     
end 
return 

  
 

modelos_de_dano1 
 

function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n) 
%*********************************************************************

***************** 
%*          Defining damage criterion surface                                        

%* 
%*                                                                                   

%* 
%* 
%*                          MDtype=  1      : SYMMETRIC                              

%* 
%*                          MDtype=  2      : ONLY TENSION                           

%* 
%*                          MDtype=  3      : NON-SYMMETRIC                          

%* 
%*                                                                                   

%* 
%*                                                                                   

%* 
%* OUTPUT:                                                                           

%* 
%*                          rtrial                                                   

%*                
%*********************************************************************

***************** 

  

  

  
%*********************************************************************

***************** 
if (MDtype==1)      %* Symmetric 
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rtrial= sqrt(eps_n1*ce*eps_n1');                   
elseif (MDtype==2)  %* Only tension  

  
sigma=eps_n1*ce; 
sigma_pos=sigma.*(sigma>0); 

  
rtrial=sqrt(sigma_pos*eps_n1'); 

     
elseif (MDtype==3)  %*Non-symmetric 

     

    sigma=eps_n1*ce; 
    sigma_pos=sigma.*(sigma>0); 
    sigma_abs=abs(sigma); 
    theta=sum(sigma_pos)/sum(sigma_abs); 

     
    rtrial=(theta+(1-theta)/n)*sqrt(eps_n1*ce*eps_n1'); 

  
end 
%*********************************************************************

***************** 
return 
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