Computational Solid Mechanics: Assignment 1

Juan Pedro Roldan Blasco
March 2018

1 Inviscid

1.1 Input data

The material parameters used in the three sets of tests can be found in table 1.
The material follows a softening law with no Poisson effect considered.

1.2 Case 1: Full uniaxial test

For the loading-unloading-loading case, stress increments are set in table 2. We
can see that the first increment is set to be outside the damage surface (as Aoy
> Yield stress), so as to start having damage at the end of the first load. The
model is behaving as expected. Figures 1 to 4 show the evolution of the damage
surfaces and the strain - stress relation. We can see that the full uniaxial
test does not show any difference between damage models: as the region in
stress space in which the stress path is drawn is the same for both models (the
first quadrant), the evolution of said damage surface will be, consequently, the
same. Differences can be seen when we consider linear or exponential softening.
For this set of hardening parameters, softening develops more rapidly in the
exponential case. It can be observed that the exponentially softened damage
surface is smaller than in the linear case.

Yield stress 150
Linear hardening H -1
Exp hardening A 1
Young modulus 200
Poisson ratio v 0
Ratio comp/trac n 1.5
Hardening limit g 10~ 57

Table 1: Material parameters for inviscid (in consistent units)



step | Aoy | Aos
1 160 0
2 -50 0
3 60 0

Table 2: Stress increments in full uniaxial test
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Figure 1: Damage surface (above) and strain-stress plot for the only-tension
damage model with linear softening, case 1
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Figure 2: Damage surface (above) and strain-stress plot for the non-symmetric
damage model with linear softening, case 1
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Figure 3: Damage surface (above) and strain-stress plot for the only-tension
damage model with exponential softening, case 1
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Figure 4: Damage surface (above) and strain-stress plot for the non-symmetric
damage model with exponential softening, case 1

1.3 Case 2: Uniaxial - biaxial test

The initial stress increments can be found in table 3. The path chosen to finish
every step outside of the damage surface in the non-symmetric case. The only
tension model does not account for any limit in the compression zone, and that
difference can be seen in the plots. Comparing figures 5 and 6, for instance,
shows that while the biaxial loading and unloading stress paths are along the
same line up while inside the elastic region (in red), for the non-symmetric
model this is not case. For the latter, there exists a limit for the compression,
and it is indeed surpassed (see the path in the stress space). This leads to the
degradation of the material, and then, the change in the damage surface. In
figure 6 this change is marked in red. Is the beggining of the third path (green
line). If we consider exponential softening, the stress-strain trajectories show
the corresponding exponential curve during inelastic loading, and (in this case,
and given the hardening parameter value) the damage surface is reached earlier.

step | Aoy | Aos
1 155 0
2 -230 | -230
3 300 | 300

Table 3: Stress increments in uniaxial - biaxial test
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Figure 5: Damage surface (above) and strain-stress plot for the only-tension
damage model with linear softening, case 2
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Figure 6: Damage surface (above) and strain-stress plot for the non-symmetric
damage model with linear softening, case 2
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Figure 7: Damage surface (above) and strain-stress plot for the only-tension
damage model with exponential softening, case 2
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Figure 8: Damage surface (above) and strain-stress plot for the non-symmetric
damage model with exponential softening, case 2

1.4 Case 3: Full biaxial test

Stress increments are set in table 4. As with the previous cases, the first stress
increment is greater than the yield stress (|120,120] > 150), so as to have
damage since the first step.



step | Aoy | Aos
1 120 | 120
2 -40 | -40
3 50 50

Table 4: Stress increments in full biaxial test

The models behave in a completely different way. Both of them experience
damage in the first step and during the second step reach the zero stress point
only to rise again due to the fact that the situation has changed from tensile
unloading to compressive loading. The non-symmetric model (figures 10 and
12) is damaged two times, one during the tensile loading and another one during
the compressive loading. In this case, it can be assesed in all the —strain—-

—stress— graphs that for complete unloading, the model returns to the origin
(zero strain for zero stress).
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Figure 9: Damage surface (above) and strain-stress plot for the only-tension
damage model with linear softening, case 3
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Figure 10: Damage surface (above) and strain-stress plot for the non-symmetric
damage model with linear softening, case 3
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Figure 11: Damage surface (above) and strain-stress plot for the only-tension
damage model with exponential softening, case 3
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Figure 12: Damage surface (above) and strain-stress plot for the non-symmetric
damage model with exponential softening, case 3

2 Viscous

In order to compare how the model’s response is affected by viscosity and strain
rate, we will first select one particular set of values as the standard (see table
5). When we want to see how the change of one particular parameter affects
the behaviour of the solid, we will modify the value of said parameter in both
directions (higher and lower). This way we will be able to, at least, see the
trend of change in the solid’s response: when it’s getting stiffer and when it’s
getting softer. The stress path will be the same as in case 3 (full biaxial loading-

unloading-loading).

Yield stress 150
Linear hardening H -1
Young modulus 200
Poisson ratio v 0
Viscous coefficient n 10
Hardening limit g, s 105
Total time 100
a coefficient 0.5

Table 5: Standard configuration for the viscous symmetric model

Results for this standard example can be seen in figure 13. We will refer
to this one everytime that we modify the viscosity, the strain rate (or time),
and the « coefficient. We can see the general feature of the viscous solids: our
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Figure 13: Standard results for the viscous case

stress path can be outside the damage zone, so we find that the norm of the
stresses can be higher than the yield stress (points marked in red). The model
can be damaged nonetheless, as the trajectories out of the damage surface and
the change of its size suggests and the downwards (not linear due to viscosity)
trajectory of the stress - strain path shows.

2.1 Effect of different viscosities

In order to asses the influence of the viscosity parameter 7, we tried two new
values: 7 =1 and n = 100. For the former, the solid viscous response is almost
negligible. We can see that the maximum stress is only slightly higher than
the yield stress of 150. For the latter we find the oposite: the model increased
viscosity stiffens it. Not only the maximum stresses are higher, but also the
material is less damaged
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Figure 14: Damage surface (above) and strain-stress plot for viscous test with
viscosity 17 = 1, the other values as in the standard case
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Figure 15: Damage surface (above) and strain-stress plot for viscous test with
viscosity = 100, the other values as in the standard case

2.2 Effect of different strain rates

The strain rate can be controlled via the total time used in the computation.
High values of time means low strain rates (same strain applied over a longer
period of time), and vice versa. For this reason, we used as extra values ¢t = 10
and ¢ = 1000 (one order of magnitude more and one less). As the strain rate
increase, the material stiffens: damage appears later and the stress-strain rela-
tionshp is linear for a longer period of time. We can see that if the relationship
between strain rate and viscosity is kept the same, the model’s behaviour is also
the same. The response for n = 1 and total time (indirect measure of strain
rate) t = 100 is the same that the response for n = 10 and total time ¢ = 1000.
We can see that in the previous example the relation viscosity/time was the
same 7 = 0.01. If we now reduce the time from the standard value of 100 to 10
(one order of magnitude less) with the rest of the parameters at their standard,
we would have a relationship 7 = 1. This is the same as considered in 15, and
that is why the model’s response is the same. As expected, the model’s response
depends on the relationship strain rate / viscosity.
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Figure 16: Damage surface (above) and strain-stress plot for viscous test with
total time ¢ = 10, the other values as in the standard case
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Figure 17: Damage surface (above) and strain-stress plot for viscous test with
total time ¢ = 1000, the other values as in the standard case

2.3 Effect of different alpha (time integration methods)

As the time integration method can lead to instabilities, we will try a com-
bination of parameters such that said isntabilities can appear. The stress
path considered differs from the used in the previous tests (see table 6), as
in this case we want to be always outside of the damage zone to asses the be-
haviour during inelastic loading. As we want to use a low At, the total time
and the time-steps per path used in the computations were ¢ = 1000000 and
istep; = isteps = isteps = 10, all the other parameters (except «, that we

will modify) as standard. Our model then will work under % = @. We

can see in figure 18 that for the pure explicit method (Euler time integration)
the results are completely spoiled: the solid is experiencing compression when
we are inducing tension. For o = 0.25, results are not as bad as with Euler,
but we find instabilities: see that during inelastic loading (green and blue lines)
the solution is going up and down. This was expected, as we are using a time-
unstable integration coefficient for o € [0 0.5). For a > 0.5 (figures 20 to 22)
these instabilities disappear. As we approach a = 1, and given in this particular
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case the low viscosity that we are considering, the model behaves more like if it
was inviscid. Again, this was expected from the theory.

step | Aoy | Aos
1 120 120
2 20 20
3 30 30

Table 6: Stress increments in tests with different o
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Figure 18: Damage surface (above) and strain-stress plot for viscous test with
a = 0. The results are spoiled and make no sense
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Figure 19: Strain-stress plot for viscous test with o = 0.25. It shows oscillations
(in red) due to instabilities
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Figure 20: Strain-stress plot for viscous test with @ = 0.5, Crank-Nicholson

method. The method for this « and higher are unconditionally stable
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Figure 21: Strain-stress plot for viscous test with @ = 0.75. The inviscid part
plays a higher role than with a = 0.5
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Figure 22: Strain-stress plot for viscous test with = 1. Inviscid case has been
recovered

2.4 Constitutive operator evolution

Using the same input data from the previous tests we now take a look to the 11
component of the C operator in its analytical and algorithmic versions. We find
similar results depending on «.. For values smaller than 0.5, some oscillations due
to instabilities are found. For greater than 0.5 values, the results are practicly
the same, as it is stable (and, in this case, the time-viscosity relation is not very
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important). For the case a = 0, both results coincde, although in this test we
can see that the time integration method fails to compute realistic results.
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Figure 23: Evolution of the component 11 of the analytical tangent constitutive
vs time for several values of «
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Figure 24: Evolution of the component 11 of the algorithmic tangent constitutive
vs time for several values of «
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Annex: Code

damage_main
1 function [sigma.v,vartoplot, LABELPLOT, TIMEVECTOR]=
2 damage-main (Eprop, ntype, istep, strain,MDtype, n, TimeTotal)
3 global hplotSURF
4 BN LT LILLTLLTLSLL5%Y
5 CONTINUUM DAMAGE MODE
6 % ——
7 Given the almansi strain evolution ("strain(totalstep,mstrain)") an
8 set of
9 parameters and properties, it returns the evolution of the cauchy s

GOt ot R A R A R R A A A R W OW W W W W WWWNNNNNNNNDNNE R e e e s e e e
W H O VXU GAE BN RO OO NGO R B®R R OO ® N0 R RN RO O ®N OO A BN = O

and other variables
that are listed below.

INPUTS <SS S S Ll888888sss8ssssssssrsxrxrx=xrxx

0 o oo d° d° A0 o° o o o

Eprop(l) = Young's modulus (E)

Eprop(2) = Poisson's coefficient (nu)

Eprop (3) = Hardening(+)/Softening(-) modulus (H)
Eprop(4) = Yield stress (sigma-y)

Eprop (5) = Type of Hardening/Softening law (hard_type)

0 ——> LINEAR
1 ——> Exponential

Eprop (6) = Rate behavior (viscpr)

0 -—-> Rate-independent (inviscid)

1 ——> Rate-dependent (viscous)
Eprop(7) = Viscosity coefficient (eta) (dummy if inviscid)
Eprop (8) = ALPHA coefficient (for time integration), (ALPHA)

0<ALPHA<1 , ALPHA = 1.0 ——> Implicit
ALPHA = 0.0 ——> Explicit
(dummy if inviscid)

ntype = PROBLEM TYPE
1 : plane stress
2 : plane strain
3 : 3D

istep = steps for each load state (istepl,istep2,istep3)

strain(i, j) = j-th component of the linearized strain vector at the
step, 1 = l:totalstep+l

MDtype = Damage surface criterion %
1 : SYMMETRIC

ONLY-TENSION

3 : NON-SYMMETRIC

N

n Ratio compression/tension strength (dummy if MDtype
is different from 3)

TimeTotal = Interval length

tress

i-th

A% 02 o0 o d° A A A° A0 A0 0 o0 O ° I A A A A° A0 A% 0 O O A A A A° OO A° OA° OO o o d° d° d° o
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OUTPUTS << <<l

1) sigma.v{itime} (icomp, jcomp) —-> Component (icomp, jcomp) of the
stress tensor at step "itime"
REMARK: sigma.v is a type of
variable called "cell array".

2) vartoplot{itime——> Cell array containing variables one wishes
vartoplot{itime} (1) = Hardening variable (q)
vartoplot{itime} (2) Internal variable (r)%

% 02 d° d° d° d° A0 A0 o0 o° o o

3) LABELPLOT{ivar} -—> Cell array with the label stri
variables of "varplot"

LABELPLOT{I} => 'hardening variable (q)'
LABELPLOT{2} => 'internal variable'

do A d° A0 o0 o0 o o do o

oe
0
i
=
e
>
w
!
=
o
=
<
o
=
at
e}

o)
&
o
et
<
[\
=
o
o
o
—
o
0

LABELPLOT = {'hardening variable (q)', 'internal variable', ...
'Analytic tangent C', 'Algorithmic tangent C'};

o

E = Eprop(l) ; nu = Eprop(2) ;
H = Eprop(3);
viscpr = Eprop (6)
sigma-u = Eprop(4)
eta = Eprop(7);
alpha = Eprop(8);

~e S

if ntype == 1
menu ('PLANE STRESS has not been implemented yet', 'STOP');
error ('"OPTION NOT AVAILABLE')
elseif ntype ==
menu ('3-DIMENSIONAL PROBLEM has not been implemented yet', 'STOP')
error ('"OPTION NOT AVAILABLE')

else
mstrain = 4 ;
mhist = 06 ;
end
if viscpr == 1

Comment/delete lines below once you have implemented this case

R R o

oo e

s % menu({'viscous model has not been implemented yet. ';
%% 'Modify files "damage-main.m","rmap-danol" '

S S 'to include this option'},

% % 'STOP') ;

cauc

ng £

error ('OPTION NOT AVAILABLE')
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111

113
114

else
end

totalstep = sum(istep) ;

INITIALIZING GLOBAL CELL ARRAYS

sigma_.v = cell (totalstep+l,1) ;
TIMEVECTOR = zeros (totalstep+l,1) ;

A_t = TimeTotal./istep/length(istep) ;

[ce] = tensor_elasticol (Eprop, ntype);

eps.nl = zeros (mstrain,1l);
Historic wvariables
hvarn(l:4) —> empty

o° o0 o o

hvar_-n(5) = g —-—> Hardening variable
hvar_n(6) = r —> Internal variable
hvar.n = zeros(mhist,1) ;

INITIALIZING (1 =1) 11!
KAk khkkkhkkkkKhl*
=1 ;

r0 = sigma-u/sqgrt (
hvar_n(5) = r0;
hvar.n(6) = r0;
eps-nl = strain(i,:) ;

sigma-nl =cexeps.nl'; % Elastic

o
S
o
s

-

E);
r-n
g-n

oo o

sigma-v{i} = [sigma-nl(l) sigma-nl(3) 0;sigma-nl(3)

0 0 sigma.nl(4)];

nplot = 3 ;
vartoplot = cell(l,totalstep+l

’

)
vartoplot{i} (1) = hvar_n(6) ; % Hardening variable
vartoplot{i}(2) = hvar.n(5) ; % Internal variable (r)
vartoplot{i}(3) = 1l-hvar.-n(6)/hvar_-n(5) ; % Damage variable

if viscpr

(q)

vartoplot{i}(4) = (hvar-n(6)/hvar_-n(5) )xce(l,1);

vartoplot{i}(5)
end

% LOOP over states (over the three paths)
for 1iload = l:length(istep)
% Load states
for iloc = l:istep(iload)
i=1i+1;
TIMEVECTOR (i) = TIMEVECTOR (i-1)+ a_t (iload)

)

% Total strain at step

1

18

(hvar_n (6) /hvar_n(5) )=*ce(1l,1);

’

sigma-nl (2)

(d)

0

’




211

end

end

eps.nl = strain(i,:);

%*********************‘k************‘k*************************

if (iloadxiloc == 1)
% For inviscid case, 1lst rtrial must be done explicitly
Eprop(8) = 0;
rtrial_.o = 0;
[sigma_nl,hvar_n,aux_var,rtrial_o] = rmap-danol...
(eps-nl,hvar._n,Eprop,ce,MDtype,n,a_t,rtrial_o);
else
Eprop (8) = alpha;
[sigma-nl, hvar_.n,aux_-var,rtrial_o] = rmap-danol (eps-nl...
,hvar_n,Eprop, ce,MDtype,n,a_t,rtrial_o);
end

% PLOTTING DAMAGE SURFACE
if (aux_var (1)>0)

* Kk ok kK

o
o
o

hplotSURF (i) = dibujar._criterio.danol (ce, nu, hvar.n(6), .|..

'r:',MDtype,n );
set (hplotSURF (i), '"Color', [0 O 1], 'LineWidth',1) ;
end
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GLOBAL VARIABLES

Kk kkkhkkhkkKhkk kK kK

o° o° o° o

Stress

o

m_sigma=[sigma_nl (1) sigma_nl (3) 0;sigma._nl (3) sigma.nl(2) 0
0 0 sigma-nl(4)];
sigma_v{i} = m_sigma ;

% VARIABLES TO PLOT (set label on cell array LABELPLOT)

g

vartoplot{i} (1) = hvar._n(6) ;
vartoplot{i}(2) = hvar.n(5) ;

Hardening variable (q)
Internal variable (r)

o
S
o
S

vartoplot{i}(3) = l-hvar_n(6)/hvar.n(5) ; % Damage variable
if viscpr

cet = sigma.-nl'xsigma.-nl;

vartoplot{i}(4) = (hvar-n(6)/hvar_n(5))xce(l,1);

o

% Tangent analytical operator
vartoplot{i}(5) =
(hvar_n(6) /hvar_.n(5))*ce(l,1) - ((alpha*xa_t)/...
(etatalphaxa_t))* (1/rtrial_o)*...
((hvar_n (6)-hvar_n (5) «H) / (hvar_n(5) "2)) ...
*(cet(1,1));
end

o
o
o
o

*
*
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rmap_danol

Lo B N

10

11

12

13
14

15

16

17
18

19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43
44

function [sigma.nl,hvar_nl,aux_var,rtrial] = rmap.danol
(eps-nl,hvar._n,Eprop, ce,MDtype,n,dt, rtrial_o)

%********************************************************************
Tx *
% * Integration Algorithm for a isotropic damage model
%
% *
*
S [sigma_nl, hvar._.nl,aux_var] =
%+ rmap-danol (eps-nl,hvar_n,Eprop,ce) * %%
*
%% INPUTS eps_nl (4) strain (almansi) step n+l
*
S vector R4 (exx eyy exy ezz)
*
S* hvar_n (6) internal variables , step n *
%% hvar.n(l:4) (empty)
*
S % hvar.n(5) = r ; hvar_n(6)=qgq |
*
Bx Eprop (:) Material parameters |
*
% *
S* ce(4,4) Constitutive elastic tensor
*
Bx dt Time step
%%
% * rtrial.o previous value of rtrial (inviscid
% OUTPUTS: sigma._nl (4) Cauchy stress , step n+l
*
S * hvar_n (6) Internal variables , step n+l |
*
* aux_var (3) Auxiliar variables for computing

const. tangent tensor

R R R S e e

o° o o

sigma-u = Eprop (4
hard-type = Eprop(
visc = Eprop(6);
eta = Eprop(7);
alpha = Eprop(8);

hvar_nl = hvar_n;
r.n = hvar_n(5);
g-n = hvar_n(6);
E = Eprop(1);
nu = Eprop(2);
H = Eprop (3);
)i
5

%********************************************************************
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46

47
48
49
50
51
52
53
54
55
56
57

58
59
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65
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69
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78
79
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84
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86
87
88
89
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97

%********************************************************************
% * initializing
%%

r0 = sigma-u/sqrt (E);
zero_g=1.d-6xr0;
if(r_-n<0.d0)

r_-n=r0;

g-n=r0;
end

LR EEEEEE S S E S S S S EEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

o0 oo oo oo oo

%********************************************************************
S Damage surface

S x

[rtrial] = Modelos_de_danol (MDtype,ce,eps.nl,n,r_.n,q.n);

%**********************~k************~k**************************‘k*****

% rtrial_o = rtrial previous timestep
%********************************************************************
S Ver el Estado de Carga

%

Sx e > fload=0 : elastic unload

S *x

Tk e > fload=1 : damage

% (compute algorithmic constitutive tensor) Sx

fload=0;

if visc

ralpha = alphaxrtrial + (l-alpha)=xrtrial_o;
if ralpha > r.n
%+ Loading

fload = 1;

A_.r = (ralpha - r.n)=*dt/ (eta+alphaxdt);
rnl = ron + Aa_r;

if hard-type == 0

o

% Linear

g-nl= g_n+ H*xa_r;
else

error ('EXPONENTIAL LAW not implemented for inviscid case'
end

else
%% Unloading
fload=0;
ronl= r.n ;
g-nl= gqn ;

end
else
if(rtrial > r_n)
% * Loading

fload=1;
A_r=rtrial-r_n;
r.nl= rtrial ;

* kK k

Kk Kk Kk

* kK Kk

)

I
I
o

if hard_type ==
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o

% Linear
g-nl= g.n+ Hxa_r;

else
% Comment/delete lines below once you have implemented th|
% BRI I I I I I R I I i S I ko
% % menu ({ 'Hardening/Softening exponential law has not
% been implemented yet. '; ...
% % 'Modify file "rmap-danol" ' ; ...
S S 'to include this option'}, ...
%% 'STOP'") ;
3 % error ('"OPTION NOT AVAILABLE')
%g-rate = 0.05;
g-inf = zero_.g; %
g-nl = g-inf - (g-inf-g.n)+*exp (Hx (1-(r_-nl/r0)));
end
if (g-nl<zero._q)
g-nl=zero_qg;
end
else
% * Elastic load/unload
fload=0;
ronl= r.on ;
g-nl= gn ;
end

(0]
3
O Q

dano_nl = 1.d0-(g.nl/r_nl);
Computing stress

Kk hkhkhkhkkkhkkhkkkkkkk*k

sigma-nl =(1.d0-dano.nl)*cexeps.nl';
%$hold on

$plot (sigma_nl (1), sigma._nl (2), 'bx")

Sk Kk k k kkk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK K K K K Kk kK k kK ok k k ok ok ok ok ok ok ok ok ok ok ok ok k kK ok ok K K K K K K K & & A]

%********************************************************************
%+ Updating historic wvariables

% *

% hvar_.nl(l:4) = eps-nlp;

hvar_nl (5)= r_nl ;

hvar_-nl(6)= g-nl ;

Gk kkk kA A A A A A A A hkkkkkkkkkkkkkk ok kkkkkkkkkkkkkkkkkkkkkKkKkkk ok ok ok ok ok ok % % % % % % % |

Gk Kk Kk kK Kk kK kK k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK Rk K kK kK Kk ok k ke k ke k k ok ok ok ok ok ok ok ok ok ok ok ok ok kK K|

%+ Auxiliar variables

o
T *
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153 aux.var (l) = fload;

154 aux._var (2) = g.nl/r._nl;
155 $*aux-var (3) = (g-nl-H+xr_nl)/r_-nl"3;

156 Sk kkkkkkkkkk ko k Kk kK kkk Kk k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR k ok kK k ok ok ok ok ok ok ok ok ok ok ok k[ ok
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Modelos_de_danol

function [rtrial] = Modelos_de_danol (MDtype,ce,eps.nl,n,r,q)
%********************************************************************
B* Defining damage criterion surface
o

S *

%%

%%

o
T *

Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

% MDtype= 1 SYMMETRIC

o
T *

* MDtype= 2 ONLY TENSION

MDtype= 3 NON-SYMMETRIC

*
*
*
*
*
*
*

OUTPUT:

>3
S
<
g
o
S
>3
g
o
S
o
g
3
S
>3
S
<
S
o
S
<
g
o
S
o
g

*
*
* rtrial
*
*

EEEEEEEEE S S S S S SRR RS RS RS E R R R I R R 2 I

Gk k Kk k ok ok ok k ok ok k ok ok k ko k k ok ok k ok ok ok ok ok ok ok ok ok ok k ok ok ok k ok ok ko ok ok ok ok ok k ok ok ok k ok ok ok ok ok ok k ok ok ok ok ok ok k ok kK

if (MDtype==1) $x Symmetric
rtrial= sqgrt (eps-nl*cexeps_nl') ;
elseif (MDtype==2) %+ Only tension

s.eff = eps._nlxce; % Efective stress

s.eff.p = 0.5%x(s_eff + abs(s_eff)); % Effective stress for only t

% As seen in Notes in continuum damage models page 18
rtrial = sqgrt(s_.eff_p * eps.nl');
elseif (MDtype==3) $+*Non-symmetric

s = eps-nlxce; % Effective stress

theta = 0; % Initialize theta = sum <sigma> / sum (|sigmal)

for i=1l:length (s)
theta = theta + mac(s(i)); % Numerator
end

theta = theta/sum(abs(s)); %Denominator

rtrial = ((theta + (l-theta)/n)) * sqgrt(eps-nlxcexeps.nl'); % str
s % else
%% if s(1) > 0 $ 4th gquadrant
s % else % 2nd quadrant
s % end
end

%********************************************************************

return

KAk Kkkkkhkhkhkkhkkkhkhkhkkk*

Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok

ension

ain r

Kk Kkkkkkkkhkkhkkkhkhkhkkk*
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dibujar_criterio_danol

Lo N I

7

14

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

function hplot = dibujar_criterio_danol (ce,nu,q,tipo-linea,MDtype,n)

%***‘k‘k‘k‘k************‘k**‘k*********~k***‘k******‘k‘k‘k‘k**********‘k‘k‘k******
S Inverse ce

%%

ce_inv=inv (ce);

cll=ce_inv(1,1);

c22=ce_inv(2,2);

cl2=ce_inv (1,2);

c2l=cl2;

cld=ce_inv(1,4);

c24=ce_inv (2,4);

F kK K Kk Kk kK K Kk ok ok ok ok k ok ok ok ok ok ok ok ok k kK ko ok ok ok kR K K K K Kk Kk k ke k ke k ok k ok ok ok ok ok ok ok ok ok ok ok ok ok kK|

khkhkhkhkhkkhkkhkhkhkhkhhkhkhhkhkhkhkhkhkkhkhhkhhrhkhkhkkhhhhkhhhkhhkhhhkkhkkhkkhkhhhkhkkhkkhkkhkhhhhkkhkhkkkkkkkkkkk k|
POLAR COORDINATES

if MDtype==

tetha=[0:0.01:2xpi];
%****~k~k***********~k~k~k***********~k~k*******************************
%$x RADIUS
D=size (tetha);
ml=cos (tetha);
m2=sin (tetha);
Contador=D(1,2);

do oo

Range

o oo oo oo
* kX

*

radio = zeros(l,Contador) ;
sl = zeros (1l,Contador) ;
s2 = zeros (l,Contador) ;

for i=1l:Contador
% Radius is the tau.sig = g/sqgrt(sigma.zetaxC-lxsigma_zeta)
radio(i)= g/sqgrt ([ml (i) m2(i) 0 nux (ml(i)+m2(i))]*...
ce_invx[ml (i) m2(i) O
nux (ml(1)+m2(1))]1");

%Polar projection: r cos, r sin
sl (i)=radio(i)+ml(i);
s2(i)=radio (i) *m2(1);

end

hplot =plot(sl,s2,tipo-linea);

elseif MDtype==

25
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110

tetha=[-0.5%pi:0.01l:pi]; %
$Implementing McAuley bracket:
sigma+ = <sigma>
%**************************************
%* RADIUS
D=size (tetha);
ml=cos (tetha);
m2=sin(tetha);
Contador=D(1,2);

x* (x>0)

o
S

oo oo do oo
* ok X

*

radio = zeros(l,Contador) ;
sl = zeros (1l,Contador) ;
s2 = zeros (1l,Contador) ;
for i=1l:Contador

radio(i)= g/sqgrt ([mac (ml (1)) mac (m2
ce_invx[ml (i) m2 (i) O
nu* (ml(i)+m2(1i))]1");

sl (i)=radio(i)+ml(i);
s2 (i)=radio (i) *m2 (i) ;

end
hplot =plot(sl,s2,tipo-linea);

elseif MDtype==

oo o

khkhkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkhrrrrrr ok hkhkhkhkhkhkkkkkkk
menu({'Damage surface "NON-SYMMETRI
'Modify files "Modelos_de_danol
'to include this option'},
'STOP') ;
error ('"OPTION NOT AVAILABLE')
[0:0.01:2%pi]; % Span the angle for

o o0 o° o o
o oo oo de oP

theta=
$+ RADIUS
D=size (theta);
ml=cos (theta);
m2=sin (theta);
Contador=D(1,2);

o0 oo do oe
* %k X

*

radio = zeros(l,Contador) ;
sl = zeros (1l,Contador) ;
s2 = zeros (1l,Contador) ;
for i=1:Contador
% Radius is the tau.sig =
if (theta(i) > 0.5xpi) && (theta(i)
radio(i) = (g/sqgrt([ml (i) m2 (i)
ce_invx[ml (i) m2(i) O .
nu* (ml (i) +m2(i))1"))/ (m2 (i) - (
elseif (theta(i) > pi) && (theta(i)

radio(i)= n*xqg/sqgrt ([ml (i) m2 (1)
ce_invx[ml (i) m2(i) O
nux (ml(1)+m2 (1)) 1");

26

Span the angle for onlt tension model

=x if x>0, 0 if x =< 0

Khkkkkhkkkhkkhkkhkhkhkkhkkhkhkhk k k k*x*

Range

(1)) 0 mac (nux (ml (i)+m2 (i)

Comment/delete lines below once you have implemented this case

*khkkkkkkkkhkkhkkkkkkk*k*k
C" has not been implemente
" and "dibujar_criterio_dal

non-symmetric model

Range

q/sqrt (sigma_zetaxC-1lxsigma.zeta)

°

< pi) % If in second quad
0 nu*(ml(i)4m2(i))1*...

ml (i) /n));

< 1.5%pi) % If in third ¢
0 nu*x (ml(i)+m2(i))1=...

d yet.
nol™'

rant

uadrant

’



elseif (theta(i) > 1.5%xpi) % If in fourth gquadrant

radio (i) = n*(g/sgrt([ml(i) m2(i) 0 nux(ml(i)+m2(i))]1~*...

ce_inv*[ml (i) m2(i) O
nu* (ml (1) +m2 (1)) 1"))/ (n*¥ml (i) - m2(i));
else $ If in first quadrant

radio(i)= g/sqgrt ([ml (i) m2 (i) O nu*(ml(i)+m2 (1)) I*...

ce_invx[ml (i) m2(i) O
nux (ml (1i)4+m2(i))1");
end
%$Polar projection: r cos, r sin
sl (i)=radio(i)+ml(i);
s2 (i)=radio (i) *m2 (i) ;

end
hplot =plot(sl,s2,tipo-linea);

end

return
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