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1 Rate independent models

1.1 Non-symmetric & Tension-only models

Implementation of continuum isotropic damage model of non-symmetric case
is shown in figure 1. The elastic domain is non-symmetric and the points are
chosen in elastic domain. Therefore, damage variable remains zero as time pass.
The following figure (figure 2) shows tension-only damage model. As we expect

Figure 1: non-symmetric elastic domain & rate of damage variable

the elastic domain includes infinity when σ1 and σ2 goes to −∞. Like non-
symmetric case, the points are chosen in elastic domain and as a consequent
damage variable is zero along the time.
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Figure 2: tension-only elastic domain & rate of damage

1.2 Linear and exponential hardening and softening

In hardening case (H > 0), we implement the code for both linear and exponen-
tial cases with the same selected points. In exponential case, we assume A > 0
as a constant value which can obtain by A = Hr0

q∞−r0 and q∞ = 2.1 which is
greater than r0 = 1.41.

Figure 3: non-symmetric linear
hardening (H = 0.5), strain-stress
norm plot

Figure 4: non-symmetric exponen-
tial hardening (H = 0.5), strain-
stress norm plot
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Figure 5: tension-only linear hard-
ening (H = 0.5), strain-stress norm
diagram

Figure 6: tension-only exponential
hardening (H = 0.5), strain-stress
norm diagram

The first diagrams of figures 3,4,5, and 6 show hardening case since the
elastic domain is getting expanded. The yield stress in these diagrams is the
point on blue line in the initial elastic domain. In the second diagram of figures
3 and 5, the strain-stress norm plot, the strain marked as a green lines prove
that there is a linear hardening while the green line in the second plots in figures
4 and 6 show hardening is in exponential way as it is not straight line.

In the softening case (H < 0), we assume q∞ = 0.7 to hold q∞ < r0. The
following figures clarify the difference between exponential and linear cases for
both models. In addition, elastic surface compresses in softening case as the
first diagram in each figure make it clear.

Figure 7: tension-only linear soften-
ing (H = −0.5), strain-stress norm
diagram

Figure 8: tension-only exponential
softening (H = −0.5), strain-stress
norm diagram

The top point in the diagrams of strain-stress norm is the point which yield
stress happens.
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Figure 9: non-symmetric linear soft-
ening (H = −0.5), strain-stress
norm diagram

Figure 10: non-symmetric exponen-
tial softening (H = −0.5), strain-
stress norm diagram

1.3 Correctness of implementation

In the case 1, we consider uniaxial tensile loading, uniaxial tensile unloading and
uniaxial tensile loading for non-symmetric model with positive linear hardening.
Therefore,
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(3)
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According to figure 11, the elastic surface expands so there is tensile loading.

Figure 11: strain-stress space Figure 12: rate of damage variable

In strain-stress space, black line represent first segment, blue line is the second
segment, and green line shows the third segment. loading happens when stress
is greater than yield stress (σu = 200). In the second segment, stress and strain
decrease, so there is unloading. In the third path, as soon as the strain and
stress gets greater than previous maximum of them, we face loading. Figure
12 shows variation of damage with respect to time. Each segment path has
10 points. when damage is constant, the points are in elastic domain but it
increases when there is a pure loading. Thus, tensile loading happens in the
first and third segments (Point 8 and 24) according to figure 12.
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Similarly we consider case 1 for tension-only model and we obtain following
results:

Figure 13: strain-stress space Figure 14: rate of damage variable

In case 2, we consider uniaxial tensile loading, biaxial tensile unloading, and
tensile loading in each segment for both damage models.
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The result for tension-only model is shown in figures 15 and 16. first diagram in

Figure 15: strain-stress norm dia-
gram Figure 16: rate of damage variable

figures 15 and 16 shows elastic surface in stress space. According to figure 15,
loading happens when the stress is greater than yield stress as it is in the black
line when the ||σ|| ≥ σu = 200. then, the blue line represent unloading when
the path return to elastic domain and strain and stress decrease. Again, the
green line after passing the previous maximum stress and strain, we encounter
with another loading. In figure 16, when the rate of damage variable dose not
change, we see unloading or staying in elastic state. On the other hand, when
it increases, loading starts. Therefore the loading happens in points 8 and 25.
Point 11 shows unloading as damage variable does not increase.
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The following figures represent the same discussion for non-symmetric model:
In case 3, we assume

Figure 17: strain-stress norm dia-
gram Figure 18: rate of damage variable
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Following figures shows loading and unloading similar to previous cases but all
loading and unloading are in both directions (biaxial).

Figure 19: strain-stress norm dia-
gram (non-symmetric model)

Figure 20: strain-stress norm dia-
gram (tension-only model)
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Figure 21: rate of stress norm (non-
symmetric model)

Figure 22: rate of stress norm
(tension-only model)

Figure 23: rate of damage variable
(non-symmetric model)

Figure 24: rate of damage variable
(tension-only model)

2 Rate dependent models

In rate dependent models, we have new parameter of viscosity η. Let H = 0.3
and ν = 0.3. Hardening type is linear and σu = 200. Moreover, each segment
path includes 5 points to better view of results. To obtain different strain rate,
we change length of the time interval. It is enough to check correctness of
implementation for uniaxial loading, so the Points to make the path in stress
space are:

P1 = (300, 0), P2 = (200, 0), P3 = (600, 0)

First, we fix η = 0.5 and choose different length of time interval (∆T ). Whenever
∆T gets greater, strain rate decrease. we also let α = 0.5. The figures 25 and
26 shows the difference between different value of strain rates with fixed η.
Comparing point 16 in each figure in stress-strain diagram shows increase of
strain rate gives increase on stress.

Figures 27 and 28 represent different eta with fixed ∆T . Similarly by com-
paring stress value of point 16 in each graphs, we find that the greater viscosity
parameter, the greater stress value.
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Figure 25: stress-strain plot- ∆T = 10, η = 0.5, α = 0.5

Figure 26: stress-strain plot- ∆T = 100, η = 0.5, α = 0.5
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Figure 27: stress-strain plot- ∆T = 100, η = 0.2, α = 0.5

Figure 28: stress-strain plot- ∆T = 100, η = 2, α = 0.5

Now we fix η = 0.5, ∆T = 10 and change the value of α. The following
pictures show stress-strain diagram for different α’s. For α = 0 (figure 33), the
result is not appropriate but it does not show instability we expect. It is the
same for α = 0.25. If we accept from theory that α = 0.5 is the most accurate
integration method for our problem, the other cases except α = 0 are acceptable
for our case.
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Figure 29: α = 0.25 Figure 30: α = 0.5

Figure 31: α = 0.75 Figure 32: α = 1

Figure 33: α = 0
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