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Rate independent models

1.

In this section the computations have been set in order to see the differences in the stress/strain curve between the linear
and the exponential hardening/softening law for the non-symetric and tension only model. Each model shows a
hardening example and a softening example, with one of them following the linear law and the other the exponential.
The loading/unloading path is uniaxial for all the examples.

a) Non-symmetric model. The cases chosen in order to illustrate the behaviour of this model are: linear hardening and
exponential softening.
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Evolution of the yield surface with yield stress 200 for the following loading path:
(0,0)--=(700,0)--=(-900,0)-=(300,0). A linear hardening law is considered with a
H=0.5
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Figure 1. Evolution of the yield surface for the non-symmetric model. The loading path is
uniaxial.
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The elastic regions lies between the stress values from 0 to
200, which is the value for the yield stress.In this region the BN =6
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slope has the value of the Young modulus E=20000. X: 0.035
400 Beyond the yield surface, the damage loading starts. This is Yi450
due to the fact that the first
segment of the stress path has been chosen so that ends
beyond the yield surface and therefore, the surface has to
300 expand since the model considered is inviscid.In this region
the slope is reduced because of the damaging and remains
constant because the hardening law that's being considered
is linear.
200 —
—
%]
n
w
o
b
%]
100 —
;= _#T =15 After the damage loading, the second segment of the stress
&N =11 path (in blue) induces an elastic unloading inside the
#N =14 damaged surface.
2100 — Y = Finally, the third segment of the stress path (in green)
k12 induces an elastic loading, but since the surface has been
=t damaged the path followed is not the same as in the first
elastic loading
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Figure 2. Stress/Strain curve for the path loaded in Figure 1.
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following stress path:
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An exponential softening law is considerred with H=0.5
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Figure 3. Evolution of the yield surface for the non-symmetric model. The loading path applied is
uniaxial
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Since the first segment of the loading path goes beyond the
initial yeld surface, the material will suffer loading damage.

In this case an exponential softening law is considered,
which can be appreciated in the exponentially decaying
curve that goes form N=4 to N=11.

Once the surface has been damage, the unloading and
following loading happen in the new elastic region, and
therefore the slope will be less steep than in the original
elastic region
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Figure 4. Stress/Strain curve for the loading path applied in Figure 3.



b) Tension-only model. The cases chosen in order to illustrate the behaviour of this model are: linear hardening and
exponential softening.
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Evolution of the yield surface for the following stress
path:
(0,0)--—=(400,0)-->{-700,0)-=>{300,0).
A linear softening law with H=-0.5 is considered
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Figure 5. Evolution of the yield surface for the tension-only model
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The damage starts, as expected in the inviscid
model, once the loading path goes beyond the yield
surface. The behaviour of the softening law is linear
with a slope with a magnitude (in absolute value)
smaller than the slope for the elastic region, since
the damage variable causes a loss of stiffness in
the material.
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The blue path shows the unloading, which is done
inside the new elastic region.
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A new loading is applied, as shown in the green
path. This loading shows an elastic behaviour since
it's inside the yield surface, but follows a different

mH path than the initial loading due to the damage that
o has ben assessed
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Figure 6. Stress/Strain curve for the path applied in Figure 5.



-1000

300

200

100

STRESS,
[=]

-100

-200.,

-300

500 —

-500 o e e e e e
| Evolution of the yield surface for the following stress

| path:
1 (0,0)--=(400,0)--=(-700,0)--=(300,0)
| An exponential hardening law is considered

L i |
0

J -1000 -500 5(

Q

Figure 7. Evolution of the yield surface for the tension-only model. The loading path is uniaxial.

Once again, the loading starts with inside the elastic domain and
when it reachess the yield value of 200, the surface damages.
Since the slope does not remain constant, the hardening law thats
being considered is exponential.

Both the unloading and the following loading are done inside the
damaged surface, thus remaining in the new elastic domain
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Figure 8. Stress/Strain curve for the path loaded in Figure 7.
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2.
In this section, the computations have been carried out in order to show the differences between the non-symmetric and
the tension only models.

a) Non-symmetric model.

Evolution of the yiels surface for the following loading path:
(0,0)--=(150,0)--=(-700,-700)--=(500,500).

1% In this case the surface suffers damage due to a biaxial compressive

loading
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Figure 9. Evolution of the yield surface for the non-symmetric model. The first segment of the loading
path is uniaxial and the remaining segments are biaxial
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The stress/strain in the horizontal axis shows an elastic
behaviour for the first loading.

Afterwards, the unloading is done in an elastic way and =5
100 | when it returns to the origin, a compressive loading

starts. The behaviour is elastic until the surface damages

due to the fact that the loading goes beyond the original =3
yield surface. =97

The third segment shows an elastic loading but since the
surface has been damaged, the path followed is not the

same than in the previous loadings
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Figure 10. Stress/Strain curve in the horizontal axis for the loading path in Figure 9.
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For the vertical axis, the first segment cannot be
appreciated since it was an uniaxial loading.
For the unloading, compressive loading and tensile
0 loading that follow, the behaviour is the same as shown in N =8
the horizontal axis; meaning that the behaviour is elastic
until the surface is damaged.
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Figure 11. Stress/Strain curve in the vertical axis for the loading path in Figure 9.



b) Tension only model.
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Evolution of the yield surface for the following path:
(0,0)-->(150,0)-->(-700,-700)-->(500,500)
The surface does not suffer damage for this path
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Figure 12. Evolution of the yield surface for the tension only model. The first segment of the loading

path is uniaxial and the remaining segments are biaxial
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A path that caused damaged in the nonsymmetric model
due to compressive loading, does not cause any damaged
in the tension only model. This behaviour is expected
since the yield surface for compressive loading is infinite
in this model.

Therefore, the behaviour of the loading remains in the
elastic region for all the segments of the loading path
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Figure 13. Stress/Strain curve in the horizontal axis for the loading path in Figure 12.
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surface does not leave the elastic region
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The same behaviour can be seen for the vertical axis:
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Figure 14. Stress/Strain curve in the vertical axis for the loading path in Figure 12.
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3.

Finally, since in the previous section it was shown how compressive loading does not damage a surface that belongs to
the tension only model, in this section the goal was to showcase the full stress/strain curve for the non-symmetric
model.
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Figure 15. Evolution of the yield surface for the non-symmetric model. The loading path applied is
biaxial.
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Results in the horizontal axis for a biaxial loading path.
It can be seen how the surface gets damage due to the first
100 |} tensile loading. Then the path continues with unloading until
the surface damages again due to the compressive loading.
At the end, there is an elastic loading but since the surface
has been damaged the slope will not be the same.
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Figure 16. Stress/Strain curve in the horizontal axis for the loading path in Figure 15.
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Results in the vertical axis for a biaxial loading path.
The behaviour is the same as in the horizontal axis since the
100 | loading path applied is the same in both axis. It also can be
noted that the hardening law applied is exponential.
With this example, the whole strain/stress curve for the
g | nensymmetric model can be appreciated.
Unlike the symmetric model, the yield value for the damage
to occur is not the same for positive stresses and negative
stresses.
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Figure 17. Stress/Strain curve in the vertical axis for the loading path in Figure 15.
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Rate independent models

a) Effects of using different viscosity parameters and strain rate values

The following figures show the effects of the viscosity parameter in the symmetric model for the following load path:
(0,0) - (700,0) - (-700,0) - (0,0)

With «=1/2 and At=10 being kept constant in both examples.
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Figure 18. Effects of the viscosity parameter in the Stress/Strain curve. The first graph is for
n= 0.3, the second is for n= 0.6 and the thir one for n= 0.9.

The viscous effects that appear when a loading damages the surface show how the surface instead of expanding in a
continuous way as in the inviscid case, the rate of expansion changes with time. Therefore the strain/stress curve
presents a “saw-like” pattern. When the viscosity increases, the peaks become less pronounced.

Viscous effects do not appear when unloading for this particular model.

In the following examples, the effects of the strain rate change over the stress/strain curve are studied. For these
examples the viscosity is kept at 0.3.

250 iRy 250
200+ 2001 200
R LnH 1501 5 150
i g
2 &
100} h =
100 w 100
50 ol .
0“ i i i i i i i -
0 0005 001 0015 002 0025 003 003 0 : : . . ‘ i odr—e— L L | | | |
norm(STRAIN} 0 0.005 0.01 0015 002 0025 003 0035 0 0005 001 0015 002 0025 003 0035
norm(STRAIN) norm(STRAIN)

Figure 19. Effects of the strain rate in the Stress/Strain curve. The first graph is for
At= 30 the second is for At= 70 and the thir one for At= 100.

For strain rate changes, the pattern of the peaks does not change. Still, it can be seen how the strain/stress curve moves
downards the y-axis and reaches lower stress values as the total time of integration increases. Taking a look at point
N=5 it can be seen how it moves from having a stress value above 200 to a value below 200.
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b) Effects of different o values on the C;; component of the tangent and algorithmic constitutive operators

So far, the computations for the viscous model have been done using a=1/2, which means that the time integration is
done using the Crank-Nicolson scheme. When changing the o values to 0, 0.25, 0.75 and 1, the results obtained showed
a really bizarre pattern had no physical meaning. This must be due to the fact that at some point the code
implementation has not been done properly. Which means that even though the results in section (a) seemed to behave
properly, they are not correct.

The expected results should show how for a<1/2 ,there could appear inestabilities in the solution due to the fact that the
integration scheme becomes conditionally stable.

Still, when the viscosity is set to 0 and a=1, the implemention recovers the inviscid behaviour:
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Figure 20. Recovery of the inviscid model setting
the proper parameters in the viscous model
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Annex 1: Code implementation

1. Nonsymmetric and tension only surfaces

The following lines have been added in the function dibujar_criterio_danol.m

elseif MDtype==

tetha=[(-pi/2)*0.9999:0.01:pi*0.9999];
%************************************************

%* RADIUS

D=size(tetha); %* Range
mi=cos(tetha); 9*
m2=sin(tetha); %*
Contador=D(1,2); %*

radio = zeros(1,Contador) ;

s1 = zeros(1,Contador) ;

52 = zeros(1,Contador) ;

for i=1:Contador
sigma= [m1({i) m2(i) @ nu*(m1(i)+m2(1))]1;
sigmapos=sigma.*(sigma>0);
radio(i)= q/sqrt(sigmapos*ce_inv*sigma');

s1(i)=radio(i)*m1(i);
s2(i)=radio(i)*m2(1i);

end
hplot =plot(s1,s2,tipo_linea);

elseif MDtype==
tetha=[6:0.081:2%pi];
PHREHAF IR FFFAFA AR AR I A AR A AR FAAAFA A A ARSI A ARARF A AR A A A IR A AT A IR AR T H A F A A TH A

%* RADIUS

D=size(tetha); %* Range
mi=cos(tetha); 9 *
m2=sin(tetha); %*
Contador=D(1,2); %*

radio = zeros(1,Contador) ;

s1 = zeros(1,Contador) ;

s2 = zeros(1,Contador) ;

for i=1:Contador
sigma=[m1(i) m2(i) 0 nu*(mi(i)+m2(1))];
sigmapos=sigma.*(sigma>0);
theta=sum(sigmapos)/sum(abs(sigma));
radio(i)= (qfsqrt(sigma*ce_inv#*sigma'))/(theta+(1-thelta)/n);

s1{i)=radio(i)*m1(i);
s2(i)=radio(i)*m2(1i);

end
hplot =plot(si,s2,tipo_linea);

end
The function Modelos_de_danol.m was also modified :
elseif (MDtype==2) %* Only tension

sigma=(eps_ni*ce);
sigmapos=sigma.*(sigmab=0);

rtrial=sqrt(sigmapos*eps n1');
elseif (MDtype==3) %*Non-symmetric

sigma=(eps _nl*ce);

sigmapos=sigma.*(sigma=0);

theta=(sigmapos(1)+sigmapos(2))/(abs(sigma(1))+abs(sigma(2)));
rtrial=(tita+(1-tita)/n)*sqrt(eps_ni*ce*eps ni');




2. Exponential hardening law

The following lines have been added in the function rmap_danol.m

else
%Exponential
g _inf=r@+(r0-zero _q);

g nl=g n+((H*(q_inf-r@)fro)*exp(H*(1-rtrial/re)))*delta r;
end

3. Viscous model

The following lines have been added in the function rmap_danol.m

PR AR AR N R R R R R R A A A R R A A A N A A AR AR AN AR A AR A AT R I A AR AR AR AR AN AN AR AR AR AR AR ARARHR
%* Damage surface %*

[rtrial_n] = Modelos_de_danol (MDtype,ce,eps_n@,n) % TauEps_n (Viscous model)

[rtrial] = Modelos de danol (MDtype,ce,eps nil,n) % TauEps_n+1

[rtrial_nalpha]=(1-ALPHA_ COEFF)*rtrial_n+ALPHA COEFF*rtrial ; % TauEps_n+alpha (Viscous model)
%*************************************************************************************

PR AR AR N R R R R R R A A A R R A A A N A A AR AR AN AR A AR A AT R I A AR AR AR AR AN AN AR AR AR AR AR ARARHR

%*  Ver el Estado de Carga %*
R > fload=0 : elastic unload %*
et > fload=1 : damage (compute algorithmic constitutive tensor) %*
fload=0;

if viscpr ==

if (rtrial_nalpha = r_n)
%* Loading
fleoad=1;
delta_r=rtrial_nalpha-r_n;
r_ni=((eta-delta_t*(1-ALPHA_COEFF))/(eta-ALPHA_COEFF*delta_t))*r_n+...
(delta_t*rtrial _nalpha)/(eta+ALPHA_COEFF*delta t);

% Linear
g_nl= gq_n+ H*delta r;

if(g_nl<zero_g)
gq_nl=zero_q;

end
else
%* Elastic load/unload
fload=0;
rnl= r_n ;
g_nl= g_n

end



