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Part I – Rate independent models 
 

In this first part have been implemented the “non-symmetric” and “only-tension” damage 

models with linear and exponential hardening types. The codes corresponding to these 

implementations are on the Annex A. To test the validity of the implemented models the 

following cases are going to be tested. 

Case 1 Case 2 Case 3 
(1)

1 500   
(1)

2 0 
 

(1)

1 500   
(1)

2 0   
(1)

1 500   
(1)

2 500   

(2)

1 700  
 

(2)

2 0 
 

(2)

1 700  
 

(2)

2 700  
 

(2)

1 700  
 

(2)

2 700  
 

(3)

1 300   
(3)

2 0 
 

(3)

1 300   
(3)

2 300   
(3)

1 300   
(3)

2 300   

  Case 4   

  (1)

1 500  
 

(1)

2 500  
 

  

  (2)

1 100  
 

(2)

2 100  
 

  

  (3)

1 600   
(3)

2 600   
  

 

For all the cases the following data will be common: 

Poisson 0 Young modulus 20000 Yield stress 200 

 

In all analyses performed with the non-symmetric model the rate between traction and 

compression has keep constant with a value of 3. 

 

Case 1 

 

In the Figure 1 the linear hardening and linear softening for a non-symmetric model is 

shown. When hardening is happening it can be seen that the elastic region suffers an expansion 

when the applied stresses are out of this region. However, in the softening case the elastic 

region goes in contraction. This expansion-contraction behaviour in both cases depends on the 

Hardening-Softening modulo (H). For the hardening case this parameter is set on 0.5 and in 

softening the parameter takes a value of -0.5. This change of the elastic region has the effect of 

create a positive (hardening) or negative (softening) slope on the stress-strain curve so is easy to 

see that the unloading has to follow a different path with a different slope due to the damage 

suffered by the material. As the differences between the slopes before and after the damage is 

bigger in softening than in hardening it can be conclude that the materials suffers more with 

softening behaviour. 
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Figure 1: Non-Symmetric model case 1. a) Linear hardening b) Linear softening 

 

Case 2 

 

This second case is going to be used to analyse the difference between linear and exponential 

hardenings. Up to the yield surface the response is identical in the both cases. Once this limit is 

exceeded the linear model continuous linearly with a slope that depends on the value of H. 

However, in the exponential case the curve continuous exponentially. In that way the unloading 

slopes are different. 

When these linear-exponential models are compared for a positive hardening can be seen 

that in the exponential case the material suffers less than with linear behaviour (Figure 2). The 

same happens when softening is occurring (Figure 3). 

In neither case does the material break but it would be interesting to mention that in the case 

of total damage no matter how big are the applied stress, the strains are going to remain always 

in zero. 

b) 

a) 
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Figure 2: Non-Symmetric model case 2. A) Linear hardening B) Exponential hardening 

   

  

Figure 3: Non-Symmetric model case 2. A) Linear softening B) Exponential softening 

 

 

a) 

b) 

a) 

b) 
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Case 3 

 

With this case the non-symmetric model and only-tension model for a positive load path and 

linear hardening are going to be represented. As it is shown in the figures below (Figure 4) the 

behaviour in the non-symmetric case is equal to the one obtained with the only-tension model. 

This occurs because the applied load path cross the yield surface from a region that is equal for 

both models. Nevertheless for negative stresses the response must be different, so to prove this 

the case 4 has been proposed. 

 

 

Figure 4: Case 3. a) Non-Symmetric model with linear hardening b) Only-tension model with linear hardening 

 

Case 4 

 

As can be seen in the Figure 5 in this case the behaviour is totally different. In the only-tension 

model, as it does not take into account any type of damage under compression, the stresses 

remains in the elastic region. Nonetheless, when the non-symmetric model is being used the 

material is damaged when the stresses exceed the yield surface and the behaviour of the material 

change. 

a) 

b) 
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Figure 5: Case 4. a) Non-Symmetric model with linear hardening b) Only-tension model with linear hardening 

 

Part II – Rate dependent models 
 

The second part of the assignment contains several results obtained after the implementation 

of the viscous model. The codes corresponding to these implementations are on the Annex B. 

Theoretically, when in the viscous model the viscosity parameter (η) and the α values are set 

on 0 and 1 respectively the inviscid model has to be restored. This has been the basis of the 

validation of the code. Below can be seen the results for the non-viscous model (Figure 6 a), the 

viscous model with the parameters η and α equal to 0 and 1 (Figure 6 b) and the viscous model 

with η and α values in 0.5 (Figure 6 c). In every case a symmetric model with linear hardening 

has been use with the following stress path. 

(1)

1 300   
(1)

2 0   
(2)

1 200   
(2)

2 0   
(3)

1 200   
(3)

2 0   

 

As can be seen the inviscid model is obtained so the code is validate. In the Figure 6 c a saw 

effect appears that is a typical behaviour of the brittle materials. When they reach to the damage 

surface links inside the material breaks and which provide some resistance to the material, this 

is why this backward jump is happening in the stresses. 

a) 

b) 
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Figure 6: Validation of the viscous model. a) Inviscid model b) Viscous model with η=0 and α=1 c) Viscous model 

with η=0.5 and α=0.5 

Now some parameters are going to be modified to know more about their effect. First of all 

the different values of the viscosity parameter are going to be tested with α equal to 0.5 and a 

time interval of 10 seconds. The values that has been set are 0 (Figure 7 a), 0.25 (Figure 7 b), 

0.5 (Figure 7 c), 0.75 (Figure 7 d) and 1(Figure 7 e). As can be seen the value of η change the 

jump in the stresses change. With small η values the jumps are higher than with small values. So 

with the same stress path as the smaller is this parameter less is the damage. 

a) b) 

c) 
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Figure 7: Viscous model with α=0.5 time interval of 10 s and a) η=0 b) η=0.25 c) η=0.5 d) η=0.75 e) η=1 

 

When η and α have the constant value of 0.5 and the strain rate is changed the same stress 

path has to be applied in different time interval so as longer is the interval lower is going to be 

the material damage so the jumps are going to be higher (see Figure 8). 

 

 

 

 

 

 

a) b) 

c) d) 

e) 
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Figure 8: Viscous model with α=0.5, η=0.5 and time interval of a) 10 s and b)10000 s 

The last parameter that is going to be modified is the α parameter that change the time 

iterative method. When the value of α is between 0.5 and 1 the method is unconditionally stable 

but for values below 0.5 the stability is going to depend on the time step. For big time steps the 

schemes become instable. 

In the graphs below the η is of 0.5 and the time interval is of 10. Α take the values that 

correspond to Forward Euler scheme (α=0)( Figure 9 a), Crank-Nicholson scheme (α=0.5) ( 

Figure 9 b) and Backward Euler scheme (α=1) ( Figure 9 c). 

          

 

Figure 9: Viscous model with η=0.5, time interval of 10 s and α equal to a) 0-Forward Euler scheme  b)0.5-Crank-

Nicholson scheme and c)1- Backward Euler scheme 

 

 

 

a) b) 

a) b) 

c) 
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ANNEXES 

Annex A 

 

Implementation of the rate independent models 

Modified codes: 

 dibujar_criterio_dano1 
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 Modelos_de_dano1 

 
 

 rmap_dano1 

 

Annex B 

 

Implementation of the rate dependent models 

Modified codes: 

 rmap_dano1 

Input values have been added to the function. 

 

 
 

The code has been divided by an if to separate the viscous model from the inviscid 

one. Below is only the implementation of the part of the viscous model. 
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 damage_main 

In the main loop the following line has been added before calling rmap_dano1 

 
 


