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Part | — Rate independent models

In this first part have been implemented the “non-symmetric” and “only-tension” damage
models with linear and exponential hardening types. The codes corresponding to these
implementations are on the Annex A. To test the validity of the implemented models the
following cases are going to be tested.

Case 1 Case 2 Case 3
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For all the cases the following data will be common:

| Poisson | 0 | Young modulus | 20000 | Yield stress | 200 |

In all analyses performed with the non-symmetric model the rate between traction and
compression has keep constant with a value of 3.

Case 1

In the Figure 1 the linear hardening and linear softening for a non-symmetric model is
shown. When hardening is happening it can be seen that the elastic region suffers an expansion
when the applied stresses are out of this region. However, in the softening case the elastic
region goes in contraction. This expansion-contraction behaviour in both cases depends on the
Hardening-Softening modulo (H). For the hardening case this parameter is set on 0.5 and in
softening the parameter takes a value of -0.5. This change of the elastic region has the effect of
create a positive (hardening) or negative (softening) slope on the stress-strain curve so is easy to
see that the unloading has to follow a different path with a different slope due to the damage
suffered by the material. As the differences between the slopes before and after the damage is
bigger in softening than in hardening it can be conclude that the materials suffers more with
softening behaviour.
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Figure 1: Non-Symmetric model case 1. a) Linear hardening b) Linear softening

Case 2

This second case is going to be used to analyse the difference between linear and exponential
hardenings. Up to the yield surface the response is identical in the both cases. Once this limit is
exceeded the linear model continuous linearly with a slope that depends on the value of H.
However, in the exponential case the curve continuous exponentially. In that way the unloading
slopes are different.

When these linear-exponential models are compared for a positive hardening can be seen
that in the exponential case the material suffers less than with linear behaviour (Figure 2). The
same happens when softening is occurring (Figure 3).

In neither case does the material break but it would be interesting to mention that in the case
of total damage no matter how big are the applied stress, the strains are going to remain always
in zero.
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Figure 2: Non-Symmetric model case 2. A) Linear hardening B) Exponential hardening
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Figure 3: Non-Symmetric model case 2. A) Linear soften

ing B) Exponential softening
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Case 3

With this case the non-symmetric model and only-tension model for a positive load path and
linear hardening are going to be represented. As it is shown in the figures below (Figure 4) the
behaviour in the non-symmetric case is equal to the one obtained with the only-tension model.
This occurs because the applied load path cross the yield surface from a region that is equal for
both models. Nevertheless for negative stresses the response must be different, so to prove this
the case 4 has been proposed.
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Figure 4: Case 3. a) Non-Symmetric model with linear hardening b) Only-tension model with linear hardening
Case 4

As can be seen in the Figure 5 in this case the behaviour is totally different. In the only-tension
model, as it does not take into account any type of damage under compression, the stresses
remains in the elastic region. Nonetheless, when the non-symmetric model is being used the
material is damaged when the stresses exceed the yield surface and the behaviour of the material
change.
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Figure 5: Case 4. a) Non-Symmetric model with linear hardening b) Only-tension model with linear hardening

Part Il — Rate dependent models

The second part of the assignment contains several results obtained after the implementation
of the viscous model. The codes corresponding to these implementations are on the Annex B.

Theoretically, when in the viscous model the viscosity parameter () and the o values are set
on 0 and 1 respectively the inviscid model has to be restored. This has been the basis of the
validation of the code. Below can be seen the results for the non-viscous model (Figure 6 a), the
viscous model with the parameters # and « equal to 0 and 1 (Figure 6 b) and the viscous model
with # and « values in 0.5 (Figure 6 c). In every case a symmetric model with linear hardening
has been use with the following stress path.

—@® —(@
Aoc1 =300 | Aoz =0

—(2) —(2)
Aoy =200 | Aoz =0

Ac =200 | AGY) =0

As can be seen the inviscid model is obtained so the code is validate. In the Figure 6 ¢ a saw
effect appears that is a typical behaviour of the brittle materials. When they reach to the damage
surface links inside the material breaks and which provide some resistance to the material, this
is why this backward jump is happening in the stresses.



a) 450

400

STRES,

Computational Solid Mechanics — Assignment 1

Alba Ruiz de Alegria

i
0.03

I i
ool 0015

i L
002 0025
STRAIN,

I i
oo 0015

C) 250

200

STRESS,
g

=1
=]

50

i ! b=t
00E 003 0.005

O

i L i I i
002 0025 003 003 004
STRAIN,

IV i ;
07 'oos ool 00ia

i
0.02
STRAIN,

L
0.025

Figure 6: Validation of the viscous model. a) Inviscid model b) Viscous model with =0 and a=1 c) Viscous model

with #=0.5 and «=0.5

Now some parameters are going to be modified to know more about their effect. First of all
the different values of the viscosity parameter are going to be tested with o equal to 0.5 and a
time interval of 10 seconds. The values that has been set are 0 (Figure 7 a), 0.25 (Figure 7 b),
0.5 (Figure 7 ¢), 0.75 (Figure 7 d) and 1(Figure 7 €). As can be seen the value of n change the
jump in the stresses change. With small n values the jumps are higher than with small values. So
with the same stress path as the smaller is this parameter less is the damage.



280 -

STRESS,

o et i i i i i i i
07 0005 001 0015 002 0025 003 0035 004

STRAIN,
C) 260 -
a0
150 |-
o
&
w
o
7
00 |-
an
o i ; i ; ; ; ;
0os 001 0015 002 002 003 003 004
STRAIN,
E) BE e

STRESS,

Computational Solid Mechanics — Assignment 1

b)

STRESE,

STRESE,

Alba Ruiz de Alegria

o pet—i
0.006

i i ;
001 00 om

L i I i
002 003 0035 004

STRAIN,
250
1] TSR NURDIR IO SN A RER L e SR
150
100
B0 Lo
[N : i ; ; ‘ ‘ ;
07 005 001 005 002 0025 003 003 004
STRAIN,
; i . i
0025 003 003 004

1
001

=t
0.00s

i
0015

i
0.0z

STRAIN,

Figure 7: Viscous model with =0.5 time interval of 10 s and a) #=0b) n=0.25 c) n=0.5d) n=0.75 €) n=1

When n and a have the constant value of 0.5 and the strain rate is changed the same stress
path has to be applied in different time interval so as longer is the interval lower is going to be
the material damage so the jumps are going to be higher (see Figure 8).
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Figure 8: Viscous model with a=0.5, n=0.5 and time interval of a) 10 s and b)10000 s

The last parameter that is going to be modified is the o parameter that change the time
iterative method. When the value of a is between 0.5 and 1 the method is unconditionally stable

but for values below 0.5 the stability is going to depend on the time step. For big time steps the
schemes become instable.

In the graphs below the n is of 0.5 and the time interval is of 10. A take the values that
correspond to Forward Euler scheme (a=0)( Figure 9 a), Crank-Nicholson scheme (0=0.5) (
Figure 9 b) and Backward Euler scheme (a=1) ( Figure 9 c).
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Figure 9: Viscous model with #=0.5, time interval of 10 s and « equal to a) 0-Forward Euler scheme b)0.5-Crank-
Nicholson scheme and c)1- Backward Euler scheme
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ANNEXES

Annex A

Implementation of the rate independent models
Modified codes:

o dibujar_criterio_danol

elseif MDtype==2
tetha=[(-pi/2)*0.9999:0.01:pi*0.9999];

R 2 i R R I T T LT T T I T T I

£~ RADIUS

D=s3ize (tetha): %% Range
ml=cos (tetha); 3*
m2=sin(tetha); F*
Contador=D(1,2): ™

radio = zeros(1,Contador) :
sl zeros (1,Contador) :
52

zeros (1,Contador)

for i=1l:Contador
sigma= [ml(i) m2(i) O nu*(ml(i)+m2(i))];
sigmapos=sigma.* (sigma>0):
radio(i)= g/sqrt(sigmapos*ce inv*sigma'):
51 (i)=radio(i)*ml(i):
=22 (i)=radio (i) *m2 (i)

end
hplot =plot(sl,s2,tipo_linea):;

elseif MDtype==
tetha=[0:0.01:2*%pi];

R Ll L R R e L Lt

%* RADIUS

D=size(tetha); $* Range
ml=cos (tetha): 3

m2=sin (tetha); ™
Contador=D(1,2); kI

radio = zeros(l,Contador) ;
s1 zeros (1,Contador)
=2

zeros (1,Contador) ;

for i=1l:Contador

sigma=[ml (1) m2 (i) O nu*(ml(i)+m2(1i))]:
Zigmapos=sigma.* (sigma>0);
tita=sum(sigmapos)/sum(abs (sigma));

radio(i)= (g/sqrt(sigma*ce inv*sigma'))/(tita+(l-tita)/n):

s1(i)=radio(i)*ml(i):
22 (1)=radio(i)*m2 (1)

end
hplot =plot(sl,s2,tipo_linea):

end
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e Modelos_de danol

S e e R e e B B R B R B B B B B R B R e B e e e B B e B B e e e e e e e R R R R R R R R R R R R

if (MDtype==1) g* Symmetric
rtrial= sqgrt(eps_nl*ce*eps nl');
elseif (MDtype==2) %* Only tension

sigmab=(eps_nl<ce);
sigmabpos=sigmab.* (sigmab>0) ;

rtrial=sqrt (sigmabpos*eps nl');
elseif (MDtype==3) $*Non-symmetric

sigma=(eps_nl*ce):;
sigmapos=sigma.* (sigma>0);
sigmaabs=abs (sigma) ;
tita-sum(sigmapos)lsuﬂ(sigmaabsl:
C=(tita+(1l-tita)/n):

rtrial= C*sqgrt(eps_nl*ce*eps nl');

e rmap_danol
tExponential
¥ zero q es g_inf por abajo
q_inf=r0+(r0-zero_q):
if H>0
q_nl=qg n+((H*(g_inf-r0)/r0) *exp (H* (1-rtrial/r0)))*delta r;
else
g _nl=g n+((H*(g_inf-r0)/r0)*(1l/exp(H*(1l-rtrial/r0})))*delta r;
end

Annex B

Implementation of the rate dependent models
Modified codes:

e rmap_danol
Input values have been added to the function.

[sigma nl,hvar nl,aux var] = rmap danol (eps_nl,eps_n0, hvar_n,Eprop,ce,MDtype,n,viscpr,delta t)

The code has been divided by an if to separate the viscous model from the inviscid
one. Below is only the implementation of the part of the viscous model.

eta = Eprop(7):
ALPHAR COEFF = Eprop(8):

[rtrial_n] = Modelos_de_danol (MDtype,ce,eps nl,n); % TauEps n (Viscous model)
[rtrial] = Modelos de_danol (MDtype,ce,eps nl,n);
[rtrial nalpha]=(1-ALPHA COEFF)*rtrial n+ALPHAR COEFF*rtrial ; % TauEps n+alpha (Viscous model)
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if wiscpr == 1
if (rtrial_nalpha > r_n)
L 1o Loading
fload=1;

delta_r=rtrial nalpha-r_n;
r_n1=((eta—delta_t*(1—ALPHA_COEFF}}/(eta—ALPHA_COEFF‘delta_t}}‘r_n+...
(delta_t*rtrial_nalpha)/(eta+ALPHn_COEFF*de1ta_t);
if hard type == 0
g nl= g n+ H*delta_r;
else
$Exponential
% zero_gq es g_inf por abajo
q_inf=r0+(r0-zero_q):
if H>0
q_n1=q_n+((H*(q_lnf—rO}/rO}*exp(H*(1—rtrial_nalpha/rO}}}*delta_r:
else
q_nl=q n+((H*(gq_inf-r0)/r0)* (1/exp (H* (1-rtrial_nalpha/r0)))) *delta_r;
end

end

if (q_nl<zero q)
g_nl=zero_g:

end

else ...
damage_main
In the main loop the following line has been added before calling rmap_danol

eps n0 = strain(i-1,:) ;

10



