
Assignment 2
Computational Solid Mechanics

Arnab Samaddar Chaudhuri
MSc Computational Mechanics

May 26, 2016

1D Computational plasticity

The material data with which the numerical simulation has been carried out are considered hypo-
thetically to be:

1) Elastic Modulus = 25 (units)
2) Yield Stress = 10 (units)

And a cyclic loading of 20,-30 and 20 (units)is considered to be the load case.

Perfect Plasticity Model
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Figure 1: Rate Independent Plasticity
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Figure 2: Rate Dependent Plasticity,η = 5

For the rate indepndent case, when cyclic loading of 20, -30 and 20 (units) is applied, it does not
cross the yield surface at 10 (units) due to the absensce of any hardening parameter as seen in Figure 1.

However , in case of Rate dependent perfect plasticity, due to the presence of viscosity, when tensile
loading of 20 (units) is applied, it crosses the yield surface. Further when 30 (units) compressive
loading is applied, the stress go further beyond the yield surface as een in Figure. 2.
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Linear Isotropic Model
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Figure 3: Varying Linear Isotropic Hardening

Here a cyclic loading 20, -30, 20 (units) is applied. The yield stress during initial tension loading
increases due to hardening and then the compression yield stress grows the same amount for varying
Isotropic Hardening coefficient K. As we increase the value of K, the slope of the deformation changes
and approaches the value of Young’s Modulus (25 units) as seen in Figure. 3. The material starts
behaving elastically when isotropic hardening coefficient equals young modulus .

Linear Kinematic Model
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Figure 4: Varying Linear Kinematic Hardening

Kinematic hardening correctly accounts for Bauschinger effect. When kinematic hardening is applied,
the material softens in compression and thus can correctly model cyclic behaviour. As the Kinemtic
Hardening coefficient increases, the symmetric nature of tension-compression is gradually lost as the
material softens more in compression.
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Rate Dependent Plasticty

Effect of Varying Viscosity
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Figure 5: Varying Viscosity with constant Loading Rate(Stress vs. Strain)

0 1 2 3 4 5 6
−30

−20

−10

0

10

20

30
Rate Dependent, Loading Rate=0.1, Varying Viscosity

Time t

S
tr

es
s 

σ

 

 

η = 5
η = 10
η = 50
η = 0

Figure 6: Varying Viscosity with constant Loading Rate(Stress vs.Time)

Here the loading cycle is 20,-30,20 (units). The Yield stress is 10 (units), Young’s modulus = 25
(units). We consider a rate dependent plasticity model with constant strain rate and we vary the
viscosity coefficients to understand the influence of viscosity parameter (η). The isotropic and kine-
matic hardening coefficients are taken to be zero for better understanding the effects of viscosity.

When the viscosity is zero, the material behaves like perfect plasticity condition with stresses not
going beyond yield stress.As the viscosity is increased, the material gets deformed and the stress
go beyond the yield stress. Upon further increase of viscosity, the streses go much further than the
yield surface as seen in Figure. 6. If the coefficient of viscosity is taken to of be very high value, the
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material will start behaving elastically. The plastic strain decreases with the increase of viscosity as
seen in Figure 7 and 8 below.
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Figure 7: Strain vs. Time at η = 5
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Figure 8: Strain vs. Time at η = 50

Effect of Varying Loading Rate

Here the loading cycle is 20,-30,20 (units). The Yield stress is 10 (units), Young’s modulus = 25
(units). We consider a rate dependent plasticity model with constant viscosity and we vary the
loading rate to understand the influence of loading rate (dt). The isotropic and kinematic hardening
coefficients are taken to be zero for better understanding of the effects.
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dt = 0.10
dt = 0.25
dt = 0.40

Figure 9: Varying Loading Rate with constant Viscosity(Stress vs. Strain)
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dt = 0.10
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dt = 0.40

Figure 10: Varying Loading Rate with constant Viscosity(Stress vs.Time)

When dt is low, i.e. the strain rate is high, the effects of viscosity is clearly visible. The stresses
exceed the yield stress as seen in Figure 9. As the strain rate is decreased, i.e. dt is increased the rate
of increase of stress becomes gradually lower as seen in 10. Upon further increase of dt, i.e. when
strain rate is made much lower, the material approaches quasi-static state. If the loading rate is very
low , the material will start behaving perfectly plastic with little or no effect of viscosity as seen in
Figure 12.
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Figure 11: High Strain rate at dt = 0.1
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Figure 12: Very Low Strain Rate dt = 5
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Recovery of Rate Independent response from Rate Dependent Result

Here the loading cycle is 20,-30,20 (units). The Yield stress is 10 (units), Young’s modulus = 25
(units). We consider a rate dependent plasticity model with constant loading rate and we vary the
viscosity to recover the rate independent response. The isotropic and kinematic hardening coefficients
are taken to be zero for better understanding.
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Figure 13: Varying Viscosity with constant Loading Rate(Stress vs. Strain)
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Figure 14: Varying Viscosity Rate with constant Loading Rate(Stress vs. Time)

From the Figure. 13 & 14 above, we observe that, when very small value of viscosity coefficient
is considered, we recover the Rate Independent response from Rate Dependent result.

6



Non-Linear Isotropic Hardening

Influence of Exponential Coefficient

Here the loading cycle is 20,-30,20 (units). The Yield stress is 10 (units), Young’s modulus = 25,
σ∞ = 15 (units). We consider a rate independent non linear isotropic plasticity model for simplicity
and better undertanding. While calculation of non-linear isotropic hardening, the linear hardening
effect is not added to the exponential saturation law, since we are considering only the saturation
law.
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Figure 15: Rate Independent Non-linear Isotropic Hardeing Plasticity with varying delta

When the exponential coefficient δ is zero, the material gives perfect plastic response. As the
value of δ is increased we start to get a non-linear exponential hardening plot which approaches the
value of σ∞. The stress will never go beyond the saturation point. With increasing value of δ, the
tangential slope of hardening, approaching σ∞ increases.
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We next consider a Rate Dependent Non-Linear Isotropic and Linear Kinematic Hardening case.
Here the loading cycle is 20,-30,20 (units). The Yield stress is 10 (units), Young’s modulus = 25, σ∞
= 15 (units) , viscosity η = 5 , δ = 1, Kinematic Hardening = 10 (units). We get the following plots.
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Figure 16: Stress vs. Strain
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Figure 17: Stress vs. Time
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Figure 18: Strain vs. Time
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APPENDIX

  1 clear all

  2 clc

  3 

  4 %%---------------      Material Properties---------------

  5 E           =   25;     %Young modulus

  6 yield       =   10;     %Yield stress

  7 eta         =   5;      %Viscosity

  8 K           =   10;      %Isotropic Hardening

  9 H           =   10;      %Kinematic Hardening

 10 sigma_infy  =   15;

 11 %%-------------------------------------------------------

 12 delta=1;

 13 %----------------       Loading Rate---------------------

 14 dt=0.1;

 15 

 16 disp('[1] Linear case')

 17 disp('[2] Nonlinear case')

 18 method=input('Choose method:');

 19 

 20 %%---------------      Loading      --------------

 21 nSteps          =   20;

 22 sigmaP          =   [20;-30;20];

 23 load_Steps      =   size(sigmaP,1) ;

 24 timeSteps       =   nSteps*ones(1,load_Steps);

 25 %%-------------------------------------------------------

 26 

 27 strain_History  =   StrainHistory(E,sigmaP,timeSteps);

 28 

 29 if method==1        %Linear Case

 30 

 31 sigma_trail     =   zeros(1 , length(strain_History)) ;

 32 f_trial         =   zeros(1 , length(strain_History)) ;

 33 zeta_trial      =   zeros(1 , length(strain_History)) ;

 34 stress          =   zeros(1 , length(strain_History)) ;

 35 strain_plas     =   zeros(1 , length(strain_History)) ;

 36 qbar            =   zeros(1 , length(strain_History)) ;

 37 alpha           =   zeros(1 , length(strain_History)) ;

 38 

 39 

 40 for n=1 : length(strain_History)-1

 41     sigma_trail(n+1)    = E * (strain_History(n+1) - strain_plas(n)) ;

 42     zeta_trial(n+1)     = sigma_trail(n+1) - qbar(n) ;

 43     f_trial(n+1)        = abs(zeta_trial(n+1)) - ( yield + K * alpha(n) ) ;

 44     

 45     if f_trial(n+1) <= 0    %% within elastic limit

 46         

 47         stress(n+1)       =  sigma_trail(n+1) ;

 48         strain_plas(n+1) =  strain_plas(n);

 49         qbar(n+1)        =  qbar(n);

 50         alpha(n+1)       =  alpha(n) ;

 51         

 52     else                    %% Plasicity starts

 53         %Updation of internal variables takes place 

 54         

 55         gamma            = ramp_fn(f_trial(n+1)) / (E + K + H + eta / dt) ;

 56         stress(n+1)       = sigma_trail(n+1) - gamma * E ...

 57                                                    *sign(zeta_trial(n+1)) ;

 58                                                

 59         strain_plas(n+1) = strain_plas(n) + gamma ...

 60                                                   * sign(zeta_trial(n+1)) ;
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 61                                               

 62         alpha(n+1)       = alpha(n) + gamma ;

 63         qbar(n+1)        = qbar(n) + gamma * H * sign(zeta_trial(n+1)) ;

 64 

 65     end

 66     

 67 end

 68 

 69 elseif method==2    %Non Linear

 70     

 71 dt=1e-1;

 72 sigma_trail     =    zeros(1 , length(strain_History)) ;

 73 f_trial         =    zeros(1 , length(strain_History)) ;

 74 zeta_trial      =    zeros(1 , length(strain_History)) ;

 75 stress          =    zeros(1 , length(strain_History)) ;

 76 strain_plas     =    zeros(1 , length(strain_History)) ;

 77 qbar            =    zeros(1 , length(strain_History)) ;

 78 q               =    zeros(1 , length(strain_History)) ;

 79 alpha           =    zeros(1 , length(strain_History)) ;

 80 gamma           =    zeros(1 , length(strain_History)) ;

 81 

 82 for n=1 : length(strain_History)-1

 83     

 84     sigma_trail(n+1)    =    E * (strain_History(n+1) - strain_plas(n)) ;

 85     zeta_trial(n+1)     =    sigma_trail(n+1) - qbar(n) ;

 86     q(n)                =    - phi(alpha(n),delta,sigma_infy,yield) ;

 87     f_trial(n+1)        =    abs(zeta_trial(n+1)) - yield + q(n) ;

 88     

 89     if f_trial(n+1) <= 0        %Elastic state

 90         

 91         stress(n+1)         =    sigma_trail(n+1) ;

 92         strain_plas(n+1)    =    strain_plas(n);

 93         qbar(n+1)           =    qbar(n);

 94         alpha(n+1)          =    alpha(n) ;

 95         

 96     else                        %plastic state

 97         %Updation of internal variables takes place       

 98 

 99         gamma(n+1) = Newton(f_trial(n+1),dt,E,H,eta,alpha(n),delta...

100                                                     ,sigma_infy,yield) ;

101                                                 

102         stress(n+1) = sigma_trail(n+1) - gamma(n+1)*dt * E ...

103                                                 *sign(zeta_trial(n+1)) ;

104                                             

105         strain_plas(n+1) = strain_plas(n) + gamma(n+1)*dt  ...

106                                                 *sign(zeta_trial(n+1)) ;

107                                             

108         alpha(n+1) = alpha(n) + gamma(n+1)*dt ;

109         qbar(n+1)  = qbar(n) + gamma(n+1)*dt * H * sign(zeta_trial(n+1)) ;

110 

111     end

112 end

113 

114 end

115 

116 %---------------------          Postprocssing-----------------------

117 hold on

118 time=0:dt:(dt*nSteps*load_Steps);

119 

120  figure(1)
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121 plot(time,stress,'.-','LineWidth',2,'Markersize',15)

122 title('Rate Dependent, \eta =5,Varying Loading Rate dt','Fontsize',16)

123 xlabel('Time t','Fontsize',16)

124 ylabel('Stress \sigma','Fontsize',16)

125 

126 figure(2)

127 plot(strain_History,stress,'.-','LineWidth',2,'Markersize',15)

128 title('Rate Dependent, \eta =5,Varying Loading Rate dt','Fontsize',16)

129 xlabel('Strain \epsilon','Fontsize',16)

130 ylabel('Stress \sigma','Fontsize',16)

131 

132 figure(3)

133 area(time,(strain_History),'facecolor','g')

134 area(time,(strain_History-strain_plas'),'facecolor','r')

135 

136 %-------------------------------------------------------------

137 

 

 1 function gamma2=Newton(trial_f,dt,E,H,eta,alpha,delta,sigma_infy,yield)

 2 gamma1=0;

 3 relErr=1;

 4 

 5 while (relErr>1e-13)

 6     

 7     gamma2=gamma1-residue(gamma1,trial_f,dt,E,H,eta,alpha,delta...

 8                             ,sigma_infy,yield)/D_residue(gamma1,dt,E,H...

 9                                         ,eta,alpha,delta,sigma_infy,yield);

10                                     

11     

12     relErr=abs(gamma2-gamma1);

13     gamma1=gamma2;

14     

15     

16 end

17 

18 end

 

1 function value=residue(gamma,trial_f,dt,E,H,eta,alpha,delta,sigma_infy,yield)

2 

3 value = trial_f - gamma * dt * (E+H+eta/dt) -...

4                     (phi(alpha + gamma * dt,delta,sigma_infy,yield) -...

5                                         phi(alpha,delta,sigma_infy,yield));

6 end
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1 function value = D_residue(gamma,dt,E,H,eta,alpha,delta,sigma_infy,yield)

2 

3 value =  - dt * (E + (sigma_infy - yield) * delta *...

4             exp(- delta * (alpha + gamma * dt)) + H + eta / dt);

5         

6 end

 

1 function value=phi(alpha,delta,sigma_infy,yield)

2 

3 value = (sigma_infy - yield)*(1 - exp(-delta*alpha)) ;

4 

5 end

 

 1 function strain=StrainHistory(E,sigma,istep)

 2 

 3 sigma=[0;sigma];

 4 STRAIN = zeros(size(sigma,1),1);

 5 

 6 for   iloc = 1:size(sigma,1)-1

 7     

 8     sigma_0 =sigma(iloc+1,1);

 9     strain_di=sigma_0/E;

10     STRAIN(iloc+1,1)=strain_di;

11 end

12 

13 [strain] = calstrain_IN(istep,STRAIN);

14 end

 

1 function ramp = ramp_fn(value)

2 

3 ramp = ( abs(value) + value ) / 2;

4 

5 end
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