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Part 1: Rate Independent Models

Total 6 different models were simulated to verify
the correctness of algorithm.  Parameters such
as, Loading Data, Hardness Type, Hardness
Modulus, Model Type were varied. For all models
of this section, Young’s Modulus (E), Poisson’s
Ratio (v) and Yield Stress (o,) were kept constant,
20000, 0.3 and 100. All constituent models are
simulating a plane-strain condition and are inviscid.
Total duration of simulation is taken as 10.

In general, all curves are labeled using numbers. They
serve the purpose of indentifying curve directions and
are also used descritption in text. Note that same
numerbered locations between two distinct figures are
in general not same.

Model 1

This simulates 1D loading/unloading for a non-
symmetric model (n=2) with linear H = 0.5.
Undamaged stresses are as follows: Step 1. o1 = 400,
02=0. Step 2. 01=-2000,00=0. Step 3. o1 = 1100,
02=0. 10 sub-steps were used for each load-step.
(For simplicity of depiction, sub-steps for plotting
damage surfaces were reduced).
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Figure 1: Model 1, Damage Surface Evolution

The evolution of ¢ (Figure 2) indicates three incre-
ments in q. It is justified, since there the damage

surface is forced outwards three times. First damage
happens when load reaches yield stress between 1-2.
At point 2, unloading begins and then as it further
decreases and reaches the compressive damage sur-
face (Contour of point 2) and damage increases till
point 3. The third occurence of damage begins, since
the loading increases in tension side crossing the new
damage surface (Contour of point 3) to reach point 4.
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Figure 2: Model 1, Damage Parameter Evolution
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Figure 3: Model 1, Stress vs Strain

Figure 3, shows that the loading and unloading curves



are not overlapping exactly. This is due to the hard-
ening modulus. Also, since there is no plasticity, the
curves must pass through origin when loading is re-
versed. The assumption of constant H was done for
this model, which can be verified from the plot of ¢
vs r as shown in Figure 4, which has a constant slope.
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Figure 4: Model 1, Constant H

Model 2

This simulates 1D loading/unloading for a Tension-
Only model with linear H = 0.5. Undamaged
stresses are same as that of Model 1.10 sub-steps
were used for each load-step.

The evolution of damage surface (Figure 5) is
asymptotic to -Y and -X axes which is justified
since, the material cannot reach damage surface in
compression. From 1-2, when material reached yield
stress, damage surface is pushed outwards (since
H;0), damage increases.(First increment in ’d’ shown
Figure 6). From 2-3 (unloading and compression
phase), damage would remain constant (Tension
Only). When reloading occurs during 3-4, damage
surface is pushed again from damage contour of
point 2 to point 4.
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Figure 5: Model 2, Damage Parameter Evolution

0.5

Ve

0.3¢

0.2t

0.1}

0 2 4 6 8 10
Time

Figure 6: Model 2, Damage vs Time

The stresses in compression zone are retraced back as
shown in Figure 7 (since no damage in compression).
But it is not the case in tension, and some deviation
in the loading and unloading curves can be observed.
Figure 8 shows the evolution of o1 with time.
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Figure 7: Model 2, Stress vs Strain
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Figure 8: Model 2, Damage vs Time



Model 3

This simulates 1D loading/unloading for a tension
only model with exponential type such that H = 0.3
at r = rg. ¢ is taken as 1.1rg. Undamaged stresses
are as follows: Step 1. o; = 200, 02=0. Step 2.
01=100,02=0. Step 3. o1 = 500, o2=0. 2s0 sub-steps
were used for each load-step.

Two damage increments occur. First between 1-2
when load exceeds the yield stress. The second
increment is between 3-4 when loading pushes the
new damage surface (contour of point 2), similar to
Model 2. (9)
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Figure 9: Model 3, Damage Surface Evolution
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Figure 10: Model 3, Stress vs Strain

Another observation is that, in inelastic loading
phase, the subsequent damage surfaces are nearer to
each other and damage surface are approaching a lim-
iting surface. At this point, H would be zero. Thus,
the stress-space would be bounded by this surface
even though there would be no such limit on strain-
space.
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Figure 11: Model 3, Exponential Hardening

Stress-Strain curve (Figure 10) indicates that 1-2-3
is linear since load is less than yield stress. From 3
onwards, nonlinearity kicks in, to follow path 3-4-5
at which unloading starts. After 6, reloading occurs
via same curve till 5. 5-10 is almost flat, since the
modulus of hardening has reduced to almost H. The
hardening modulus decreases with respect to r there-
fore, the curve becomes more and more flat. The
exponential hardening can be observed in Figure 11
since ¢'(r) — 0.

Model 4

This simulates 1D loading/unloading for a nonsym-
metric model (n=2) with exponential type such that
H = —-0.3 at » = r9. g is taken as 0.975. Undam-
aged stresses are same as that of Model 3. Since,
the range of loading is in first quadrant of principal
stress, Non-symmetric model and tension-only model
would behave identically. 20 sub-steps were used for
each load-step.
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Figure 12: Model 4, Damage Surface Evolution



Since, this is a softening model, the damage surface
moves inwards as the inelastic loading begins.This is
evident from Figure 12. Similar to exponential hard-
ening, the damage surfaces are approaching a limit
damage surface which is inside the original damage
surface.
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Figure 13: Model 4, Stress vs Strain

Comparison of Figure 13 with Figure 10, gives
valuable insight into hardening and softening. The
stress-behavior is identical till yield stress. But in
case of hardening, the stress would be asymptotic to
a value greater than the yield. On the other hand,
in case of softening, stress would be asymptotic to a
value lesser than the yield.

From evolution of ¢ over time, it is observed that, ¢
got reduced in two processes and remained constant
otherwise. First decline is during the loading, (as
soon as load reaches yield, ¢ would start decreasing).
Then for the entire time of unloading and loading
(until current state), ¢ would be constant since there
is no inelastic loading. The second decline occurs
when the stress reaches point 6 in Figure 13.
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Figure 14: Model 4, q vs Time
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Figure 15: Model 4, Exponential Softening

The hardening modulus increases (approaches zero
from negative side) with respect to r therefore, the
curve becomes more flat. The exponential hardening
can be observed in Figure 15 since ¢'(r) — 0.

Model 5

This simulates 2D loading/unloading for a non-
symmetric model (n=2) with linear H = 0.3.
Undamaged stresses are as follows: Step 1. o1 = 200,
09=0. Step 2. 0;=100,0,=-100. Step 3. o1 = 500,
02=300. 10 sub-steps were used for each load-step.

The red lines in Figure 16 depict the undamaged
model. During loading along path 1-2, the damage
surface is pushed outwards once the elastic loading
reaches damage surface. 2-3 is elastic unloading
(since it is within the new damage surface), thus no
change in damage surface. 3-2 is elastic loading and
after 2-4, it is inelastic loading, thus creating damage.
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Figure 16: Model 5, Damage Surface Evolution
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Figure 17: Model 5, Stress vs Strain, First Principal
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Figure 18: Model 5, Stress vs Strain, Second Princi-
pal
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Figure 19: Model 5, q vs Time

With refernce to Figure 17, till point 2, oo is 0.
Thus, it is an uniaxial model effectively. Therefore,
when o7 reaches 100 (o), hardening begins (linear
hardening) (2-3). 3-4-5 is elastic unloading-loading.

From 5-6-7 it is again linear hardening. With ref-
erence to Figure 18, from 0-1, strain decreases, due
to poisson’s ratio (dependence on o). from 1-2-3 is
elastic unloading-loading. From 3-4 inelastic-loading.

Since, H is constant, in inelastic-loading, ¢ would be
linear which is evident from Figure 19. The phase
with constant g is the elastic unloading-loading phase.

Model 6

This simulates 2D loading/unloading for a non-
symmetric model (n=2) with linear H = 0.3.
Undamaged stresses are as follows: Step 1. o1 = 200,
09=200. Step 2. 01=100,0,=100. Step 3. o1 = 500,
02=500. 10 sub-steps were used for each load-step.
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Figure 20: Model 6, q vs Times
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Figure 21: Model 6, q vs Times

Since, this is a symmetric loading in terms of o
and o9, both stresses should behave exactly same.
(Isotropic nature of constitutive model). This fact is
evident from Figure 21 to Figure 24.

The red line indicates the undamaged stress states.
Since, loading and unloading of both stress is same in



quantity, the lines of loading and unloading overlap in
principal stress space. 2-3-2 path is indicative of this
elastic unloading-loading. Both the stresses behave
identically as expected.
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Figure 22: Model 6, q vs Times
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Figure 23: Model 6, q vs Times
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Figure 24: Model 6, q vs Times
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Figure 25: Model 6, q vs Times

In general, it important to note the following obser-
vations:

1. For all 6 models, the stress could never go outside
damage surface. (Which is based on KKT conditions
for inviscid damage models)

2. Values of d, r, d and 7 remained non-negative.
This is based on the definition of internal variable
and 2nd law of thermodynamics. A check was
implemented in the program to verify the above
conditions.

3. Some values, need to satisfy certain conditions
which were checked in the program. H < £ based
on 2nd law of thermodynamics. Another condition
is A > 0 so that as t — 00, ¢ = ¢so



Part 2: Rate Dependent Models
Dependence on 7

A model with following parameters was simulated.
E = 20000, v = 0.3, H = 0.2 at r = 79, 0y = 100,
Plane Strain, Symmetric Model, Exponential Hard-
ening, o = 1, total time = 10, sub-steps = 10, Un-
damaged stresses = [200,0],[400,0],[600,0].
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Figure 26: Stress vs Strain, n Variation

The behavior is as shown in Figure 26. As 7 ap-
proaches 0, the model starts to loose its viscous be-
havior. Also, 77 is a measure of how far a damage sur-
face can move outwards, with n = 0 means, surface
can move very large distance, if the 7,17 demands
it. So, n allows the state of stress to be outside the
damage surface, but would catch upto it eventually.
So, in summary, more the value of 7, more distance,
the state of stress can be outside the damage surface.
This is evident from the Figure 26, since n = 1 has
the maximum allowance (how high it is from o)

Dependence on ¢
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Figure 27: Stress vs Strain, é Variation

A model with following parameters was simulated.
E = 20000, v = 0.3, H =02 at r = 79, 0, = 100,
Plane Strain, Symmetric Model, Exponential Hard-
ening, « = 1, n = 0.5, sub-steps = 10, Undam-
aged stresses = [200,0],[400,0],[600,0]. Different strain
rates were obtained by changing the total time.

The behavior is as shown in Figure 27. As é ap-
proaches 0, the model starts to loose its viscous be-
havior. It becomes more like a static loading scenario.
This model thus simulates the known fact that mate-
rials resist loads with higher strain rate more easily.
To summarize, as é decreases, the solution approaches
towards the inviscid solution which is evident from
the Figure.

Dependence on o

The integration methods for o« < 0.5 are not stable
from theory. This is also seen in the practice. The
model with following parameters showed the above
statement is true. The key to get oscillations, ac-
cording to the author, is to get 7, in elastic doamin,
but 7,11 outside elastic surface. So when they are
averaged (using weighting factor «), one might get
a value which is still inside the elastic region. So
a situation would arise, that the loading is outside
elastic domain, but the method has failed to identify
it since, its weighted average is still inside elastic
regime.

Following parameters were used to simulate this
model. E = 20000, v = 0.3, H = 0.2 at r = rq,
oy = 100, Plane Strain, Symmetric Model, Exponen-
tial Hardening, , total time = 100, n = 0.5, sub-steps
= 10, Undamaged stresses = [190,0],[400,0],[600,0].
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Figure 28: Stress vs Strain, a Variation

Dependence of C; on «

The algorithm to calculate Algorithmic and Tangent
constitutive operators was written as a post process
since all the parameters are known and are stored



in a custom-written database. As shown in Figure
29, as «a reduces to 0, difference between two tangent
operators decreases and ultimately becomes 0 when
« = 0 which is as sexpected from the theory.
Following parameters were used to simulate this
model. E = 20000, v = 0.3, H = 0.2 at r = rq,
oy = 100, Plane Strain, Symmetric Model, Exponen-
tial Hardening, , total time = 10, n = 0.5, sub-steps
= 10, Undamaged stresses = [190,0],[400,0],[600,0].
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Figure 29: Difference of C1; vs Time, « Variation

Modified Code

Please refer to the attached .rar folder for the code.
I have written my own post processing routines for
easy plotting of multiple variables at the same time.



