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Introduction:

In the present paper we discuss about the various stress surfaces and stress vs. strain plots
generated by different tensile loading or compressive loading. We also discuss the effects of
strain rates, viscosity and other parameters on the stress strain graph.

Part | (Rate Independent)

Here we implement in and study the supplied MATLAB code the integration algorithms (rate
independent and plane strain case) for:

a. The continuum isotropic damage “non-symmetric tension-compression damage” model.

b. The “tension-only” damage model.

Inviscid Model (Tension only damage model)

Case 1:
Aal(l) =a ; Aaz(l) = 0 (Unaxial Tensile Loading)
Aal(z) =—0 ; Aaz(z) = 0 (Unaxial Tensile Unloading/Compressive Loading)

(3)

A01(3) =y ; Aoc,” =0 (Unaxial Compressive Unloading /Tensile Loading)

Here we compute for @=300, =250 and y=400 and we consider yield stress as 100 N/m? with
linear hardening modulus 0.1, getting the following plot:
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Figure 1.

From the above Figure (1), we notice that, at first tensile loading is applied and the material
behaves elastically when within the yield stress of 100 N//m?. But as soon as the loading



exceeds the yield stress, the material starts deforming and it experiences hardening and the
elastic domain increases. Next during compressive loading the load path remains within the
yield stress and there is no deformation at this stage. And then during tensile loading the load
path does not exceed the new yield stress and no deformation takes place.

Case 2:
AP =a ;5 AcP =0 (Unaxial Tensile Loading)
1 =a 2 = 9
Aal(z) =—B ; Aaz(z) = —f (Biaxial Tensile Unloading/Compressive Loading)

(3)

A01(3) =y ; Ao,” =y (Biaxial Compressive Unloading/Tensile Loading)

Here we compute for @=300, =250 and y=400 and we consider yield stress as 100 N/m? with
linear hardening modulus 0.1, getting the following plot:

Damage surface (principal stresses axes)
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From the above Figure (2), we notice that, at first tensile loading is applied and the material
behaves elastically when within the vyield stress of 100 N//m?. But as soon as the loading
exceeds the yield stress, the material starts deforming and it experiences hardening and the
elastic domain increases. Next during biaxial compressive loading the load path remains within
the yield stress and there is no deformation at this stage. And then during next biaxial tensile
loading the load path exceeds the new vyield stress and deformation takes place, thus increasing
the damage surface.

o

@

o

=
T

hardening variable (q)
T

=]
o
T

I i | i i
15 2 25 3
internal variable (r)

o
m

Figure 3.
From figure 3. we see the linear variation of hardening variable w.r.t. to internal variable.



Case 3:
AeP =a ; AcP = o (Biaxial Tensile Loadin
1 — % 2 = 9)
Aal(z) =—0 ; Aaz(z) = —f (Biaxial Tensile Unloading/Compressive Loading)

(3)

A01(3) =y ; Aoc,” =y (Biaxial Compressive Unloading /Tensile Loading)

Here we compute for @=300, =650 and y=400 and we consider yield stress as 100 N/m? with

linear hardening modulus 0.1, getting the following plot:

Damage surface (principal stresses axes)
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Figure 4.

From the above Figure (4), we notice that, at first tensile loading is applied and the material
behaves elastically when within the yield stress of 100 N//m?. But as soon as the loading
exceeds the yield stress, the material starts deforming and it experiences hardening and the
elastic domain increases. Next during biaxial compressive loading the load path exceeds the
yield and but there is no deformation since it lies within the deformed surface. And then during
next biaxial tensile loading the load path exceeds the new yield stress and deformation takes
place, thus increasing the damage surface.

Inviscid Model (Non Symmetric tension compression damage model):

Case 1:
Aal(l) =a ; Aaz(l) = 0 (Unaxial Tensile Loading)
Aal(z) =—0 ; Aaz(z) = 0 (Unaxial Tensile Unloading/Compressive Loading)

(3)

A01(3) =y ; Aoc,” =0 (Unaxial Compressive Unloading /Tensile Loading)

Here we compute for @=300, =250 and y=400 and we consider yield stress as 100 N/m? with
linear hardening modulus 0.1, getting the following plot:
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Figure 5.

From the above Figure (5), we notice that, at first tensile loading is applied and the material
behaves elastically when within the yield stress of 100 N/m?% But as soon as the loading
exceeds the yield stress, the material starts deforming and it experiences hardening and the
elastic domain increases. Next during uniaxial compressive loading the load path remains
within the vyield stress and there is no deformation at this stage. And then during uniaxial
tensile loading the load path exceeds the new yield stress and deformation takes place, thus
increasing the damage surface.

Case 2:
AP =a ;5 AcP =0 (Unaxial Tensile Loading)
1 —a 2 = g

Aal(z) =—B ; Aaz(z) = —f (Biaxial Tensile Unloading/Compressive Loading)

A01(3) =y ; Aaz(g)

=y (Biaxial Compressive Unloading/Tensile Loading)
Here we compute for @=300, =250 and y=400 and we consider yield stress as 100 N/m? with
exponential hardening modulus 0.1, getting the following plot:

Damage surface (principal stresses axes)
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Figure 6.



From the above figure 6. we can see that the material initially behaves like in the previous case.
But after the final biaxial tensile loading the load path does not exceed the new vyield stress and
no deformation takes place at the final step. Now the hardening variable vs internal variable is
plotted below:
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Figure 7

From the above plot we see that q’(r) is always greater than zero. The hardening variable
exponentially approaches the g_infinity.

Case 3:
AeP =a ; AcY = o (Biaxial Tensile Loadin
1 — % 2 = 9)
Aal(z) =—0 ; Aaz(z) = —f (Biaxial Tensile Unloading/Compressive Loading)

(3)

A01(3) =y ; Aoc,” =y (Biaxial Compressive Unloading /Tensile Loading)

Here we compute for @=300, =650 and y=400 and we consider yield stress as 100 N/m? with
linear hardening modulus 0.5, getting the following plot:
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From the above Figure (8), we notice that, at first tensile loading is applied and the material
behaves elastically when within the yield stress of 100 N//m?. But as soon as the loading
exceeds the yield stress, the material starts deforming and it experiences hardening and the
elastic domain increases. Next during biaxial compressive loading the load path exceeds the



yield stress and deformation takes place at this stage. And then during biaxial tensile loading
the load path exceeds the new vyield stress and deformation takes place, thus increasing the
damage surface again. Now the internal variable vs time is plotted below:
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Figure 9.

From the figure 9. we see that 7 is always greater than equal to zero.

A brief discussion on exponential softening is given below for tension only damage model:

Aal(l) =a ; Aaz(l) = 0 (Unaxial Tensile Loading)
Aal(z) =—B ; Aaz(z) = —f (Biaxial Tensile Unloading/Compressive Loading)

A01(3) =y ; A02(3) =y (Biaxial Compressive Unloading/Tensile Loading)

Here we compute for @=300, =250 and y=400 and we consider yield stress as 100 N/m? with
exponential softening modulus 0.5, getting the following plot:

Damage surface (principal stresses axes)
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From the above plot we see that g(r) is less than zero. The hardening variable exponentially
approaches the q_infinity.

By studying all the above cases, the correctness of the implementation has been concluded.



Part Il (Rate Dependent)

Here we study and implement in the supplied MATLAB code the integration algorithms (plane

strain case) for the continuum isotropic visco-damage “symmetric tension compression”
model.”

Variable Viscosity Parameter n:
Here we compute for Young’s Modulus = 20000, Poisson ratio = 0.3, Linear Hardness Parameter

= 0.2, Yield Stress = 100, Sigmal = [300,0], Sigma2 = [600,0], Sigma3 = [900,0], No of time
increments =5
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Damage surface (principal stresses axes)
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From Figure 12 & 13 we can deduce that as the viscosity increases, the stresses can increase at
much faster than the damage surface. Conversely if the viscosity is zero, then the stresses
cannot cross over the damage surface.

Variable Viscosity Parameter a:

Here we compute for Young’s Modulus = 20000, Poisson ratio = 0.3, Linear Hardness Parameter

= 0.2, Yield Stress = 100, Sigmal = [300,0], Sigma2 = [600,0], Sigma3 = [900,0], No of time
increments =5, Viscosity=1
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From the above figure we see that the solution is stable for 0.5 < a < 1. For values of «a less
than 0.5, the solution is unstable and there are a lot of oscillations. This is validated in theory
too since when a = 0, the solution is obtained by Forward Euler method (Explicit method thus
stability issues) and for &« = 1, it is obtained by Backward Euler method (Implicit method).

Variable Strain Rate &:

Here we compute for Young’s Modulus = 20000, Poisson ratio = 0.3, Linear Hardness Parameter
= 0.2, Yield Stress = 100, Sigmal = [300,0], Sigma2 = [600,0], Sigma3 = [900,0], Viscosity= 1,
alpha=0
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Figure 15



Damage surface (principal stresses axes)
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Figure 17

We change the Total Time of 100s and 1000s to vary the strain rate. At low strain rates the
apparent stress does not exceed the vyield stress and remains within the elastic domain, as
apparent from Figure 15 & 16. From Figure 17 we see that stress vs. strain almost remains
same and there is little effect of varying strain rate.

Conclusion:

By studying various models, different cases and taking into account of effects of various
process parameters, we come to the conclusion that the MATLAB code has been properly
implemented, giving satisfactory results which in turn can be validated by present theory of
Computational Solid Mechanics theory.



ANNEXTURE

Modified Routines in Modelos de danol:

if (MDtype==1) %% Symmetric
rtrial= sqrti{eps nl*ce*eps nl');

elaeif (MDtype—2) %* Only ten=sion
stress=ce*eps nl';

stress(stress<0)=0; $=tores only the positive part , rest are put zero

rtrial=sgrt (eps nl¥stress); IFComputation of sStrain norm

elseif (MDtype=—3) IF*Non-symmetric
stresz=ce¥*eps nl';
stress plus=stress;
stress plus (stress plus<0)=0; %Istores only the positive part , rest are put zero
num = sum| {stress plus=});
den = sum{ {abs{stress)));
theta = num/den;
rtrial = (theta + (l-theta) /n)* sgrt(eps nl * ce*eps nl'}; IComputation of strain norm

end

o R R R R R o o R R R R R R R R o o o R R R R R R R R o o R o R R o o R o o R R o R o o R R R o o R R R R R R

return

Modified Routines in dibujar criterio danol:

elseif MDtype==2 ftension ::_ﬂ
tetha=[0:0.01:2*pi}];

R R R R R N R R R R R R R R R R R R R R N R R R R R R A N R R R R R A N R R R A R A N R R R AR R AR AR AR R R R AR R AR AR

¥+ RADTUS

D=size {tetha) i* Range
ml=cos (tetha) k1

nl=mi;

nl (ni<0}=0;

mt=sin (tetha) ; e

n2=m2;

n2 (n2<0)=0;

Contador=D({1,2}): E 1

radio = zeros(1l,Contador)
=1
2

zeros (1, Contador)

zeros {1, Contadoxr) ;

for i=l:Contador
radio(i)= gf=sqgrt{[nl{i) n2 (i)} O nu* (nl (i} +n2 (i} }]1*ce inv*[ml (i} m2 (i) O
nu* {ml (i)4m2 (i)} )"}
sl{i)=radio(i)*ml (i} ;
s2(i)=radio(i)*m2Z (i)

end
hplot =plot(sl,s2,tipo linea):;
axis(I-400 &00 300 4001%



elseif MDtype—3 % Non symmetric
tetha=[0:0.01:2*pi];
E RADIUS
D==ize (tetha); %* PRange
ml=cos= (tetha);
m2=sin{tcetha);
Contador=D({1,2):
radio = zeros(l,Contador) ;
sl = zeros {1,Contador) ;

=2 = zeros (1,Contador)}

for i = 1:Contador
den = abs(ml(i))+abs(m2(1)):

nl =ml{i}:

n? = m2{i);

if ni<0 nl = 0:
end

if m2<0 n2 = 0;
end

num = nl+n2;
radio(i)= g/ (({(num/den)+(1- (num/den) )/ n) *sqgrc([ml (i) m2 (i) O nu*(ml (i)+m2(i))]|. ..
ce inv*[ml(i) m2(i) 0 nu*(ml(i)+m2(1i))]"}}:
gl{i)=radio(i)*ml{i):
g2 (i)=radio(i)*m2 (i) :
end

Modified Routines in rmap_danol:

if (viscrp — 0 )} % Invis=scid
if({rtrial > r mn)
i+ Loading

fload=1;
delta r=rtrial-r n;
r nl= rtrial ;
if hard type = 0
¥ Linear
g nl= g n+ H*delta r;
else
if H>0
g infi=ro*1.1;
A = (H*rQ)/{g infi-r0d):
H new= (&* (g infi-r0)*exp{A*(1-rtrial/r0)})/r0;
g nl= g n + H new*delta r:
else
g infi=r0*0.5;
4 = (H*r0)/ (g infi-r0}:
H new= (A* (g infi-r0)*exp (A*(l-rtrial/r0)})/c0;
g nl= g n + H new*delta r;
end
end
if (g nl<zero g
g nl=zero g:
end




else RFOR VISCOUS {("viscrp =— 1)

rtrial=(1-alpha)*r n+alpha*rtrial;

if{rrrial > r n}
F® Loading

fload=1;

delta r=rtrial-r n;

E _Al= iiieta—delta_t*il—alpﬂa]]f{eta+alphe*delta_t]]*I_n] +
iidelta_tfieta+alpha*delta_t}}*Itrialj:

if hard type = 0

g nl= g n+ H¥*delta r;
el=se
FExponential
g infi=r0*%*1.3;
A = (H*rd)/ (g infi-rd);
H new= (A% (g infi-r0)*exp(B&* (1-rtrial/rd)})/r0;
g nl= g n + H new*delta r:

end

if{g nil<zero qj
g nl=zero g:
end



