Computational Solid Mechanics - Assignment 1

Rafael Pacheco 77128580N

April 7, 2017

DAMAGE Models

Universitat Politècnica De Catalunya BARCELONATECH

Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona

Centre Internacional de Mètodes Numèrics en Enginyeria Computational Solid Mechanics

- Assignment 1 -

CONTENTS

1	Introduction	3
2	Rate Independent damage models2.1 Tension-only damage model.2.2 Non-symmetric tension-compression damage model.	3 3 4
3	Hardening3.1Linear Hardening/Softening3.2Exponential Hardening/Softening	5 5 6
4	Assessment of the inviscid model 4.1 Case 1 4.2 Case 2 4.3 Case 3	7 9 9 10
5	Rate dependent damage models5.1 α method	11 11 11
6	Assessment of the viscid model6.1Stress-Strain behaviour6.1.1Case 16.1.2Case 26.1.3Case 36.2effects of α against C_{11}	12 13 13 13 14 15
A	opendices	16
A	ppendix 2: _criterio_dano1.m	16
A	ppendix 2: rmap_dano1.m	18
A	ppendix 3: q_fact_value.m	20
A	ppendix 4: rmap_danovisc.m	21
A	opendix 5: damage_main.m	23
A	ppendix 6: Modelos_de_dano1.m	30
A	ppendix 7: main_nointeractive.m	30

Rafael Pacheco 77128580N

1 INTRODUCTION

The purpose of this assignment is to implement the rate independent and rate dependent damage models algorithm. A Matlab environment algorithm is provided for the student to append the so-called models. The student has to implement the inviscid and viscid models, together with the hardening law.

The models have 3 different constitutive equations:

1 Symmetric tension-compression model:

$$\tau_{\varepsilon} = \sqrt{\varepsilon : \mathbb{C} : \varepsilon} \tag{1.1}$$

2 Tension only model:

$$\tau_{\varepsilon} = \sqrt{\langle \varepsilon \rangle : \mathbb{C} : \varepsilon} \tag{1.2}$$

3 Non-symmetric tension-compression model:

$$\theta = \frac{\sum_{i=1}^{3} < \sigma_i >}{\sum_{i=1}^{3} |\sigma_i|} \quad , \quad \tau_{\varepsilon} = \left(\theta + \frac{1-\theta}{n}\right) \sqrt{\varepsilon : \mathbb{C} : \varepsilon}$$
(1.3)

2 RATE INDEPENDENT DAMAGE MODELS

The inviscid model has been already implemented for Symmetric tension-compression model (Eqn. 1.1). The student has to implement Eqn. (1.2 and 1.3).

2.1 TENSION-ONLY DAMAGE MODEL.

The tension only damage model has yield only working in tensile, therefore the 3rd quadrant is undefined, and the limits with it tend to two asymptotes ($\sigma_1 = 0$ and $\sigma_2 = 0$). To implement this model, the DIBUJAR_CRITERIO_DANO1.M has to be modified:

$$\tau_{\sigma} = \sqrt{\langle \sigma \rangle : \mathbb{C}^{-1} : \sigma} \tag{2.1}$$

1 % Mcaulay brackets

$$m1_2(m1_2<0)=0;$$

$$m2_2(m2_2<0)=0;$$

 $_{4}$ m3_2(m3_2<0)=0;

Computational chanics	Solid	Me-	- Assignt	ment 1 -	Rafael Pac 77128580	checo N	
% loop		1.0(1)			r 1(*)	0(1)	0

```
radio(i) = q/sqrt([m1_2(i) m2_2(i) 0 m3_2(i)] * ce_inv * [m1(i) m2(i) 0 ...
6
  m3(i)]');
7
```

The plot obtained is:

5

Figure 2.1: Tension only damage surface.

2.2 NON-SYMMETRIC TENSION-COMPRESSION DAMAGE MODEL.

Here the compression yielding stress is *n* times greater the tension yield strength. Using Eqn. 1.3 and implementing it inside DIBUJAR_CRITERIO_DANO1.M:

$$\tau_{\sigma} = \left(\theta + \frac{1 - \theta}{n}\right) \sqrt{\sigma : \mathbb{C}^{-1} : \sigma}$$
(2.2)

The plot obtained is:

Figure 2.2: Non-symmetric tension-compression damage surface.

3 HARDENING

3.1 LINEAR HARDENING/SOFTENING

The hardening is calculated by:

$$q(r) = \begin{cases} r_0 + H(r - r_0) & if \quad q < q_\infty \\ q_\infty & if \quad q \ge q_\infty \end{cases}$$
(3.1)

The evolution of the variable q(r) is linear until it reaches the value q_{∞} . Once it reaches, the evolution is zero. Therefore the scheme would be:

$$q_{i+1} = \begin{cases} q_i H(r_{i+1} - r_i) & if \quad q_{i+1} < q_{\infty} \\ q_{\infty} & if \quad q_{i+1} \ge q_{\infty} \end{cases}$$
(3.2)

Eqn. 3.1 and Eqn. 3.2 are implemented into RMAP_DANO1.M:

```
if(rtrial > r_n)
1
 % Loading
2
  fload=1;delta_r=rtrial-r_n;r_n1= rtrial ;
3
  if hard_type == 0
4
  % Linear
5
  q_{inf} = q_{fact} * r0;
6
  if q_fact>=1 % Hardening
7
  if q_n>=q_inf
8
  q_n1= q_inf;
9
```

```
10 else
```


Computational Solid Me-- Assignment 1 -**Rafael Pacheco** 77128580N chanics q_n1= q_n+ H*delta_r; 11 if q_n1>=q_inf 12 $q_n1 = q_inf;$ 13 end 14 end 15 16 else % Softening if q_n<=q_inf</pre> 17 q_n1= q_inf; 18 else 19 $q_n1 = q_n + H * delta_r;$ 20 if q_nl<=q_inf</pre> 21 $q_n1 = q_inf;$ 22 end 23 end 24 end 25 hvar_n1(7) = H;%Exporting hardening variable 26

3.2 EXPONENTIAL HARDENING/SOFTENING

In this case, the equation is:

$$q(r) = q_{\infty} - (q_{\infty} - r_0) \exp\left(A(1 - \frac{r}{r_0})\right) \quad , \quad A \ge 0$$
(3.3)

The hardening modulus is computed as:

$$H(r) = \frac{dq(r)}{dr} = A\left(\frac{q_{\infty} - r_0}{r_0}\right) \exp\left(A(1 - \frac{r}{r_0})\right)$$
(3.4)

An important remark is that if q_{∞} has a high value, negatives damages would be obtained and therefore healing. As first picked value in order to compute q_{∞} would be considering the same value as for the constant hardening modulus as in the linear case, also imposing that r_{max} is proportional to r_0 :

$$r_{max} = \beta r_0, \quad e.g.\beta = 2, \quad r_{max} = 2r_0$$

$$\rightarrow \qquad r_0 = q_0, \qquad q_{fact} = \frac{q_\infty}{r_0} = \frac{H}{A} \exp(A) + 1$$
(3.5)

Universitat Politècnica De Catalunya BARCELONATECH

Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona

- Assignment 1 -

Rafael Pacheco 77128580N

E.g. H=0.3 the values of $q\infty$ for $A \in [0.1, 1.5]$:

Figure 3.1: q_{fact} vs A.

Note that for values over 1 the material suffers Hardening and under 1 it suffers Softening. A Matlab file has been added, named Q_FACT_CALCULUS.M (Annex), where it gives the relation between *A* and q_{fact} :

 $q_inf = q_fact * r0;$ 1 $q_n = q_inf - ((q_inf - r0) * exp(A * (1 - (rtrial / r0))));$ 2 $hvar_n1(7) = (A*(q_inf-r0)/r0) * exp(A*(1 - (rtrial / r0)));$ 3

And the generated output can be represented as:

4 Assessment of the inviscid model

To assess the code the parameters were defined as:

- $\alpha = 400$.
- $\beta = 150$.
- $\gamma = 250$.

First case is solved using symmetric tension-compression damage model for linear and exponential hardening schemes. The second case will be for tension only damage model and linear hardening scheme and the third for non-symmetric tension-compression damage model

Figure 3.2: Hardening and Softening schemes.

for linear hardening scheme. Further comparison respect the models and hardening schemes will be explained in the following paragraphs.

Computational	Solid	Me-	- Assignment 1 -	Rafael Pacheco
chanics				77128580N

$$\begin{cases} \Delta \sigma_1 = \alpha &, \quad \Delta \sigma_2 = 0 \text{(uniaxial tensile loading)} \\ \Delta \sigma_1 = -\beta &, \quad \Delta \sigma_2 = 0 \text{(uniaxial tensile unloading/compressive loading)} \\ \Delta \sigma_1 = \gamma &, \quad \Delta \sigma_2 = 0 \text{(uniaxial compressive unloading/tensile loading)} \end{cases}$$
(4.1)

Figure 4.1: Damage surface and stress-strain plots for Case 1.

Note that the material is loaded for the first 11 steps, then is unloaded until 18th step, it keeps compressing until 21st step. Then compressive unloading until step 25 and tensile loading until step 31.

Observe that the results for exponential law grants bigger values of hardening modulus at the beginning and thus the stress for the exponential compared to the lineal is greater.

4.2 CASE 2

 $\begin{cases} \Delta \sigma_1 = \alpha &, \quad \Delta \sigma_2 = 0 \text{(uniaxial tensile loading)} \\ \Delta \sigma_1 = -\beta &, \quad \Delta \sigma_2 = -\beta \text{(biaxial tensile unloading/compressive loading)} \\ \Delta \sigma_1 = \gamma &, \quad \Delta \sigma_2 = \gamma \text{(biaxial compressive unloading/tensile loading)} \end{cases}$ (4.2)

Figure 4.2: Damage surface and stress-strain plots for Case 2.

Note that the first eleven steeps are equal as for Case 1. Then the material unloads until step 17 where the biaxial compressive load begins until step 21. Again from step 21 to 25 the material unloads the compressive stress and until step 31 is under tensile loading.

4.3 CASE 3

 $\begin{cases} \Delta \sigma_1 = \alpha &, \quad \Delta \sigma_2 = \alpha \text{(biaxial tensile loading)} \\ \Delta \sigma_1 = -\beta &, \quad \Delta \sigma_2 = -\beta \text{(biaxial tensile unloading/compressive loading)} \\ \Delta \sigma_1 = \gamma &, \quad \Delta \sigma_2 = \gamma \text{(biaxial compressive unloading/tensile loading)} \end{cases}$ (4.3)

Figure 4.3: Damage surface and stress-strain plots for Case 3.

Computational	Solid	Me-	- Assi	ignment 1 -	Rafael Pacheco
chanics					77128580N

Note that in this case the result is identical to Case 1, with the particularity that is rotated with an angle of 45 degrees. This is because $\sigma_1 = \sigma_2$. Therefore the evolution of the norm of the stress respect to the strain is similar in shape as for Case 1 (linear case).

5 RATE DEPENDENT DAMAGE MODELS

The implementation of the rate dependent damage model is undertaken in DAMAGE_MAIN.M and RMAP_DANOVISC.M.

5.1 *α* METHOD

Here, the α method is introduced. The scheme to obtain $\tau_{\varepsilon_{n+\alpha}}$ is:

$$\tau_{\varepsilon_{n+\alpha}} = (1-\alpha)\tau_{\varepsilon_n} + \alpha\tau_{\varepsilon_{n+1}} \tag{5.1}$$

The scheme has been implemented by using the so-called function RMAP_DANOVISC.M, which is user implemented. The calculation of $\tau_{\varepsilon_{n+1}}$ is perform as:

1 [rtrial0] = Modelos_de_dano1 (MDtype, ce, eps_n0, n);

2 [rtrial1] = Modelos_de_dano1 (MDtype, ce, eps_n1, n);

3 rtrial= rtrial0*(1-alpha)+alpha*rtrial1;

Since this is a viscid model when loading, the equivalence $r_{n+1} = \tau_{\varepsilon_{n+\alpha}}$ does not hold any longer. The following scheme is used instead to calculated r_{n+1} :

$$r_{n+1} = \frac{\eta - \Delta t (1 - \alpha)}{\eta + \alpha \Delta t} r_n + \frac{\Delta t}{\eta + \alpha \Delta t} \tau_{\varepsilon_{n+\alpha}}$$
(5.2)

Note that for $\eta = 0$ and $\alpha = 1$, the inviscid solution holds again. And this is implemented as:

 $r_n l = ((eta-delta_t*(1-alpha)))/(eta+alpha*delta_t))*r_n+...$ (delta_t/(eta+alpha*delta_t))*rtrial;

5.2 IMPLEMENTATION

In order to enable the viscous model, a if statement switches between one or the other. One way to implement both models (rate dependent and independent), is to add some specification as $\eta = 0$ and $\alpha = 1$ when inviscid model is selected and any other value the user wants for

Computational	Solid	Me-	- Assignment 1 -	Rafael Pacheco
chanics				77128580N

viscid model. To be simpler, the student has copied twice the same algorithm as the inviscid part for the viscid algorithm and added the function RMAP_DANOVISC.M. This would read:

```
1 if viscpr == 1
2 % Does computation for viscid model %
3 % ... Algorithm ... + call to rmap_danovisc.m
4 else
5 % Does computation for inviscid model %
6 % ... Algorithm ...
7 end
```

6 ASSESSMENT OF THE VISCID MODEL

The following parameters are defined for the viscous case:

- Symmetric damage model.
- v = 0.3.
- H = 0.3 and linear.
- $\sigma_1 = 400$.

Only constant uniaxial load step is introduced, since it is clearer to observe the effect of the viscosity, strain-rates and time-integration constant to the stresses.

Computational Solid Mechanics

- Assignment 1 -

Rafael Pacheco 77128580N

6.1 STRESS-STRAIN BEHAVIOUR

6.1.1 CASE 1

Stress-Strain curves against viscosities:

Figure 6.1: Stress-strain against viscosity.

As predicted by the formulation, if the viscosity is not zero, the stresses will increase. Notice that in the elastic region, viscosity is equal to 0.

6.1.2 CASE 2

To assess the effect of the strain-rates, one has to to modify the total time of loading.

Stress-Strain curves against strain-rates:

Universitat Politècnica De Catalunya BARCELONATECH

Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona

Figure 6.2: Stress-strain against time (proportionally inverse to stress-rate).

Obviously, the higher the strain-rate (inverse proportional to time), the higher the stresses.

6.1.3 CASE 3

Stress-Stress curves against time-integration constants:

Figure 6.3: Stress-strain against α .

Note that:

$$\alpha = [0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1] \tag{6.1}$$

As the theory states, the results for $\alpha < 0.5$ are unstable. Also for $\alpha = 0.5$ the accuracy is second order, which is the so-called Crank-Nicholson method.

6.2 EFFECTS OF α Against C_{11}

The algorithmic tangent constitutive operator (C_{11}) is computed within the DAMAGE_MAIN.M function.

Figure 6.4: Stress-strain against α .

Note that for $\alpha < 0.5$ the solution oscillates and for $alpha \ge 0.5$ it stabilizes. Also observe that when the evolution of damage is 0, so the evolution of C_{11} is.

Finally, note that for the values of $\eta = 0$ and $\alpha = 1$ (inviscid case), the tangent constitutive operator is recovered again.

Computational	Solid	- Assignment 1 -	Rafael Pacheco
Mechanics			77128580N

Appendices

APPENDIX 1: DIBUJAR_CRITERIO_DANO1.M

```
Annex 1: dibujar_criterio_dano1.m
1
  function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n)
2
  %* Inverse ce %*
3
  ce_inv=inv(ce);
4
  cll=ce_inv(1,1);
5
  c22=ce_inv(2,2);
6
  c12=ce_inv(1,2);
7
  c21=c12;
8
  c14=ce_inv(1,4);
9
  c24=ce_inv(2,4);
10
  11
  % POLAR COORDINATES
12
  if MDtype==1
13
  tetha = [0:0.01:2*pi];
14
  %******
                                       15
  %* RADIUS
16
  D=size(tetha); %* Range
17
  ml=cos(tetha); %*
18
  m2=sin(tetha); %*
19
  Contador=D(1,2); %*
20
  radio = zeros(1,Contador) ;
21
  s1 = zeros(1, Contador);
22
  s2 = zeros(1,Contador) ;
23
  for i=1:Contador
24
  radio(i) = q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*...
25
  [ml(i) m2(i) 0 nu*(ml(i)+m2(i))]');
26
  s1(i)=radio(i)*ml(i);
27
  s2(i)=radio(i)*m2(i);
28
  end
29
  hplot =plot(s1,s2,tipo_linea);
30
  elseif MDtype==2
31
  % Comment/delete lines below once you have implemented this case
32
  % **********
                       *****
                                        ****
33
  tetha = [0:0.01:2*pi];
34
  35
  %* RADIUS
36
 % Slide 18 lecture 4
37
_{38} D=size(tetha);
```



```
Computational
                     Solid
                                  - Assignment 1 -
                                                         Rafael Pacheco
  Mechanics
                                                         77128580N
  ml = \cos(tetha);
39
  m2 = sin(tetha);
40
  m3 = nu * (m1 + m2);
41
  Contador=D(1,2);
42
  %Macaulin bracket
43
  m1_2(m1_2<0)=0;
44
  m2_2(m2_2<0)=0;
45
  m3_2(m3_2<0)=0;
46
  radio = zeros(1,Contador) ;
47
  s1 = zeros(1, Contador);
48
  s2 = zeros(1, Contador);
49
  for i=1:Contador
50
  radio(i) = q/sqrt([m1_2(i) m2_2(i) 0 m3_2(i)]*ce_inv* ...
51
   [m1(i) m2(i) 0 m3(i)]');
52
  s1(i)=radio(i)*ml(i);
53
  s2(i) = radio(i) * m2(i);
54
  end
55
  hplot =plot(s1,s2,tipo_linea);
56
  elseif MDtype==3
57
  % Comment/delete lines below once you have implemented this case
58
  59
  % Slide 19 lecture 4
60
  tetha = [0:0.01:2*pi];
61
  D=size(tetha);
62
  ml = \cos(tetha);
63
  m2 = sin(tetha);
64
  m3 = nu * (m1 + m2);
65
  Contador=D(1,2);
66
  % Macaulin bracket
67
  m1_2(m1_2<0)=0;
68
  m2_2(m2_2<0)=0;
69
  m3_2(m3_2<0)=0;
70
  radio = zeros(1,Contador) ;
71
  s1 = zeros(1, Contador);
72
  s2 = zeros(1, Contador);
73
  for i=1:Contador
74
  TETHA = (m1_2(i) + m2_2(i) + m3_2(i)) / (abs(m1(i)) + abs(m2(i)) + ...)
75
  abs(m3(i)));
76
  Const = TETHA + (1 - TETHA)/n;
77
  radio(i) = q/(Const*sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*...
78
  ce_inv*[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]'));
79
  s1(i)=radio(i)*ml(i);
80
  s2(i)=radio(i)*m2(i);
81
```

```
82 end
```


	Computational Mechanics	Solid	- Assignment 1 -	Rafael Pacheco 77128580N
83	hplot = plot(s1, s2,	, tipo_linea)	;	
84	end			
85	%************	* * * * * * * * * * * *	******	* * * * * * * * * * * * * * * * * * *
86	%***********	* * * * * * * * * * * *	*****	* * * * * * * * * * * * * * * * * * *
87	return			

APPENDIX 2: RMAP_DANO1.M

```
function [sigma_n1, hvar_n1, aux_var] = rmap_dano1 (eps_n1, hvar_n, ...
1
 Eprop, ce, MDtype, n)
2
 hvar_n1 = hvar_n;
3
 r_n = hvar_n(5);
4
 q_n = hvar_n(6);
5
 E = Eprop(1);
6
 nu = Eprop(2);
7
 H = Eprop(3);
8
 sigma_u = Eprop(4);
9
 hard_type = Eprop(5) ;
10
 q_fact = Eprop(9);
11
 A = Eprop(10);
12
 %***********
                *****
13
               %**********
14
 %* initializing
15
 r0 = sigma_u / sqrt(E);
16
 zero_q=1.d-6*r0;
17
 % if (r_n <= 0.d0)
18
 % r_n=r0;
19
 \% q n=r0;
20
 % end
21
 22
 %********
             *******
23
 %* Damage surface
24
  [rtrial] = Modelos_de_dano1 (MDtype, ce, eps_n1, n);
25
 hvar_n1(8) = rtrial;
26
 27
 28
 %* Ver el Estado de Carga
29
 %* -----> fload=0 : elastic unload
30
     -----> fload=1 : damage (compute algorithmic
 %* ---
31
 %constitutive tensor)
32
_{33} | fload=0;
```


Computational Solid - Assignment 1 -**Rafael Pacheco** Mechanics 77128580N $if(rtrial > r_n)$ 34 %* Loading 35 fload =1; 36 delta_r=rtrial -r_n; 37 r_n1= rtrial ; 38 if hard_type == 0 39 % Linear 40 $q_inf = q_fact * r0;$ 41 if q_fact>=1 % Hardening 42 if q_n>=q_inf 43 q_n1= q_inf; 44 else 45 $q_n1 = q_n + H * delta_r;$ 46 if q_n1>=q_inf 47 $q_n1 = q_inf;$ 48 end 49 end 50 else % Softening 51if q_n<=q_inf</pre> 52 q_n1= q_inf; 53 else 54 $q_n1 = q_n + H * delta_r;$ 55 if q_nl<=q_inf 56 $q_n1 = q_inf;$ 57 end 58 end 59 end 60 $hvar_n1(7) = H;$ 61 else 62 % We calculate q_inf from a factor of the intial value of q, 63 %which is r0. 64 % Then q_n1 of the timestep n+1 is calculated as: 65 $q_inf = q_fact * r0;$ 66 $q_n = q_inf - ((q_inf - r0) * exp(A * (1 - (rtrial / r0))));$ 67 $hvar_n1(7) = (A*(q_inf-r0)/r0) * exp(A*(1 - (rtrial / r0)));$ 68 end 69 if (q_nl<zero_q)</pre> 70 q_n1=zero_q; 71 end 72 else 73 %* Elastic load/unload 74 fload=0; 75 r_n1= r_n ; 76 77 **q_n1= q_n** ;

Computational	Solid	- Assignment 1 -	Rafael Pacheco
Mechanics			77128580N

```
end
78
 % Damage variable
79
 % ---
80
  dano_n1 = 1.d0 - (q_n1/r_n1);
81
 % Computing stress
82
 % **********
83
  sigma_n1 = (1.d0-dano_n1) * ce * eps_n1';
84
 %hold on
85
 %plot(sigma_n1(1),sigma_n1(2),'bx')
86
 87
                             %* Updating historic variables
88
 % hvar_n1(1:4) = eps_n1p;
89
  hvar_n1(5) = r_n1;
90
  hvar_n1(6) = q_n1;
91
 %***********
92
 93
 %* Auxiliar variables
94
  aux_var(1) = fload;
95
  aux_var(2) = q_n1/r_n1;
96
 \%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3;
97
 98
```

APPENDIX 3: Q_FACT_VALUE.M

```
1 clc;clear all;
```

```
2 % Young modulus
```

- ³ YOUNG = 20000;
- 4 % Yield strenght
- ⁵ sigma_u = 200;
- 6 %r0
- 7 $r0=sigma_u;$
- ⁸ %Select the maximum value of r
- 9 mult = 2;r_max = mult *r0;
- 10 %Select an average constant value for the hardening modulus. This constant
- ¹¹ %value can be approximated by the value used for linear hardening.
 ¹² H=0.3;
- 13 % Vector of different A (constant) values.
- |A| = linspace(0.1, 1.5, 1000);
- $_{15}$ $\,\%$ Calculation of q_fact, which is the value that multiplied by r0 $\,$
- 16 % give us q_inf: q_inf=q_fact*r0.


```
Computational
                        Solid
                                     - Assignment 1 -
                                                              Rafael Pacheco
   Mechanics
                                                              77128580N
   q_fact = (H . / A) .* exp(-A * (1 - (r_max / r0)));
17
   q_fact2 = (H . / A) .* exp(A);
18
  %plot
19
   plot(A, q_fact)
20
   grid on
21
   title ('Determination of the multiplicative factor for obtaining
22
       appropiate q_{\langle infty \rangle}
   xlabel('A')
23
   ylabel('q_{fact}')
24
```

APPENDIX 4: RMAP_DANOVISC.M

```
function [sigma_n1, hvar_n1, aux_var] = rmap_danovisc (delta_t, eps_n0, ...
1
                                      eps_n1 , hvar_n , Eprop , ce , MDtype , n)
2
  hvar_n1 = hvar_n;
3
         = hvar n(5);
  r n
4
         = hvar_n(6);
  q_n
5
  Е
          = Eprop(1);
6
         = Eprop(2);
7
  nu
         = Eprop(3);
  Н
8
  sigma_u = Eprop(4);
9
  hard_type = Eprop(5);
10
  alpha=Eprop(8);
11
  eta=Eprop(7);
12
  q_fact = Eprop(9);
13
  A = Eprop(10);
14
  %*
15
  %*******
              *******
16
  %*
           initializing
                                                                     %*
17
   r0 = sigma_u / sqrt(E);
18
   zero_q=1.d-6*r0;
19
  % if (r_n <= 0.d0)
20
  %
        r n=r0;
21
  %
        q_n=r0;
22
  % end
23
  %*****
                           24
  %*******
                          25
           Damage surface
  %*
                                                                     %*
26
  %Calculate rtrial (tau_eps) for the time step n and n+1. Then calculate
27
  %rtrial which is (tau_eps_n+alpha) as rtrial0*(1-alpha)+alpha*rtrial1
28
 [rtrial0] = Modelos_de_dano1 (MDtype, ce, eps_n0, n);
29
```



```
Computational
                      Solid
                                                          Rafael Pacheco
                                  - Assignment 1 -
  Mechanics
                                                          77128580N
  [rtrial1] = Modelos_de_dano1 (MDtype, ce, eps_n1, n);
30
   rtrial= rtrial0*(1-alpha)+alpha*rtrial1;
31
  hvar_n1(8) = rtrial; % Exporting rtrial_n
32
  hvar_n1(9) = rtrial1; % Exporting rtrial_n+1
33
  %Both needed to calculate Calg
34
  35
  %**
                                              * * * * * * * * * *
36
  %*
        Ver el Estado de Carga
37
                       fload=0 : elastic unload
  %*
           ---->
38
                       fload=1 : damage (compute algorithmic constitutive
  %*
                --->
39
  % tensor)
                     %*
40
  fload=0;
41
   if (rtrial > r_n)
42
      %* Loading
43
       fload =1;
44
      % As it is viscous, in the loading case we calculate rn+1 as:
45
       r_nl = ((eta-delta_t*(1-alpha))/(eta+alpha*delta_t))*r_n+ ...
46
                                (delta_t/(eta+alpha*delta_t))*rtrial;
47
       delta_r=r_n1-r_n;
48
       if hard_type == 0
49
           % Linear
50
           q_inf = q_fact * r0;
51
         if q_fact>=1 % Hardening
52
           if q_n>=q_inf
53
               q_nl = q_inf;
54
           else
55
               q_n1 = q_n + H * delta_r;
56
               if q_n1>=q_inf
57
                    q_n1 = q_inf;
58
               end
59
           end
60
         else % Softening
61
             if q_n<=q_inf
62
               q_n1 = q_inf;
63
             else
64
               q_n = q_n + H \cdot delta_r;
65
               if q_n1<=q_inf</pre>
66
                    q_n1 = q_inf;
67
               end
68
           end
69
         end
70
           hvar_n1(7) = H;
71
       else
72
  % We calculate q_inf from a factor of the intial value of q,
73
```



```
Computational
                 Solid
                           - Assignment 1 -
                                             Rafael Pacheco
  Mechanics
                                             77128580N
  % which is r0.
74
  % Then q_n1 of the timestep n+1 is calculated as:
75
         q_inf = q_fact * r0;
76
         q_n = q_inf - ((q_inf - r0) * exp(A * (1 - (r_n1 / r0))));
77
         hvar_n1(7) = (A*(q_inf-r0)/r0) * exp(A*(1 - (r_n1 / r0)));
78
     end
79
      if (q_nl<zero_q)</pre>
80
         q_n1=zero_q;
81
     end
82
  else
83
           Elastic load/unload
     %*
84
     fload=0;
85
     r_n1= r_n ;
86
     q_n1= q_n ;
87
  end
88
  % Damage variable
89
  % -
90
          = 1.d0 - (q_n 1 / r_n 1);
  dano_n1
91
  % Computing stress
92
  % **********
93
  sigma n1 = (1.d0-dano n1) * ce * eps n1';
94
  %hold on
95
  %plot(sigma_n1(1), sigma_n1(2), 'bx')
96
  97
  98
  %* Updating historic variables
99
  hvar_n1(1:4) = eps_n1p;
100
  hvar_n1(5) = r_n1;
101
  hvar_n1(6) = q_n1;
102
  103
  %***********
                      104
  %* Auxiliar variables
105
  aux var(1) = fload;
106
  aux_var(2) = q_n1/r_n1;
107
  \text{%aux}_var(3) = (q_n1-H*r_n1)/r_n1^3;
108
  109
```

APPENDIX 5: DAMAGE_MAIN.M

function [sigma_v, vartoplot, LABELPLOT, TIMEVECTOR, Calg11, Ctan11] = ...

² damage_main(Eprop, ntype, istep, strain, MDtype, n, TimeTotal)

ComputationalSolid- Assignment 1 -Rafael PachecoMechanics77128580N

```
global hplotSURF
3
  % SET LABEL OF "vartoplot" variables (it may be defined also outside
4
  % this function)
5
  % ---
6
   LABELPLOT = { 'hardening variable (q) ', 'internal variable' };
7
          = Eprop(1) ; nu = Eprop(2) ;
  Е
8
  viscpr = Eprop(6);
9
  sigma_u = Eprop(4);
10
   if ntype == 1
11
       menu('PLANE STRESS has not been implemented yet', 'STOP');
12
       error ( 'OPTION NOT AVAILABLE ')
13
   elseif ntype == 3
14
       menu('3-DIMENSIONAL PROBLEM has not been implemented yet', 'STOP');
15
       error ( 'OPTION NOT AVAILABLE ')
16
  else
17
       mstrain = 4
                       ;
18
       mhist
               = 8
19
                       :
  end
20
   if viscpr == 1
21
      % Here we solve for the viscous case, which is calling the function
22
      % rmap danovisc
23
       totalstep = sum(istep) ;
24
       % INITIALIZING GLOBAL CELL ARRAYS
25
       % -
26
       sigma_v = cell(totalstep+1,1) ;
27
       TIMEVECTOR = zeros(totalstep+1,1) ;
28
       delta_t = TimeTotal./istep/length(istep) ;
29
       % Elastic constitutive tensor
30
       % -
31
       [ce]
               = tensor_elastico1 (Eprop, ntype);
32
       Calg11=zeros(totalstep+1,2);
33
       Ctan11=zeros(totalstep+1,2);
34
       % Initz.
35
      % -----
36
       % Strain vector for each timestep
37
      % -
38
       eps_n0= zeros(mstrain,1);
39
       eps_n1 = zeros(mstrain,1);
40
       % Historic variables
41
      % hvar_n(1:4) --> empty
42
      \% hvar_n(5) = q --> Hardening variable
43
       \% hvar_n(6) = r --> Internal variable
44
       hvar_n = zeros(mhist, 1);
45
       % INITIALIZING (i = 1) !!!!
46
```



```
Computational
                   Solid
                              - Assignment 1 -
                                                  Rafael Pacheco
  Mechanics
                                                  77128580N
     % ********i*
47
      i = 1;
48
      r0 = sigma_u/sqrt(E);
49
      hvar_n(5) = r0; \% r_n
50
      hvar_n(6) = r0; \% q_n
51
      eps_n1 = strain(i,:) ;
52
      sigma_n1 =ce*eps_n1'; % Elastic
53
      sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0; sigma_n1(3) sigma_n1(2) 0;
54
          . . .
      0 \ 0 \ sigma_n1(4)];
55
      nplot = 3;
56
      vartoplot = cell(1,totalstep+1) ;
57
      vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
58
      vartoplot{i}(2) = hvar_n(5); % Internal variable (r)
59
      vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5); % Damage variable (d)
60
      for
         iload = 1:length(istep)
61
         % Load states
62
         for iloc = 1:istep(iload)
63
             i = i + 1;
64
             TIMEVECTOR(i) = TIMEVECTOR(i-1) + delta_t(iload);
65
             % Total strain at step "i"
66
             % -
67
             eps_n0 = strain(i-1,:);
68
             eps_n1 = strain(i,:);
69
             %
70
                 *****
             %*
                    DAMAGE MODEL
71
             %
72
                [sigma_n1, hvar_n, aux_var] = rmap_danovisc(delta_t, eps_n0,
73
                eps_n1, ...
                                       hvar_n, Eprop, ce, MDtype, n);
74
             % PLOTTING DAMAGE SURFACE
75
             if (aux_var(1) > 0)
76
                 hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6),
77
                     . . .
                              'r:',MDtype,n);
78
                 set(hplotSURF(i), 'Color', [0 0 1], 'LineWidth', 1)
79
                              ;
             end
80
             %
81
```


Computational	Solid	- Assignment 1 -	Rafael Pacheco
Mechanics			77128580N

```
%
82
                % GLOBAL VARIABLES
83
                % **********
84
                % Stress
85
                % ---
86
                m_{sigma} = [sigma_n1(1) sigma_n1(3) 0; sigma_n1(3) sigma_n1(2)]
87
                    0;...
                0 \ 0 \ sigma_n1(4)];
88
                sigma_v{i} = m_sigma;
89
                % VARIABLES TO PLOT (set label on cell array LABELPLOT)
90
                % .
91
                 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
92
                 vartoplot{i}(2) = hvar_n(5); % Internal variable (r)
93
                 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5); % Damage
94
                    variable (d)
                H_{n1} = hvar_{n}(7);
95
                q_n1 = vartoplot{i}(1);
96
                r_n = vartoplot \{i - 1\}(2);
97
                r_n1 = vartoplot{i}(2);
98
                d_n1 = vartoplot{i}(3);
99
                sigma_bar = [sigma_n1(1) sigma_n1(2) sigma_n1(4) 2*sigma_n1
100
                    (3)];
                alpha = Eprop(8);
101
                 eta = Eprop(7);
102
                 rtrial = hvar_n(8);
103
                 rtrial1 = hvar_n(9);
104
             % Calculation of the Algorithmic tangent operator and the
105
                 tangent
             % operator.
106
                 if rtrial >r_n1 %Loading case
107
                     d_diff = (q_n1 - (H_n1 * r_n1)) / ((r_n1)^2);
108
                     C1 = alpha*delta_t / (eta + (alpha*delta_t));
109
                     C2 = 1/rtrial1;
110
                     Calg=(1-d_n1)*ce-(C1*C2*d_diff*kron(sigma_bar', sigma_bar))
111
                         ));
                     Ctan = (1-d_n1) * ce - (((q_n1 - H_n1 * r_n1) / r_n1^3) * ...
112
                     %(kron(sigma_bar', sigma_bar)));
113
                     Calg11(i, 1) = TIMEVECTOR(i);
114
                     Calg11(i, 2) = Calg(1, 1);
115
                     %Ctan11(i,1) = TIMEVECTOR(i);
116
                     %Ctan11(i,2) = Ctan(1,1);
117
```



```
Computational
                        Solid
                                                              Rafael Pacheco
                                     - Assignment 1 -
   Mechanics
                                                              77128580N
                 else %elastic/unloading
118
                     Calg = (1-d_n1) * ce;
119
                     %Ctan=Calg;
120
                     Calg11(i,1)=TIMEVECTOR(i);
121
                     Calg11(i, 2) = Calg(1, 1);
122
                     %Ctan11(i,1) = TIMEVECTOR(i);
123
                     %Ctan11(i,2) = Ctan(1,1);
124
                 end
125
126
            end
127
        end
128
   else
129
   % Here we solve for the inviscid case, which is calling the function
130
       % rmap_dano1
131
        totalstep = sum(istep) ;
132
        % INITIALIZING GLOBAL CELL ARRAYS
133
        % -
134
        sigma_v = cell(totalstep+1,1) ;
135
        TIMEVECTOR = zeros(totalstep+1,1) ;
136
        delta_t = TimeTotal./istep/length(istep) ;
137
        Calg11=zeros(totalstep+1,2);
138
        Ctan11=zeros (totalstep+1,2);
139
        % Elastic constitutive tensor
140
        % -
141
                 = tensor_elastico1 (Eprop, ntype);
        [ce]
142
        % Initz.
143
       % -----
144
       % Strain vector
145
        % ---
146
        eps_n1 = zeros(mstrain,1);
147
        % Historic variables
148
       % hvar_n(1:4) --> empty
149
        \% hvar_n(5) = q --> Hardening variable
150
       \% hvar n(6) = r --> Internal variable
151
        hvar_n = zeros(mhist, 1)
                                    :
152
        % INITIALIZING (i = 1) !!!!
153
        % **********i*
154
        i = 1;
155
        r0 = sigma_u/sqrt(E);
156
        hvar_n(5) = r0; \% r_n
157
        hvar_n(6) = r0; \% q_n
158
        eps_n1 = strain(i,:) ;
159
        sigma_n1 =ce*eps_n1'; % Elastic
160
```



```
Computational
                   Solid
                             - Assignment 1 -
                                                 Rafael Pacheco
  Mechanics
                                                 77128580N
      sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0; sigma_n1(3) sigma_n1(2) 0;
161
          . . .
                  0 0 sigma_n1(4)];
162
      nplot = 3;
163
      vartoplot = cell(1,totalstep+1) ;
164
      vartoplot{i}(1) = hvar_n(6); % Hardening variable (q)
165
      vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
166
      vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5); % Damage variable (d)
167
      for
          iload = 1:length(istep)
168
         % Load states
169
          for iloc = 1:istep(iload)
170
             i = i + 1;
171
             TIMEVECTOR(i) = TIMEVECTOR(i-1) + delta_t(iload);
172
             % Total strain at step "i"
173
             % -----
174
             eps_n1 = strain(i,:);
175
             %
176
                     ******
                    DAMAGE MODEL
             %*
177
             %
178
                [sigma_n1, hvar_n, aux_var] = rmap_dano1(eps_n1, hvar_n, Eprop
179
                 , . . .
                                      ce,MDtype,n);
180
             % PLOTTING DAMAGE SURFACE
181
             if (aux_var(1) > 0)
182
                 hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6)
183
                     , . . . .
                              'r:',MDtype,n);
184
                 set(hplotSURF(i), 'Color', [0 0 1], 'LineWidth', 1)
185
                                 ;
             end
186
             %
187
                %
188
                   % GLOBAL VARIABLES
189
             % *********
190
             % Stress
191
             % -----
192
```


	Computational Solid Me Assignment 1 - Rafael Pacheco
	chanics 77128580N
193	$m_{sigma} = [sigma_n1(1) sigma_n1(3) 0; sigma_n1(3) sigma_n1(2) \\ 0 ; \dots$
194	$0 \ 0 \ sigma_n1(4)];$
195	$sigma_v{i} = m_sigma;$
196	% VARIABLES TO PLOT (set label on cell array LABELPLOT)
197	%
198	<pre>vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)</pre>
199	<pre>vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)</pre>
200	$vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)$; % Damage
	variable (d)
201	$H_n = hvar_n(7);$
202	$q_n1 = vartoplot{i}(1);$
203	$r_n = vartoplot \{i-1\}(2);$
204	$r_n1 = vartoplot{i}(2);$
205	$d_n1 = vartoplot{i}(3);$
206	$sigma_bar = [sigma_n1(1) sigma_n1(2) sigma_n1(4) 2*sigma_n1(4) 2*sigma$
	(3);
207	aipna = Eprop(8);
208	eta = Epiop(7);
209	$\mathcal{T}(\mathbf{r}) = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$
210	% Calculation of the Algorithmic tangent operator.
211	$\int \frac{1}{\sqrt{2}} \int \frac$
212	(kron(sigma bar' sigma bar)))
213	$(\text{tion}(\text{sigma_bar}, \text{sigma_bar}))),$ (tanll(i, 1) = TIMEVECTOR(i).
214	Ctanll(i,2) = Ctan(1,1):
216	else %elastic/unloading
210	Ctan = (1-d n1)*ce
218	Ctan11(i,1) = TIMEVECTOR(i):
219	Ctan11(i,2) = Ctan(1,1);
220	end
221	end
222	end
223	end

Computational	Solid	- Assignment 1 -	Rafael Pacheco
Mechanics			77128580N

APPENDIX 6: MODELOS_DE_DANO1.M

```
function [rtrial] = Modelos_de_dano1 (MDtype, ce, eps_n1, n)
1
  %***
2
  if (MDtype==1) %* Symmetric
3
  rtrial= sqrt(eps n1*ce*eps n1') ;
4
  elseif (MDtype==2) %* Only tension
5
  sigma = eps_n1*ce;
6
  macsigma=sigma;
7
  macsigma(macsigma<0)=0;
8
  rtrial = sqrt(macsigma*eps_n1');
9
   elseif (MDtype==3) %*Non-symmetric
10
  sigma = eps_n1*ce;
11
  macsigma = sigma;
12
  macsigma(macsigma<0)=0;
13
  theta = (macsigma(1) + macsigma(2) + macsigma(3)) / \dots
14
  (abs(sigma(1)) + abs(sigma(2)) + abs(sigma(3)));
15
  rtrial =(theta + ((1-theta)/n)) * sqrt(eps_n1*ce*eps_n1');
16
17
  end
  %*****
18
  return
19
```

APPENDIX 7: MAIN_NOINTERACTIVE.M

```
all
1
 2
 % Program for modelling damage model
3
 % (Elemental gauss point level)
4
 % -
5
 % Developed by J.A. Hdez Ortega
6
 % 20-May-2007, Universidad PolitAlcnica de CataluAt'sa
7
 8
 %profile on
9
 %
10
 % ******
11
 % INPUTS
12
 % ***********
13
 % YOUNG's MODULUS
14
 % .
15
 YOUNG M = 20000;
16
 % Poisson's coefficient
17
```



```
Computational
                       Solid
                                   - Assignment 1 -
                                                            Rafael Pacheco
  Mechanics
                                                            77128580N
  % -
18
  POISSON = 0.3;
19
  % Hardening/softening modulus
20
  % -
21
  HARDSOFT_MOD = 0.1;%0.1
22
  % Yield stress
23
  % -
24
  YIELD_STRESS = 200 ;
25
  % Hardening/softening internal variable stress space factor (q_inf =
26
      q_fact * r0).
  %
27
  q_fact = 1.01;\%1.4
28
  % Constant of the exponential law for hardering/softening. (A>0)
29
  % ---
30
  A = 2;
31
  % Problem type TP = { 'PLANE STRESS', 'PLANE STRAIN', '3D'}
32
                         ----- = 1 = 2 = 3
  % ---
33
  % _____
34
  ntype= 2;
35
  % Model PTC = { 'SYMMETRIC', 'TENSION', 'NON-SYMMETRIC' } ;
36
  \% = 1 = 2 = 3
37
  % ---
38
  MDtype =3;
39
  % Ratio compression strength / tension strength
40
  % ---
41
  n = 3;%3
42
  % SOFTENING/HARDENING TYPE
43
  % -
44
  HARDTYPE = 'EXPONENTIAL' ; %{LINEAR, EXPONENTIAL}
45
  % VISCOUS/INVISCID
46
  % -----
47
  VISCOUS = 'YES';
48
  % Viscous coefficient ---
49
  % ---
50
  eta = 0;\%0.3
51
  % TimeTotal (initial = 0) -----
52
  % ---
53
  TimeTotal = 1000 ; %10
54
  % Integration coefficient ALPHA
55
  % ---
56
  ALPHA\_COEFF = 1;%0.5
57
  % Points -
58
```


Computational Solid - Assignment 1 -**Rafael Pacheco** Mechanics 77128580N % -59 nloadstates = 3 ; 60 SIGMAP = zeros(nloadstates,2) ; 61 $SIGMAP(1,:) = [150 \ 0];$ 62 $SIGMAP(2,:) = [250 \ 0];$ 63 $SIGMAP(3,:) = [400 \ 0];$ 64 % Number of time increments for each load state 65 % -66 istep = 10*ones(1, nloadstates) ; 67 % VARIABLES TO PLOT 68 vpx = 'norm(STRAIN) '; % AVAILABLE OPTIONS: 'STRAIN_1', 'STRAIN_2' 69 % '|STRAIN_1|', '|STRAIN_2|' 70 % 'norm(STRAIN)', 'TIME' 71 vpy = 'norm(STRESS)'; % AVAILABLE OPTIONS: 'STRESS_1', 'STRESS_2' 72 % '|STRESS_1|', '|STRESS_2|' 73 % 'norm(STRESS)', 'TIME', 'DAMAGE VAR.', 'hardening variable (q)', 'damage 74 variable (d)' % 'internal variable (r)' 75 % 3) LABELPLOT{ivar} --> Cell array with the label string for 76 % variables of "varplot" 77 % 78 **LABELPLOT** = { 'hardening variable (q) ', 'internal variable (r) ', 'damage 79 variable (d)'}; 80 %% Plot Initial Damage Surface and effective stress path 81 strain_history = PlotIniSurf(YOUNG_M, POISSON, YIELD_STRESS, ... 82 SIGMAP, ntype, MDtype, n, istep); 83 $E = YOUNG_M$; 84 nu = POISSON; 85 $sigma_u = YIELD_STRESS$; 86 switch HARDTYPE 87 case 'LINEAR' 88 $hard_type = 0$; 89 otherwise 90 $hard_type = 1$; 91 end 92 switch VISCOUS 93 case 'YES' 94 viscpr = 1; 95 otherwise 96 viscpr = 0; 97 end 98 Eprop = [E nu HARDSOFT_MOD sigma_u hard_type viscpr eta ... 99

 $_{100}$ [ALPHA_COEFF q_fact A] ;

Computational	Solid	- Assignment 1 -	Rafael Pacheco
Mechanics			77128580N

```
% DAMAGE MODEL
101
   %
102
   [sigma_v, vartoplot, LABELPLOT_out, TIMEVECTOR, Calg11, Ctan11] = ...
103
   damage_main(Eprop, ntype, istep, strain_history, MDtype, n, TimeTotal);
104
   try; LABELPLOT; catch; LABELPLOT = LABELPLOT_out ; end ;
105
   % PLOTTING
106
   % ---
107
   ncolores = 3;
108
   colores = ColoresMatrix(ncolores);
109
   markers = MarkerMatrix(ncolores) ;
110
   hplotLLL = [] ;
111
   for i = 2:length(sigma_v)
112
   stress_eig = sigma_v{i} ; %eigs(sigma_v{i}) ;
113
   tstress_eig = sigma_v\{i-1\}; \% eigs(sigma_v\{i-1\});
114
   hplotLLL(end+1) = plot([tstress_eig(1,1) stress_eig(1,1)],[tstress_eig
115
       (2,2) stress_'LineWidth',2,'color',colores(1,:),'Marker',markers{1},
       'MarkerSize',2);
   plot(stress_eig(1,1),stress_eig(2,2),'bx')
116
   text(stress_eig(1,1),stress_eig(2,2),num2str(i))
117
   % SURFACES
118
   % .
119
   end
120
   % % SURFACES
121
   % % ---
122
   % if (aux_var(1)>0)
123
   % hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 'r:', MDtype, n
124
        ):
   % set (hplotSURF(i), 'Color', [0 0 1], 'LineWidth', 1);
125
   % end
126
   DATA. sigma_v = sigma_v ;
127
   DATA.vartoplot = vartoplot ;
128
   DATA.LABELPLOT = LABELPLOT ;
129
   DATA.TIMEVECTOR = TIMEVECTOR ;
130
   DATA. strain = strain history ;
131
   plotcurvesNEW(DATA, vpx, vpy, LABELPLOT, vartoplot) ;
132
   d=zeros(length(TIMEVECTOR),1);
133
   for i=1:length(TIMEVECTOR)
134
   d(i) = vartoplot{i}(3);
135
   end
136
   figure (2)
137
   subplot(2,1,1)
138
   plot(Calg11(:,1),Calg11(:,2),'b-'),hold on
139
   xlabel('time')
140
  ylabel('Component (1,1)')
141
```



```
Computational Solid Me-
                                    - Assignment 1 -
                                                            Rafael Pacheco
   chanics
                                                            77128580N
   title ('Component (1,1) of the algorithmic tangent operator')
142
   grid on
143
   subplot(2,1,2)
144
   plot(TIMEVECTOR, d), hold on;
145
   xlabel('time')
146
   ylabel('damage variable')
147
   title('Time evolution of the damage variable')
148
   grid on
149
   q = zeros(length(TIMEVECTOR), 1);
150
   r = zeros(length(TIMEVECTOR), 1);
151
   for i=1:length (TIMEVECTOR)
152
   q(i) = vartoplot{i}(1);
153
   r(i) = vartoplot{i}(2);
154
   end
155
   figure (3)
156
   plot(r,q),hold on
157
   xlabel('Strain space internal variable(r)')
158
   ylabel('Stress space internal variable(q)')
159
   title('Evolution of q in front of r')
160
   grid on
161
```


