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1 Introduction and Motivation
The constitutive damage models are a very useful and rather simple tool for evaluating the behavior of
some geomaterials such as concrete or rocks that present a characteristic propagation of micro-cracks
under certain loads. This models are therefore suitable to study the diminishing capacity of these
materials to carry stresses when certain thresholds are surpassed.

The procedure to asses the code developed will be the following:

• The characteristics of the analysis will be detailed as well as the values of the parameters used.

• The graphs will be shown in such a way that there is a balance between the amount of information
present and the easiness with which information is extracted and correctly visualized.

• Conclusions regarding the similarities of the code response with respect to the theoretical ex-
planations of the phenomena taking place will be made in a clear and concise way inside boxed
text.

The motivation of this project is thus to code and asses these constitutive laws that will allow us to
analyze the loading capacity of certain materials.

2 Rate independent models
In this section the capabilities of the code regarding the tension-only damage model and the non-
symmetric tension-compression damage model will be explained through the use of graphics that will
help understanding the behavior of the code under certain parameters.

Before referring to the specific developed models, let us consider a simple case that will allow us to
better understand the behavior of the materials being analyzed under certain stress paths. Fig. 1
shows the stress strain curve of a three-uni-axial stress path using the only-tension damage model.
From this Figure, important concepts will be introduced that will be later on referred to several times:

• The yield stress (σy), which will define the elastic domain, and more specifically, the damage
surface.

• The diminished Young’s Modulus, defining the loading branch once σ0 is exceeded.

• The damage variable, d.

• The hardening/softening modulus, H.

It can clearly be seen that, when the material is loaded at a value higher than σy, the material
diminishes its capacity to carry stresses. Then, even if the material is unloaded (red path) it does not
heal and when it is loaded again, it will move along the inelastic path, characterized by a diminished
Young’s modulus. Eventually, the plastic behavior is reached at a lower σy product of the presence of
irreversible damage (d > 0). When strains continue to be grow, a fully damaged state will be reached
in which the material section is occupied by cracks and the stresses are zero no matter how large the
strains. In this state, that can be observed in Fig. 1, d = 1.

Then, to better emphasize the effect of the H modulus, Fig. 2 shows the plastic behavior of the
materials with different linear and exponential H modulus. For clarity, only one loading path has
been included. In this project only we will consider the relationship between q and r to be linear or
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exponential. Damage will be produced once q0 = r0 = σy√
E

is exceeded, and this damage will be with
hardening, softening, or perfect depending on the value of H. Fig. 2 shows the effects of inserting
different values of H and is a good indication that the code gives good results when choosing between
linear or exponential hardening/softening law. For most of the report, a value of H = −0.4 will be
chosen to account for physical feasibility. On addition, the material to be analyzed will be concrete,
that suits the models developed here for the reasons explained. In the case of concrete n (the ratio
between compression and tension strength) is approximately equal to 10, and this is a value that could
be used throughout the report to ensure that the results reflect the behavior of a real geomaterial.
However, when testing this material for all the cases, it has been realized that it has a strong non-
symmetric response, therefore making it difficult to observe damage for both loading and unloading
since the value for compressing damage is much higher. In like manner, a value of 2 has been chosen,
that allows a better visualization of the results for each loading path.

Figure 1: This stress-strain curve show the loss of stress capacity of a material and it serves as an example of
the code capacities.
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Figure 2: Exponential and linear hardening/softening modulus effect of stress-strain curves.

The values of variables chosen for this section are: E = 20000, n = 2, H = −0.4, ν = 0.3 and σy = 300.

Before analyzing the different developed damage cases, it is important to study a simple symmetric case
to later evaluate the differences of the other models with respect to the symmetric. Fig. 3 shows the
stress-strain curve for a uni-axial tension/compression path with three effective stress points departing
from a value of zero, σ1

1 = 400, σ1
2 = −1000, σ1

3 = −200. When observing Fig. 3, it is possible to see
that the loading and unloading is done along the elastic branch without damage, but when compressed
to a value higher that the yield stress, it is damaged and will diminish its properties. When loaded
again, it will perform the same way as when compressed, as it is symmetric.
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Figure 3: Explanation of the symmetric damage model.

Now, three plane strain cases will be studied for the rate independent tension-only and non-symmetric
models.

2.1 Tension-only damage model

The characteristic that will be observed along this subsection is that damage will only be produced
for tension loading paths, whereas no effect will be seen on the Young’s Modulus of the material when
it is compressed.

2.1.1 Uni-axial tensile loading and unloading

The path at the stress space is shown in Fig. 5. Though it is not clear as all the values are in axis
σ1, it is possible to see that no stress points exist beyond the boundary of the damage surface, and
all points are inside. As for the stress-strain curve (Fig. 4), is it possible to see the damage generated
when the strain norm surpasses the value of r0, or when σ1 > σy. Then, during the second and third
paths, the increments on the tension do not generate further damage and Ed remains constant.
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Figure 4: Stress-strain curve for the three proposed loading paths.

Figure 5: Stress paths and damage surfaces.

2.1.2 Uni-axial tensile loading and bi-axial tensile unloading

In this case here the loading path will be the following, based on the values previously stated. Here,
α = 400, β = 1400, γ = 800.

(σ1
1, σ

1
2) = (400, 0) −→ (σ2

1, σ
2
2) = (−1000,−1400) −→ (σ3

1, σ
3
2) = (−200,−600)) (1)

This path can be seen in Fig. 7 and its respective stress-strain graph in Fig. 6. Here the response is
not the same as in the first case, since the bi-axial tensile unloading and posterior loading maintain
approximately the same Young’s Modulus even before damage has been produced (during the first
loading path). This is not clealy a general rule but the parameters chosen have led to this configuration.
Again the softening parameter is observed by noticing the decreasing phenomena after reaching σy.
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Figure 6: Stress-strain curve for the three proposed loading paths.

Figure 7: Stress paths and damage surfaces.

2.1.3 Bi-axial tensile loading

According to the proposed increments, the stress paths will now be

(σ1
1, σ

1
2) = (400, 400) −→ (σ2

1, σ
2
2) = (−1000,−1000) −→ (σ3

1, σ
3
2) = (−200,−200)) (2)

The path is seen in Fig. 9 and the stress-strain curves in Fig. 8. Now the response has a very similar
shape to that of the full uni-axial but the values are different. Now, for the same strain to be reached,
higher stresses have to be applied to the principal direction. This means that Ed will be higher in
this case. This conclusion is assessed by analyzing the paths of both examples. A rotation has been
produced of the stress path, which before was a horizontal line and now it is inclined due to σ2 6= 0.

6



Figure 8: Stress-strain curve for the three proposed loading paths.

Figure 9: Stress paths and damage surfaces.

2.2 Non-symmetric tension-compression damage model

Here it will be seen again that all the stress points will behave elastically when remaining inside the
domain, and all of them will remain to be inside or on the damage surface. Again this is due to the
criteria of rate independent damage models. However, here materials which present different behavior
when subjected to tension or compression will be analyzed, and damage by compression will be also
seen. The same stress paths will be used in this section. Again, it is worth mentioning that the
parameters were chosen so that the damage for compression is also seen.

2.2.1 Uni-axial tensile loading and unloading

It is not possible to appreciate much of the stress path from Fig. 11 in this case, due to the already-built
graphic interface. However, it is possible to see the extreme points. From Fig. 10, the stress-strain
graph shows that there is indeed damage for compression, and the Young’s Modulus is decreased
further as the slope is reduced even more. This is proof that the non-symmetric damage model works,
at least for the introduced parameters.
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Figure 10: Stress-strain curve for the three proposed loading paths.

Figure 11: Stress paths and damage surfaces.

2.2.2 Uni-axial tensile loading and bi-axial tensile unloading

The most notorious information that the stress path brings here is that it can be seen that there are
stress points lying outside the damage surface. The stress-strain curve (Fig. 12) is equal to that of
the tension-only damage model (as could be expected) for the uni-axial and bi-axial tensile loading,
but when reaching the corresponding damage surface the inelastic region is reached and the unloading
path will thus be along a different line.
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Figure 12: Stress-strain curve for the three proposed loading paths.

Figure 13: Stress paths and damage surfaces.

2.2.3 Bi-axial tensile loading

Again, points falling out of the domain are seen in the stress domain, all along a same line, apparently.
When studying the stress-strain curve, it is noticed again that nearly the same shape is obtained as
in Fig. 10 but in this case the values are much different. As can be appreciated, when only uni-axial
loading and unloading, the damage by compression is reached at a far larger strain (in absolute value)
that at the present case. In uni-axial tensile loading, damage by compression is produced for ε = −0.07
, and in the present case the damage is at ε = −0.04, meaning that when there is tension in both axes,
the capacity of the material is diminished. This could also be justified from the stress path, as done
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before.

Figure 14: Stress-strain curve for the three proposed loading paths.

Figure 15: Stress paths and damage surfaces.

3 Rate dependent models
In this section the models will be adapted and characterized so as to take into account the rate with
which the loads are applied, and then time will be considered as an independent variable and not as a
parameter (rate dependent models). Therefore all the quantities of interest will have a dependency on
time that will be accentuated by the election of the other variables that play a role in the calculations.
Apart from the mentioned time (that will relate σ with ∂ε/∂t), the viscosity parameter η and the
numerical integration parameter α will be studied.
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For the current computations, a value of η = 0.3 and α = 0.5 (the default value, since it is second
order accurate) have been considered. However, some parameters have changed their value to a new
one. Now, n = 10, H = 0.4, σy = 200.

The loading paths have been changed so that now it is clearer to see the effect of changing these
parameters, which in some cases is only a slight difference. Now, starting from the point (0, 0) the
loading paths will be the following.

(σ1
1, σ

1
2) = (200, 0) −→ (σ2

1, σ
2
2) = (400, 0) −→ (σ3

1, σ
3
2) = (100, 0)) (3)

3.1 Effect of α, η, ε̇ parameters on the stress-strain curves

Before commenting on the results of the graphics, however, it is important to think over which will
be its effect and how to asses its correctness on the code.

The parameter which can be assessed more easily is the viscosity. By knowing the relation (.r) =
1 − q(r)/r, and assuming that the q(r)/r ratio diminishes when η increases, it follows that for lower
values of viscosity, the damage will be higher and thus the loss of the capacity of the material to carry
stresses will be more accentuated for lower values of viscosity. This is what Fig. 16 tells us, as for
lower values of η a lower stress corresponds to the same strain. Another clear sign that the code is
correct is the case in which η = 0, which corresponds to the non-viscous case, meaning that the rate
independent damage model is recovered when η = 0 is fixed in the rate dependent model.

Figure 16: Effect of η on the stress-strain curve.

The main conclusions that Fig. 17 shows us when studying the effect of α on the stress-strain curve
is that for the implicit integration (α = 1), the curve reaches the the solution of the rate independent
problem for the non-viscous case.
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Figure 17: Effect of α on the stress-strain curve.The extreme values have been emphasized for clarity.

Eventually, Fig. 18 shows as expected the effect of applying stresses over a short period of time. As
it was explained in lectures, high strain rates increases the elastic properties of the material under
study, hence appreciating in the figure a minor loss of stress capacity. On the other hand, low strain
rates are associated with the energy-damping aspects of the material characterization and hence the
lower stress state for a same strain.

Figure 18: Effect of ε̇ on the stress-strain curve.The extreme values have been emphasized for clarity.
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Figure 19: Evolution along time of the Cvd
alg constitutive operator for different values of α. The values of the

loading path which produces damage are highlighted.

3.2 Effect of α on the constitutive operators

The analytic tangent and algorithmic tangent operators are related to each other by the following
expression,

Cvdalg,n+1 = Cvdtan,n+1 −
1

η
α∆t + 1f(d′(rn+1)) (4)

Where f(d′(rn+1)) is a function that depends on the damage ratio so that if there is no damage
evolving f = 0. With this expression, two important conclusions can be extracted that will be used
to assess the graphical results.

• The algorithmic and analytical tangent operators match whenever there is no damage evolving
or α = 0.

• For increasing values of α, higher will be the subtraction from the Cvdtan,n+1 part so that the
difference between both graphs will be more noticeable.

This can be seen from Figures 19 and 20. When α = 0, both graphics are the same. Then, when
the yielding stress is reached during the second loading path (red markers in the figures), damage
starts producing and hence both graphics start differing one from the other for α 6= 0. This difference
becomes more relevant in Fig. 19 for increasing values of α, as justified before. The second loading
path values have been highlighted in the previous graph for higher clarity.

Eventually, when the unloading starts (blue markers), f(d′(rn+1)) = 0 and both graphics become the
same again for the unloading path.
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Figure 20: Evolution along time of the Cvd
tan constitutive operator for different values of α.

4 Concluding remarks
This work has laid down interesting conclusions over the behavior of certain materials under stresses
exceeding their ultimate strength. It has been studied the code response for different rate dependent
and rate independent models. More specifically, the following conclusions have been reached regarding
the assessment of the developed code:

• For rate independent models, the stress points remain inside the elastic domain or on the bound-
ary of the damage surface. In turn, points lying outside the domain have been seen for the rate
dependent models.

• The Young’s Modulus has been seen to diminish when damage has been produced in the material
micro-structure, both for compression and tension. When applying models for only tension, this
damage was only produced for values of the principal tension exceeding σy. On the other hand,
the non-symmetric damage model is able to predict the failure of the material for compression
loading.

• The effects of the viscosity parameter have been computed and explained according to their
theoretical effects, that is, the capacity of the viscosity to alter the elastic properties of the
material. The strain rates have a similar effect on the stress-strain curve as shown as well. The
influence these parameters have on the damage variable will determine the magnitude of the
alteration. The ability of the models to recover the rate independent solution has been also
studied through the convergence of the η parameter to the non-viscous solution.

As a note on future work, it would be necessary to update the representation of the stress paths as in
the majority of cases it becomes difficult to distinguish the results.
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A Appendix
The following functions show the modified code without the majority of comments, to improve the
reading purposes, as it is not necessary anymore to keep the comments.

A.1 Main program, main_nointeractive

1 clc
2 global X Y Vector_tan Vector_alg
3 close all
4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 % Program for modelling damage model
7 % (Elemental gauss point level)
8 % -----------------
9 % Developed by J.A. Hdez Ortega

10 % 20-May-2007, Universidad Politécnica de Cataluña
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %profile on
13

14 addpath('AUX_SUBROUTINES')
15

16 YOUNG_M = 20000 ;
17 POISSON = 0.3;
18 HARDSOFT_MOD = -0.4;
19 q_inf = 3;
20 YIELD_STRESS = 300;
21 ntype= 2 ;
22 MDtype =2;
23 n = 2;
24 HARDTYPE = 'LINEAR' ; %{LINEAR,EXPONENTIAL}
25 VISCOUS = 'NO' ;
26 eta = 0;
27 TimeTotal = 10;
28 ALPHA_COEFF = 0.5;
29

30 nloadstates = 3 ;
31 SIGMAP = zeros(nloadstates,2) ;
32 SIGMAP(1,:) =[400 0];
33 SIGMAP(2,:) =[-1000 -1400];
34 SIGMAP(3,:) =[-200 -600];
35

36 istep = 10*ones(1,nloadstates) ;
37

38

39 vpx = 'STRAIN_1' ; % AVAILABLE OPTIONS: 'STRAIN_1', 'STRAIN_2'
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40 % '|STRAIN_1|', '|STRAIN_2|'
41 % 'norm(STRAIN)', 'TIME'
42 vpy = 'STRESS_1'; % AVAILABLE OPTIONS: 'STRESS_1', 'STRESS_2'
43

44 LABELPLOT = {'hardening variable (q)','internal variable (r)','damage variable (d)'};
45

46 %%%%%%%%%%%%%%%%%%%55 END INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47

48 %% Plot Initial Damage Surface and effective stress path
49 strain_history = PlotIniSurf(YOUNG_M,POISSON,YIELD_STRESS,SIGMAP,ntype,MDtype,n,istep);
50

51 E = YOUNG_M ;
52 nu = POISSON ;
53 sigma_u = YIELD_STRESS ;
54

55 switch HARDTYPE
56 case 'LINEAR'
57 hard_type = 0 ;
58 otherwise
59 hard_type = 1 ;
60 end
61 switch VISCOUS
62 case 'YES'
63 viscpr = 1 ;
64 otherwise
65 viscpr = 0 ;
66 end
67

68 Eprop = [E nu HARDSOFT_MOD sigma_u hard_type viscpr eta ALPHA_COEFF q_inf 0] ;
69

70 [sigma_v,vartoplot,LABELPLOT_out,TIMEVECTOR]=damage_main(Eprop,ntype,istep,...
71 strain_history,MDtype,n,TimeTotal);
72

73 for i = 2:length(sigma_v)
74 stress_eig = sigma_v{i} ; %eigs(sigma_v{i}) ;
75 tstress_eig = sigma_v{i-1}; %eigs(sigma_v{i-1}) ;
76 plot(stress_eig(1,1),stress_eig(2,2),'bx')
77 text(stress_eig(1,1),stress_eig(2,2),num2str(i))
78 end
79

80 DATA.sigma_v = sigma_v ;
81 DATA.vartoplot = vartoplot ;
82 DATA.LABELPLOT = LABELPLOT ;
83 DATA.TIMEVECTOR = TIMEVECTOR ;
84 DATA.strain = strain_history ;
85
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86 plotcurvesNEW(DATA,vpx,vpy,LABELPLOT,vartoplot,sigma_u) ;
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A.2 Function Modelos_de_dano1

1 function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n)
2

3 if (MDtype==1) %* Symmetric
4 rtrial= sqrt(eps_n1*ce*eps_n1');
5

6 elseif (MDtype==2) %* Only tension
7 sigma_bar = eps_n1*ce;
8 sigma_bar_plus = (sigma_bar + abs(sigma_bar))/2;
9 rtrial = sqrt (sigma_bar_plus*eps_n1');

10

11 elseif (MDtype==3) %*Non-symmetric
12 sigma_bar = eps_n1*ce;
13 sigma_bar_plus = (sigma_bar + abs(sigma_bar))/2;
14 wf = (sigma_bar_plus(1) + sigma_bar_plus(2) + ...
15 sigma_bar_plus(4))/(abs(sigma_bar(1)) + ...
16 abs(sigma_bar(2)) + abs(sigma_bar(4)));
17 rtrial = sqrt(eps_n1*ce*eps_n1')*(wf+(1-wf)/n);
18 end
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A.3 Function plotcurvesNEW

1 function plotcurvesNEW(DATA,vpx,vpy,LABELPLOT,vartoplot,sigma_u)
2 % Plot stress vs strain (callback function)
3 % -----------------------------------------
4 global X Y
5 subplot(2,1,2)
6 hold on
7 grid on
8 xlabel(vpx);
9 ylabel(vpy);

10

11

12 switch vpx
13 case 'STRAIN_1'
14 strx = 'X(i) = DATA.strain(i,1);' ;
15 %strx = 'X(i) = max(DATA.strain(i,1),DATA.strain(i,2));' ;
16 case 'STRAIN_2'
17 strx = 'X(i) = DATA.strain(i,2);' ;
18 %strx = 'X(i) = min(DATA.strain(i,1),DATA.strain(i,2));' ;
19 case '|STRAIN_1|'
20 strx = 'X(i) = abs(DATA.strain(i,1));' ;
21 %strx = 'X(i) = abs(max(DATA.strain(i,1),DATA.strain(i,2)));' ;
22 case '|STRAIN_2|'
23 strx = 'X(i) = abs(DATA.strain(i,2));' ;
24 %strx = 'X(i) = abs(min(DATA.strain(i,1),DATA.strain(i,2)));' ;
25 case 'norm(STRAIN)'
26 strx = 'X(i) =sqrt((DATA.strain(i,1))^2 + (DATA.strain(i,2))^2)) ;';
27 case 'TIME'
28 strx = 'X(i) =DATA.TIMEVECTOR(i) ;';
29 otherwise
30 for iplot = 1:length(LABELPLOT)
31 switch vpx
32 case LABELPLOT{iplot}
33 %strx = ['X(i) = vartoplot{i}(',num2str(iplot),') ;'];
34 end
35 end
36 end
37

38 X = 0 ;
39 for i = 1:size(DATA.strain,1)
40 eval(strx) ;
41 end
42

43 switch vpy
44 case 'STRESS_1'
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45 stry = 'Y(i) = DATA.sigma_v{i}(1,1);' ;
46 %stry = 'Y(i) = max(DATA.sigma_v{i}(1,1),DATA.sigma_v{i}(2,2));' ;
47 case 'STRESS_2'
48 stry = 'Y(i) = DATA.sigma_v{i}(2,2);' ;
49 %stry = 'Y(i) = min(DATA.sigma_v{i}(1,1),DATA.sigma_v{i}(2,2));' ;
50 case '|STRESS_1|'
51 %stry = 'Y(i) = abs(max(DATA.sigma_v{i}(1,1),DATA.sigma_v{i}(2,2)));' ;
52 stry = 'Y(i) = abs(DATA.sigma_v{i}(1,1));' ;
53 case '|STRESS_2|'
54 %stry = 'Y(i) = abs(min(DATA.sigma_v{i}(1,1),DATA.sigma_v{i}(2,2)));' ;
55 stry = 'Y(i) = abs(DATA.sigma_v{i}(2,2));' ;
56 case 'norm(STRESS)'
57 stry = 'Y(i) = sqrt((DATA.sigma_v{i}(1,1))^2+(DATA.sigma_v{i}(2,2))^2);' ;
58 case 'DAMAGE VAR.'
59 stry = 'Y(i) = sqrt((DATA.sigma_v{i}(1,1))^2+(DATA.sigma_v{i}(2,2))^2);' ;
60

61 otherwise
62

63 for iplot = 1:length(LABELPLOT)
64 switch vpy
65 case LABELPLOT{iplot}
66 stry = ['Y(i) = vartoplot{i}(',num2str(iplot),') ;'];
67 end
68 end
69

70 end
71

72 Y = 0 ;
73 for i = 1:length(DATA.sigma_v)
74 try
75 eval(stry);
76 end
77 end
78

79 for i=1:length(X)
80 text(X(i),Y(i),num2str(i));
81 end
82

83 for i = 1:length(DATA.sigma_v)
84 s1(i) = DATA.sigma_v{i}(1,1);
85 s2(i) = DATA.sigma_v{i}(2,2);
86 end
87

88 ct = (length(X)-1)/3;
89 figure
90 plot(X(1:ct+1),Y(1:ct+1),':ks',...
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91 'LineWidth',2,...
92 'MarkerSize',10,...
93 'MarkerEdgeColor','k',...
94 'MarkerFaceColor',[0.5,0.5,0.5])
95 hold on
96

97 plot(X(ct+1:2*ct + 1),Y(ct+1:2*ct + 1),':ko',...
98 'LineWidth',2,...
99 'MarkerSize',10,...

100 'MarkerEdgeColor','k',...
101 'MarkerFaceColor',[1,.5,.5])
102

103 plot(X(2*ct + 1:end),Y(2*ct + 1:end),':kd',...
104 'LineWidth',2,...
105 'MarkerSize',10,...
106 'MarkerEdgeColor','k',...
107 'MarkerFaceColor',[0.5,.5,1])
108

109 set(gca,'FontSize',14)
110 xlabel('Strain 1');
111 ylabel('Stress 1');
112 strain_damage_t = interp1(Y(end-8:end),X(end-8:end),sigma_u);
113 strain_damage_c = interp1(Y(ct+1:2*ct -2),X(ct+1:2*ct -2),-sigma_u);
114 ShadePlotForEmpahsis([strain_damage_t X(end)],'r',0.5);
115 ShadePlotForEmpahsis([strain_damage_c X(2*ct + 1)],'r',0.5);
116 legend({'Uniaxial tensile loading','Uniaxial tensile unloading',...
117 'Second uniaxial tensile loading','Damaged region'},'Fontsize',...
118 12,'Location','Northwest');
119 title('Stress-strain curve');
120

121 grid on; grid minor
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A.4 Function rmap_dano1

1 function [sigma_n1,hvar_n1,aux_var,Ce_tan,Ce_alg] = rmap_dano1 (eps_n1,...
2 hvar_n,Eprop,ce,MDtype,n)
3

4 hvar_n1 = hvar_n;
5 tau_n = hvar_n(4);
6 r_n = hvar_n(5);
7 q_n = hvar_n(6);
8 E = Eprop(1);
9 H = Eprop(3);

10 sigma_u = Eprop(4);
11 hard_type = Eprop(5);
12 viscpr = Eprop(6);
13 eta = Eprop(7);
14 alpha = Eprop(8);
15 q_inf = Eprop(9);
16 dt = Eprop(10);
17

18 r0 = sigma_u/sqrt(E);
19 zero_q=1.d-6*r0;
20 %*
21 [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n);
22

23 if viscpr == 1 % Viscous case
24 tau_alpha = (1-alpha)*tau_n + alpha*rtrial;
25

26 if(tau_alpha > r_n) % Inelastic state
27 fload=1; %damage
28 r_n1 = ((eta - dt * (1-alpha))*r_n + dt * tau_alpha) /...
29 (eta + alpha * dt);
30 else % Elastic state
31 fload=0;
32 end
33 else % No viscous case
34 if rtrial > r_n % Inelastic state
35 fload = 1;
36 r_n1 = rtrial;
37 else % Elastic state
38 fload = 0;
39 end
40 end
41

42

43 if fload
44 if hard_type == 0
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45 q_n1 = r0 + H*(r_n1 - r0);
46 else
47 q_n1= q_inf - (q_inf - r0) * exp(H*r0/(q_inf - r0)*(1-r_n1/r0));
48 end
49

50 if(q_n1<zero_q)
51 q_n1=zero_q;
52 end
53

54 else
55

56 r_n1= r_n ;
57 q_n1= q_n ;
58

59 end
60

61 dano_n1 = 1.d0-(q_n1/r_n1);
62

63 sigma_n1 =(1.d0-dano_n1)*ce*eps_n1';
64

65 if viscpr ==1
66 if (rtrial > r_n)
67 Ce_tan = (1-dano_n1)*ce;
68 Ce_alg = (Ce_tan) -...
69 (((alpha*dt)/(eta+alpha*dt))*(inv(rtrial))*...
70 (q_n1 - H*r_n1)/(r_n1)^2)*((ce*eps_n1')*(ce*eps_n1')');
71 else
72 Ce_tan = (1-dano_n1)*ce;
73 Ce_alg = Ce_tan;
74 end
75 else
76 Ce_tan = (1-dano_n1)*ce;
77 Ce_alg = Ce_tan;
78 end
79

80 if viscpr
81 hvar_n1(4)= rtrial;
82 end
83 hvar_n1(5)= r_n1 ;
84 hvar_n1(6)= q_n1 ;
85

86 aux_var(1) = fload;
87 aux_var(2) = q_n1/r_n1;
88

89 aux_var(1) = fload;
90 aux_var(2) = q_n1/r_n1;
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A.5 Function dibujar_criterio_dano1

1 function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n)
2 %*********************************************************************
3 %* PLOT DAMAGE SURFACE CRITERIUM: ISOTROPIC MODEL %*
4

5 tetha=[0:0.01:2*pi];
6

7 D=size(tetha);
8 m1=cos(tetha);
9 m2=sin(tetha);

10 Contador=D(1,2);
11

12 radio = zeros(1,Contador) ;
13 s1 = zeros(1,Contador) ;
14 s2 = zeros(1,Contador) ;
15

16 if MDtype==1
17

18 for i=1:Contador
19 sT = [m1(i) m2(i) 0 nu*(m1(i) + m2(i))];
20 radio (i) = q/sqrt(sT*(ce\sT'));
21 end
22

23

24 elseif MDtype==2
25

26 for i=1:Contador
27 sT = [m1(i) m2(i) 0 nu*(m1(i) + m2(i))];
28 sT_Macaulay = [(sT(1) + abs(sT(1)))/2, (sT(2) + abs(sT(2)))/2 0 ...
29 (sT(4) + abs(sT(4)))/2];
30 radio (i) = q/sqrt(sT_Macaulay*(ce\sT'));
31 end
32

33 elseif MDtype==3
34

35 for i=1:Contador
36 sT = [m1(i) m2(i) 0 nu*(m1(i)+m2(i))];
37 sT_Macaulay = [(sT(1) + abs(sT(1)))/2, (sT(2) + abs(sT(2)))/2 0 ...
38 (sT(4) + abs(sT(4)))/2];
39 wf = (sT_Macaulay(1) + sT_Macaulay(2) + sT_Macaulay(4))/(abs(sT(1)) +...
40 abs(sT(2)) + abs(sT(4)));
41 radio (i) = q/(sqrt(sT*(ce\sT'))*(wf+(1-wf)/n));
42 end
43

44 end
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45

46 for i=1:Contador
47 s1(i)=radio(i)*m1(i);
48 s2(i)=radio(i)*m2(i);
49 end
50

51 hplot =plot(s1,s2,tipo_linea);
52 return

26



A.6 Function damage_main

1 function [sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,...
2 istep,strain,MDtype,n,TimeTotal)
3 global hplotSURF Vector_tan Vector_alg
4

5 LABELPLOT = {'hardening variable (q)','internal variable'};
6

7 E = Eprop(1) ; nu = Eprop(2) ;
8 sigma_u = Eprop(4);
9

10 if ntype == 1
11 menu('PLANE STRESS has not been implemented yet','STOP');
12 error('OPTION NOT AVAILABLE')
13 elseif ntype == 3
14 menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP');
15 error('OPTION NOT AVAILABLE')
16 else
17 mstrain = 4 ;
18 mhist = 6 ;
19 end
20

21 totalstep = sum(istep) ;
22

23 % INITIALIZING GLOBAL CELL ARRAYS
24 % -------------------------------
25 sigma_v = cell(totalstep+1,1) ;
26 TIMEVECTOR = zeros(totalstep+1,1) ;
27 delta_t = TimeTotal./istep/length(istep) ;
28

29 [ce] = tensor_elastico1 (Eprop, ntype);
30

31 eps_n1 = zeros(mstrain,1);
32

33 hvar_n = zeros(mhist,1) ;
34

35 i = 1 ;
36 r0 = sigma_u/sqrt(E);
37 hvar_n(4) = 0; %tau
38 hvar_n(5) = r0; % r_n
39 hvar_n(6) = r0; % q_n
40 eps_n1 = strain(i,:) ;
41 sigma_n1 =ce*eps_n1'; % Elastic
42 sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0 ...
43 sigma_n1(4)];
44
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45 nplot = 3 ;
46 vartoplot = cell(1,totalstep+1) ;
47 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
48 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
49 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d)
50

51 for iload = 1:length(istep)
52 % Load states
53 for iloc = 1:istep(iload)
54 i = i + 1 ;
55 TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ;
56 Eprop(10) = delta_t(iload);
57 % Total strain at step "i"
58 % ------------------------
59 eps_n1 = strain(i,:) ;
60

61 [sigma_n1,hvar_n,aux_var,Ce_tan,Ce_alg] = rmap_dano1(eps_n1,hvar_n,...
62 Eprop,ce,MDtype,n);
63

64 Vector_tan(i) = Ce_tan(1,1);
65 Vector_alg(i) = Ce_alg(1,1);
66

67 if(aux_var(1)>0)
68 hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 'r:',...
69 MDtype,n );
70 set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1) ;
71 end
72

73 m_sigma=[sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0 ...
74 sigma_n1(4)];
75 sigma_v{i} = m_sigma ;
76

77 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
78 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
79 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d)
80 end
81 end
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