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Computational Solid Mechanics 

Assignment 1: “Damage constitutive models” 

Student: Marcello Rubino 

 

1. Introduction 

The following report shows the implementation of MatLab algorithm for the inviscid and viscous damage constitutive 

model for Solid Mechanics. The main aim of this report is to show the different models, changing parameters and 

making different loading paths, and discussing the results obtained. All the models implemented are using the plane-

strain hypothesis. The models shown in this topic use a Young modulus of 2000, a Yield stress of 200 and a Poisson 

ratio equal to 0.3. 

2. Inviscid Model (rate-independent) 

This model shows the inviscid behavior of a damage constitutive model. In the first part we discuss three different 

damage surfaces that have been implemented in the code, the second part pays attention to the hardening/softening 

laws while the third part show the results for three different loading paths.  

2.1 - Damage surface models 

  

 
Figure 1 (a-b-c) – Damage surfaces (symmetric – only tension – non symmetric) 

In the three figures above we can see the three different damage surfaces implemented. We can see that for the 

symmetric part we have same contribution of the elastic domain for tension and compression: the results is like an 

ellipse. 

The only-tension model instead shows a completely different behavior: the tension part coincides with the symmetric 

case, while the compression area doesn’t have a boundary. For the second and the fourth quadrants we have an 

asymptotic behavior of the surface. 
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The non-symmetric model (n = 3), shows the same tension part of the symmetric model, while, respect to the only-

tension problem, the compression area has a “hat” that bounds the domain: the compression area is exactly n times 

bigger the traction (this is typical case for material like concrete, for which usually the n parameter is equal to 10).  

2.2 - Hardening/Softening laws – plot of r-q(r) 

In this part it is shown the representation of the hardening/softening laws implemented in the code. A very simple 

uniaxial loading path has been computed (∆σ1
(1) = +100 ; ∆σ1

(2) = +100 ; ∆σ1
(3) = +100). In particular, it’s represented 

the different behavior in the graph of the internal variable r and the hardening variable q(r) between the linear and 

exponential law respectively for hardening (H = 2) and softening case (H = -2). 

 

 

Figure 2 (a-b) – Hardening – Softening laws in the r-q(r) plot 

In the two figures above it’s possible to see that the exponential law, for both cases H>0 and H<0, is much slower than 

the linear law. In fact the H modulus is the initial tangent modulus of hard/soft for the exponential case. Lastly, it’s 

possible to see one important behavior of the model, supported by theoretical framework: the linear or exponential 

development of the hardening variable starts only when the initial damage surface is reached by the loading path. 

Before this important state (the state when the damage starts to develop, and the damage variable d starts to be 

greater than zero) the r is equal to the initial value r0 and the q=q0. 

2.3 - Results of the inviscid model (rate-independent) for different loading paths 

In this part three different loading paths used for the three damage surfaces have been computed. The results 

represented in the stress-strain graph and in the damage model graph (σ1-σ2) show different behaviors depending on 

the loading path used and the damage surface that has been considered. All of them use an exponential law for the 

hardening/softening model and the same data already described and a H modulus equal to -1 (softening). 

a 
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2.3.1 – Loading path 1 (∆σ1
(1) = +250 / ∆σ2

(1) = 0 ; ∆σ1
(2) = -600 / ∆σ2

(2) = 0 / ∆σ1
(3) = +350 ; ∆σ2

(3) = 0) 

A] Symmetric damage surface 

 

Figure 3a – Damage surface for the loading path 1 - Symmetric 

  

               Figure 3b - Stress-Strain for the loading path 1 – Symmetric                    Figure 3c – Time-Damage Variable for the loading path 1 - Symmetric 

This loading path represents a uniaxial tensile loading, followed by a uniaxial compression loading, and a uniaxial 

unloading. It’s possible to see that the initial linear elastic behavior gets to the damage when it’s reached the yielding 

stress (figure 3b): in this moment the damage variable starts to increase (figure 3c) and the damage surface start to 

shrink due to the softening property (figure 3a). Reached a certain level of strain (linked to the value of 250 of the 

loading path) there is an inversion of the loading and starts the unloading/compression part: this part is, for the most 

of the time linear elastic, but shows a decreased stiffness due to the damage already reached. Since the damage 

surface is now smaller, the new damaging in the compression part arrives “earlier” than before, but shows the same 

behavior. Again the damage increases another time and the damage surface becomes smaller. The last part of the 

path, the green one, is a unloading in the elastic region, but shows a stiffness even smaller: the sample described by 

the model now is really damaged. 

B] Only-tension damage surface 

 

Figure 4a – Damage surface for the loading path 1 - Only-tension 
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Figure 4b - Stress-Strain for the loading path 1 – Only-tension                    Figure 4c – Time-Damage Variable for the loading path 1 – Only-tension 

This case shows for the first part the same behavior of the symmetric case (first damage, increase of d value until 0.3, 

decrease of the stiffness and the elastic domain shrinking). Since the domain in the compression area is infinite (figure 

4a), the second load path (the blue one) doesn’t reach again the damage surface (figure 4a), so the d remains constant 

(figure 4c) and the slope of the stress-strain plotting too (figure 4b). 

C] Non-symmetric damage surface 

 

Figure 5a – Damage surface for the loading path 1 – Non-Symmetric 

 

Figure 5b - Stress-Strain for the loading path 1 – Non-Symmetric                 Figure 5c – Time-Damage Variable for the loading path 1 – Non-Symmetric 

Since the damage surface for the non-symmetric case, is enough big (n = 3), the behavior of the model is 

the same of the only-tension model. 

2.3.2 – Loading path 2 (∆σ1
(1) = +250 / ∆σ2

(1) = 0 ; ∆σ1
(2) = -250 / ∆σ2

(2) = -250 / ∆σ1
(3) = +100 ; ∆σ2

(3) = +100) 

This loading path has been computed to all three damage models, using the same data used for the first 

loading path. Since it’s not totally a uniaxial path, the stress-strain graph used is the same of the first model 

(direction 1) but shows some particularities. 
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A] Symmetric damage surface 

 

Figure 6a – Damage surface for the loading path 2 – Symmetric 

 

            Figure 6b - Stress-Strain for the loading path 2 – Symmetric                    Figure 6c – Time-Damage Variable for the loading path 2 - Symmetric 

It’s possible to see that the first uniaxial loading shows the same behavior in the stress-strain and time-d 

graphs: indeed, when the damage surface is reached, the elastic domain starts to shrink because of the 

softening phenomenon (figure 6a). Since the second and the third paths are biaxial, now the loading path 

moves inside the elastic domain (once reached the damage surface, the strain-stress state must be inside 

or on it). Because of that there is no increase of the damage (figure 6c), and the process of 

unloading/loading is now completely elastic linear. In the stress-strain graph (figure 6a9 we can see that the 

slope of the blue and green line is higher than the black one (initial uniaxial loading): this is because the 

path doesn’t reach the 0 again like the other path did, and the decreased constitutive tensor along the 

direction 1, is affected by the nature of the loading which is biaxial, and involves the Poisson coefficient.  

B] Only-tension damage surface 

 

Figure 7a – Damage surface for the loading path 2 - Only-tension 



6 

 

 

Figure 7b - Stress-Strain for the loading path 2 – Only-tension                    Figure 7c – Time-Damage Variable for the loading path 2 – Only-tension 

For this model we can see the same results, since the load path, that involved in the second and third part 

the elastic domain, has the same behavior here, since here the compressive domain is infinite (figure 7a).  

C] Non-symmetric damage surface 

 

Figure 8a – Damage surface for the loading path 2 – Non-Symmetric 

 

Figure 8b - Stress-Strain for the loading path 2 – Non-Symmetric                 Figure 8c – Time-Damage Variable for the loading path 2 – Non-Symmetric 

The non-symmetric damage surface has the same behavior of the other two surfaces in this case. Since the 

second and third part of the loading path is biaxial and involves the elastic domain in the symmetric model, 

here, even more so, the loading path is within the elastic domain (figure 8a) and the damage variable 

doesn’t grow (figure 8c). 

2.3.3 – Loading path 3 (∆σ1
(1) = +250 / ∆σ2

(1) = +250 ; ∆σ1
(2) = -600 / ∆σ2

(2) = -600 / ∆σ1
(3) = +350 ; ∆σ2

(3) = +350) 

This path is the biaxial version of the first loading path. In this case, since it involves always both directions 

(1 and 2), the stress-strain graph shows the norm of the strain and the norm of the stress, to have an idea 
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of the combination of the two directions and how the system develops. It’s not possible to see in the right 

position the compression and the tension part in this graph since it’s all in the first quadrant and the norms 

are always positive by definition. 

A] Symmetric damage surface 

 

Figure 9a – Damage surface for the loading path 3 – Symmetric 

 

        Figure 9b - Stress-Strain for the loading path 3 – Symmetric                    Figure 9c – Time-Damage Variable for the loading path 3 – Symmetric 

The symmetric damage surface for this problem behaves in the same way of the symmetric in the case of 

the first load path. The first part of the path shows firstly a linear elastic behavior with the initial 

constitutive tensor (figure 9b). After reaching for the first time the damage surface, the elastic domain 

shrinks (figure 9a) and the damage increases (figure 9c); a process of biaxial unloading/compression shows 

an elastic behavior that passes by the origin: the slope of the curve stress-strain is smaller (blue line) since 

the system now show an important value of the damage (almost d = 0.4). When reaching again the damage 

surface, now the same surface is much smaller and the new increase of damage happens earlier. The last 

biaxial unload (green line) is still elastic and shows a very low slope, which represents a very bad condition 

of the material. 

B] Only-tension damage surface 

 

Figure 10a – Damage surface for the loading path 3 - Only-tension 



8 

 

 

Figure 10b - Stress-Strain for the loading path 3 – Only-tension                    Figure 10c – Time-Damage Variable for the loading path 3 – Only-tension 

In this case it’s possible to see that the first part of the path reaches the damage surface (initial tension) (figure 10b). 

The elastic domain shrinks again (figure 10a) and the damage variable increases (figure 10c). The rest of the path stays 

always inside the elastic domain: in particular, we know that the compression in this case never gets to a damage, so 

the second part of the path is completely elastic. The third part is elastic too since it’s only an unloading process and 

doesn’t tend again to the tension part. The material keeps its state of damage (d = 0.4). In the norm(stress)-

norm(strain) graph this behavior can be seen very well. The slope of the blue and the green lines remains the same, 

linked to the same value of the damage variable. 

C] Non-symmetric damage surface 

 

Figure 11a – Damage surface for the loading path 3 – Non-Symmetric 

 

Figure 11b - Stress-Strain for the loading path 3 – Non-Symmetric             Figure 11c – Time-Damage Variable for the loading path 3 – Non-Symmetric 

The same observations can be done for this model: the tension part reaches the damage surface and makes the 

damage develop. The second and the third part of the path remain inside the elastic domain since the “hat” for the 

compression is quite far (figure 11a). Although the softening behavior makes the damage surface gets smaller the 

damage surface is not reached again and there can’t be any further develop for the damage (figure 11c). 
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2.4 – Conclusions for the implemented inviscid model 

All the models implemented show the results as expected and follow the theoretical framework of the inviscid 

damage model. In particular, it’s important to underline the utility of this inviscid model, since it can describe the 

properties of many useful materials. This model, though, leaks of the time dependence, which is very useful in many 

situation and can describe the natural late response of materials.  

3. Viscous Model (rate-dependent) 

This model shows the viscous behavior of a damage constitutive model. In the first part we see the different behaviors 

changing the viscous coefficient η, the second part studies the behavior for different strain rate ἐ while the third part 

pays attention to the response for different values of the integration constant α. In this case it’s been computed a 

very simple uniaxial loading path (∆σ1
(1) = +100 ; ∆σ1

(2) = +100 ; ∆σ1
(3) = +300) only for the symmetric version of the 

damage surface. 

 3.1 – Different Viscosity coefficient η 

The viscous model is influenced by the viscosity value, that describes, fixing the other parameters, the attitude of the 

material to be more (or less) fast to respond to the external solicitation. The fixed parameters are the Young Modulus 

(E = 2000), the Yielding stress (σy = 200), the Poisson ratio (ν = 0.3), the Hard/Soft modulus (H = 0), the Time Interval 

equal to 1 second and the coefficient α equal to 1 (forward-Eulerian integration). The different values used for 

plotting the results are η = 0,0.1,1,10. As such, the most interesting plots are the ‘stress-strain’ and the ‘time-damage 

value’ graphs.  

 

Figure 12 – Stress-Strain graph for different values of η 

The stress-strain graph (figure 12) shows the different response of the same material that has different values for the 

viscosity. As expected and supported by the theory, bigger is the value of the coefficient η higher is the slope of the 

last part of the loading path. The path in this case gets out from the damage surface because the viscous response 

allows it. For very high levels of the viscosity (η = 10) the curve tends to remain linear, because it’s much slower the 

response to the loading solicitation and the system dissipates a big quantity of energy. While the viscosity decreases, 

the response is faster, and the slope of the curve is lower. The opposite extreme case (η = 0) shows a rate-

independent case, already discussed, for a hardening modulus equal to 0 (the curve doesn’t show any slope). In this 

case the material response instantaneously to the external loading, and cannot resist to this increasing loading. 
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Figure 13 – Time-Damage Variable graph for different values of η 

In the Time-Damage Variable graph (figure 13) we can see the develop of the damage from a more direct point of 

view. In fact the η = 0 shows the highest increase of damage, since it’s equivalent to a rate-independent case. 

Increasing the value of η, the slope decreases very fast, until, for η = 10, it’s almost horizontal, and the develop of the 

damage is really slow or almost doesn’t show up.  

This important result tests the validation of the implemented viscous model, because it’s conforming to the theory 

and the expected curves for the given values of the parameters. 

3.2 – Different strain rate ἐ 

The rate-dependent viscous model is influenced also by different values of the strain rate. In order to show this 

influence, a set of different values of time intervals are computed in the model, in order to see different values for the 

strain rate ἐ. In this case the viscosity is fixed (η = 1) and the integration constant α is equal to 0.5, while the other 

parameters remains the same. The time intervals are: 0.1,1,10,100. 

 

Figure 14 – Stress-Strain graph for different values of ἐ 

In this plot (figure 14) we can see a similar situation to the stress-strain graph for different values of the viscosity. For a 

time interval very small (which coincides to a high value of ἐ), the increase of damage is very small and slow, and the 

curves remains almost linear. Increasing the time interval (so decreasing the value of ἐ) we arrive at the opposite 



11 

 

extreme situation, where the response of the material to the external solicitation is almost instantaneous, and the 

rate-dependent models tends to the rate-independent inviscid model. In this case too, for very small number of ἐ, the 

material cannot resist to the external loading, cannot dissipate energy and shows big increase of damage. 

3.3 – Different integration constant α 

In this last part of the analysis the same parameters have been used except for the hardening/softening modulus that 

is now equal to -0.1 (softening case). The time interval is fixed to 100 seconds. In the first part the influence of 

different values of α for the stress-strain graph will be studied, secondly the influence of the same parameter to the 

constitutive matrices. The set of values used for α are: 0,0.25,0.5,0.75,1. 

A] Influence for the Stress-Strain 

 

Figure 15 – Stress-Strain graph for different values of α 

Changing the value of α, it’s possible to see in figure 15 that for small values like 0 (backward-Eulerian integration 

method) or 0.25 the time integration method is unstable. For higher values of α, instead, the integration is more 

accurate and stable. In particular, since this is α second order problem, it’s preferred to use the value of 0.5 which is 

referred to a second order accuracy. 

B] Influence for the Constitutive matrices 

In this part it’s shown the influence of α over the 1,1 component of the constitutive matrices (Calg and Ctan), plotted 

against time. 

 

Figure 16 – C Algorithmic 11-Time graph for different values of α 
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In the figure 16 it’s possible to see that the Calg for a value of α equal to 0 is instable while for other values of a 

remains stable. An important result here is shown: the value of Calg is smaller for values of a bigger, but this doesn’t 

mean it’s more accurate. The value of 0.5 that guarantee a second order accuracy is the best choice for this viscous 

rate-dependent problem. 

 

Figure 17 – C Tangent 11-Time graph for different values of α 

In the figure 17, the time interval has been increased to 1000 seconds to show that both α = 0 and α = 0.25 are 

instable, for big time intervals. The tangent value of the constitutive matrix has the same behavior of the algorithmic 

one. Once reached the damage surface it starts to decrease very fast, as expected and supported by theory frame. In 

this case the influence of α is very much visible: in fact, the value of 0 and 0.25 show a completely instable trend and 

the system cannot catch the right value of the matrix at each iteration. For values bigger than 0.5 it’s possible to see a 

stable trend, but that does not say anything about the accuracy of the integration. The theoretical support suggests us 

to use the value of 0.5. Moreover, another important aspect needs to be underlined: the constitutive tangent and 

algorithmic matrices, as already remarked in the theory frame, are the same until the loading path reaches the 

damage surface. Once the damage starts to develop Calg ≠ Ctan.  

Only in case of α = 0 (backward-Eulerian integration method) the two matrices are the same also after the damage, 

and both show an instable trend (in figure 18 and 19 it’s shown this aspect, using again the same time interval (100 

seconds) and α = 0).  

 

                  Figure 18 - C 11-Time graph for α = 0                                                                          Figure 19 – C Algorithmic 11-Time graph for α = 0 

3.4 – Conclusions for the implemented viscous model 

All the results obtained for the computation of the viscous model coincide with expectation and the theoretical 

framework. The utility of this mathematical model can vary for many different materials as concrete, steel or 

ceramics. This MatLab program gives the scientist/engineer the possibility to get some theoretical/modeling results 

for some materials and compare the results with the empirical results from laboratory tests on samples. 
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Annex of subroutines 

Below there are all the changed subroutines for the implemented MatLab program. 

 

- In Function “Dibujar_criterio_dano1.m” (implementation of static/initial damage surfaces): 

 

A] Only – Tension damage surface: 
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B] Non-Symmetric damage surface 
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- In function “Modelos_de_dano1.m”: it’s been implemented the two more damage surfaces for 

different models (it uses the n+1 time step variables): 

 
 

- In function “rmap_dano1.m” the inviscid and viscous models of hardening/softening have been 

implemented. Moreover, the calculation of the C11 for the Algorithmic and Tangent tensor has been 

added: 

 

 

 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 

 

- In function “damage_main.m” some changes about the plotting of the damage surface and the 

extra variables (d – C11_Alg – C11_tang) have been implemented: 

 

 

 

 

 


