
Universitat Politècnica de Catalunya

Master of Science in Computational Mechanics

Computational Solid Mechanics

Assignment 1
Damage Models

Author:
Carlos Eduardo Ribeiro Santa Cruz Mendoza

April 10, 2019

1. Introduction
Damage mechanics is the field inside continuum mechanics where degradation of mate-

rials, namely decrease in stiffness through development of micro-defects under loading,
is assessed. Damage models, such as the rate independent and the rate dependent,
make an attempt on predicting the behaviour of material properties when subject to
different loads and strain rates. They provide simple integration algorithms that, once
implemented, allow for a quick understanding of the mechanical response of a damaged
material [1].

A fully functioning MATLAB program for modelling damage was provided to aid the
visualization of such mechanical responses. The already implemented rate-independent
model allows the assessment of materials with a symmetric elastic domain and a linear
hardening/softening law. The model is 2D, considering the plane strain hypothesis.
Once the material properties, the loading path and the strain rate are given, several
properties can be analysed via graphical representations such as stress-strain (σ − ε)
curves, damage (d) over time and hardening variable (q) as a function of the internal
variable (r).

The objective was to expand the provided code by implementing the possibility to
assess materials which suffer damage only by tensile loads or which have a non-symmetric
elastic domain (with a larger yield stress for compression, for example). Furthermore,
the exponential hardening/softening law was implemented, together with the visodamage
model, which includes materials that respond differently depending on the strain rate.

The material properties considered throughout the analysis is given in Table 1.1. The
loading path is given by three segments ∆σ̄(1), ∆σ̄(2) and ∆σ̄(3) which, starting from
σ = [0 0], define the inputs σ(1), σ(2) and σ(3).

Table 1.1.: Material properties
Young’s modulus (E) 20 000 Pa
Poisson’s ratio (ν) 0.3
Yield stress (σy) 200 Pa

2

2. Rate independent models

2.1. Hardening/Softnening law implementation
The first implemented routine was the exponential hardening/softening law. As op-

posed to the linear law, it provides a smoother variation of the hardening variable as a
function of the internal variable until it finally tends asymptotically to a defined value
q∞, which, for the softening case, is a number just over zero that represents a complete
damage. The MATLAB code can be seen on Appendix A.

To assess the correctness, load paths and properties were chosen specifically to yield
large damages and, thus, allow the hardening/softening law to be evaluated on a wide
range. Figure 2.1 depicts the behaviour of the implemented law against the linear as well
as the progress of the internal variable. On Figure 2.1a we see that the hardening variable
starts with r0 and varies in accordance with the literature ([1]) for the exponential case.
Specifically for the softening (H=-0,5) we note the convergence of the hardening as
previously described. The absence of healing when unloading must also hold, therefore
Figure 2.1b is presented showing that, as expected, r starts with r0 and only varies with
pure loading, not following the path of the effective strain τε.

(a) Linear and exponential hardening/soften-
ing laws with the corresponding harden-
ing/softening parameter H under uniaxial
tensile loading σ(1) = [700 0], σ(2) = [1200
0], σ(3) = [1700 0]

(b) Behaviour of r and τε over time using the
exponential softening law (H = −0.5) un-
der uniaxial tensile loading σ(1) = [700 0],
σ(2) = [500 0], σ(3) = [1200 0]

Figure 2.1.: Assessment of hardening/softening laws using the symmetric damage model

3

2.2. Damage model implementations
Subsequently, the Tension-Only and the Non-symmetrical damage models were im-

plemented (codes available on Appendix A). To assess the correctness of the implemen-
tation, three test cases were settled in terms of the parameters α = 250 N, β = 600 N
and γ = 450 N. The profile of each test case is presented on Table 2.1. Moreover, the
softening parameter was set to H=-0,2, the exponential softening law was chosen and
the ratio of the compression elastic limit and the tensile elastic limit was set to n=2.

Table 2.1.: Test cases
Case 1 Case 2 Case 3

∆σ̄ σ Load ∆σ̄ σ Load ∆σ̄ σ Load

(1) [α 0] [250 0] [α 0] [250 0] [α α] [250 250]

(2) [-β 0] [-350 0] [-β -β] [-350 -600] [-β -β] [-350 -350]

(3) [γ 0] [100 0] [γ γ] [100 -150] [γ γ] [100 100]

(i): Load segment i, Tensile: (), Compressive: (), Elastic: ()

Case 1 was used initially to test the correctness of the Tension-Only model. As
perceived on Figure 2.2, there’s a clear distinction on the σ-ε curves obtained from
the symmetric model and the tension-only model. It’s clear on Figure 2.2a that the
Elastic modulus changes due to both kinds of loading (tension and compression) on the
symmetric model, whereas on Figure 2.2b we notice a change only after tensile loading.

(a) (b)

Figure 2.2.: Comparison of the σ-ε curves obtained with the Symmetric (a) and Tension-
only (b) damage models

4

The differences are more evident when we analyse Figure 2.3. We notice on the stress
space depicted on Figure 2.3a that the load segment ending on P = 2 leaves the elastic
domain only on the symmetric case, given that the elastic domain of the tension-only
model has no boundaries for compression. Therefore, the model works as expected
yielding, thus, the smaller damage shown on Figure 2.3b.

(a) (b)

Figure 2.3.: Comparison of the elastic domain and it’s corresponding damage surface on
the stress space (a) and of the damage evolution (b) for the Symmetric ()
and Tension-Only () damage models

Similarly, Case 2 was served as input to compare all three damage models. By ob-
serving the stress space obtained for the three models on Figure 2.4 we see, firstly, that
the elastic domain of the non-symmetric model is in accordance with the literature and
with the ratio of the compression elastic limit and the tensile elastic limit (n=2). Fur-
thermore, we see that while on the first load segment there are virtually no differences
between the effective stress paths, when approaching the load point P=2 the models
start to diverge. This highlights the correct implementation that captures the differ-
ences of each model to deal with compression, leading to an increasing damaged surface
from the symmetric, through the non-symmetric to the tension-only models.

These distinctions can also be visualized on Figure 2.5, where the final inclination of
each σ-ε curve on Figure 2.5a, i. e. the elastic modulus, is different due to the different
damages inflicted during compression, as seen on Figure 2.5b.

5

Figure 2.4.: Comparison of the elastic domain and it’s corresponding damage surface
on the stress space for the Symmetric (), Tension-Only () and Non-
symmetric () damage models.

(a) (b)

Figure 2.5.: Comparison of the σ2-ε2 curves (a) and of the damage evolution (b) for the
Symmetric, Tension-Only and Non-symmetric damage models.

As a final verification, Case 3 is tested. Observing the stress space on Figure 2.6 we
note that the second load segment never crosses the elastic domain of the non-symmetric
model. Therefore, the tension-only and the non-symmetrical models must respond the
same when it comes to damage. As expected, Figure 2.7 displays the curves of both
models over one another, indicating the same damage to the applied load.

6

Figure 2.6.: Comparison of the elastic domain and it’s corresponding damage surface
on the stress space for the Symmetric (), Tension-Only () and Non-
symmetric () damage models.

Figure 2.7.: Comparison of the σ1-ε1 curves for the Symmetric, Tension-Only and Non-
symmetric damage models.

7

3. Rate dependent models
Finally, the rate dependent model was implemented using the code available on Ap-

pendix B. The also called viscous model introduces the effect of strain rate, which, in
practice, provides a smoother transition from a undamaged to a damaged material. The
viscosity η specifies how smoothly this transition will happen (the rate independent
models can be seen as having η=0) and the strain rate (ε̇) can be interpreted as velocity
the load paths will be traveled with. The type of integration of the damage variables
for the viscous case depend of the parameter α, typical values are α=0 (explicit), α=1
(implicitly) and α=0,5 (Crank-Nicolson).

In practice, a material with higher viscosity will yield a lower damage comparatively
if applying the same strain rate. Figure 3.1 shows exactly that, confirming the correct
implementation. As the viscosity grows, a higher stress is needed for the same strain
(after the yield stress), since the damage is not inflicted with the same velocity.

(a) (b)

Figure 3.1.: Comparison of the σ1-ε1 curves (a) and of the damage evolution (b) for
different viscosities assuming the symmetric model with a uniaxial tensile
loading of σ(1) = [100 0], σ(2) = [200 0], σ(3) = [400 0], H =-0,2, exponential
softening law, α =0.5 and ε̇ = 3, 3 · 10−3

The effect of viscosity is also evident on the stress space presented on Figure 3.2. We
note that the effective stress path surpasses the elastic boundary for the viscous case,
“accepting” a higher stress with a lower damage surface.

8

Figure 3.2.: Comparison of the damage surface on the stress space for a rate independent
model () and a rate dependent model with η = 2 ().

The strain rate imposes a similar relationship to the σ-ε curve. As documented on
the literature ([2, 3]), a high strain rate yields to a elevation of the yield stress due to
the lack of time for the dislocations to move, not allowing damage/plastic deformation
and maximizing the elastic behaviour. Accordingly, the model translates this behaviour
by pushing the curve upwards after the yield stress, implying also, a lower damage. The
strain rate effect was, thus, well reproduced by the code as shown on both Figure 3.3
and Table 3.1.

Table 3.1.: Effect of ε̇ on damage variable and constitutive tensor component
ε̇ = 1, 1 · 10−3 ε̇ = 1, 1 · 10−2 ε̇ = 1, 1 · 10−1

C11 7, 3 · 103 1, 8 · 104 2, 5 · 104
d 0,54 0,29 0,05

Original: C11 = 2, 7 · 104, d = 0

As we’ve seen, the the stiffness of a material diminishes once damage is inflicted.
The constitutive elastic tensor, thus, varies with time for the rate-dependent case. On
the other hand, the integration algorithm can result to be unstable, specially for high
time-steps [4] (a high strain-rate without the appropriate total time of the simulation
might result in high time steps). The stability depends moreover on the α parameter,
being unconditionally stable for values of α > 0, 5. The Figure 3.4 shows that, in fact,
there’s a risk of instability in the calculus of the constitutive tensor for α < 0, 5. Both
the algorithmic (Figure 3.4a) and the tangent (Figure 3.4b) elastic tensor displayed
oscillations for α = 0, 25, while the other values converged smoothly. Even smaller
oscillations like the one obtained for the tangent moduli might impose great problems for

9

Figure 3.3.: Comparison of the σ1-ε1 curves for different strain rates assuming the sym-
metric model with a uniaxial tensile loading of σ(1) = [100 0], σ(2) = [200
0], σ(3) = [400 0], H =-0,2, exponential softening law, α =0.5 and η =1.

a simulation, specially when considering them being added over thousands of elements
in a Finite Element simulation. Hence, when bigger time steps are required due to
computational cost limitations, the Crank-Nicolson or the Implicit method are suggested.

It’s also worth noticing that, as expected, the algorithmic and tangent moduli are the
same for α = 0

(a) (b)

Figure 3.4.: Comparison of the algorithmic (a) and tangent (b) C11 components of the
constitutive elastic tensor for different α values assuming the symmetric
model with a biaxial tensile loading σ(1) = [200 200], σ(2) = [300 300], σ(3) =
[350 350], H = −0, 2, exponential softening law, η = 0.1 and ε̇ = 3, 3 · 10−4

10

Bibliography
[1] E.W.V. Chaves. Notes on Continuum Mechanics. Lecture Notes on Numerical

Methods in Engineering and Sciences. Springer Netherlands, 2013.

[2] T. Belytschko, W.K. Liu, B. Moran, and K. Elkhodary. Nonlinear Finite Elements
for Continua and Structures. No Longer used. Wiley, 2013.

[3] W.D. Callister and D.G. Rethwisch. Fundamentals of Materials Science and Engi-
neering: An Integrated Approach. Wiley, 2012.

[4] J. Lubliner. Plasticity Theory. Dover books on engineering. Dover Publications,
2008.

11

Appendix A.

Implemented damage routines

Exponential implementation
1 r0 = sigma_u/sqrt(E);
2 zero_q=1.d-6*r0;
3 % hardening/softening parameter H is user defined
4 A=abs(H);
5 q_inf=r0+sign(H)*0.99*r0;
6 % user defined variable to choose hardening/softening law
7 if hard_type == 0
8 % Linear
9 q_n1= q_n+ H*delta_r;

10 else
11 % Exponential
12 q_n1= q_inf -(q_inf-r0)*exp(A*(1-r_n1/r0));
13 end

Plot damage surface criterion
1 % MDtype is a user defined variable to switch between:
2 % 1 − Symmetric ; 2 − Tension−only ; 3 − Non−symmetric
3 tetha=[0:0.01:2*pi];
4 D=size(tetha);
5 m1=cos(tetha);
6 m2=sin(tetha);
7 Contador=D(1,2);
8 radio = zeros(1,Contador) ;
9 s1 = zeros(1,Contador) ;

10 s2 = zeros(1,Contador) ;
11

12 if MDtype==1 % Symmetric
13 for i=1:Contador
14 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv ...
15 *[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]');
16 s1(i)=radio(i)*m1(i);
17 s2(i)=radio(i)*m2(i);
18 end

12

19 hplot =plot(s1,s2,tipo_linea);
20 elseif MDtype==2 % Tension−only
21 m1_p = zeros(1,Contador) ; % admits only positive values
22 m2_p = zeros(1,Contador) ; % admits only positive values
23 for i=1:Contador
24 m1_p(i)=m1(i);
25 m2_p(i)=m2(i);
26 if m1(i)<0
27 m1_p(i)=0;
28 end
29 if m2(i)<0
30 m2_p(i)=0;
31 end
32 radio(i)= q/sqrt([m1_p(i) m2_p(i) 0 nu*(m1_p(i)+ ...
33 m2_p(i))]*ce_inv*[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]');
34 s1(i)=radio(i)*m1(i);
35 s2(i)=radio(i)*m2(i);
36 end
37 hplot =plot(s1,s2,tipo_linea);
38 elseif MDtype==3 % Non−symmetric
39 for i=1:Contador
40 sum_stress=0;
41 vec_stress=[m1(i) m2(i) nu*(m1(i)+m2(i))];
42 sum_stress_abs=sum(abs(vec_stress));
43 for j=1:3
44 if vec_stress(j)<0
45 vec_stress(j)=0;
46 end
47 sum_stress=sum_stress+vec_stress(j);
48 end
49 theta_stress=sum_stress/sum_stress_abs;
50 coeft=theta_stress+(1-theta_stress)/n;
51

52 radio(i)= q/(coeft*(sqrt([m1(i) m2(i) 0 nu*(m1(i)+ ...
53 m2(i))]*ce_inv*[m1(i) m2(i) 0 nu*(m1(i)+m2(i))]')));
54 s1(i)=radio(i)*m1(i);
55 s2(i)=radio(i)*m2(i);
56 end
57 hplot =plot(s1,s2,tipo_linea);
58 end

13

Defining damage criterion surface
1 if (MDtype==1) %∗ Symmetric
2 rtrial= sqrt(eps_n1*ce*eps_n1 ');
3 elseif (MDtype==2) %∗ Only tension
4 sigma_n1 =ce*eps_n1 ';
5 for j=1:4
6 if sigma_n1(j)<0
7 sigma_n1(j)=0;
8 end
9 end

10 cei=inv(ce);
11 eps_n1m=(cei*sigma_n1)';
12 rtrial= sqrt(eps_n1m*ce*eps_n1m ');
13 elseif (MDtype==3) %∗Non−symmetric
14 sigma_n1 =ce*eps_n1 ';
15 sum_stress=0;
16 vec_stress=[sigma_n1(1) sigma_n1(2) sigma_n1(4)];
17 sum_stress_abs=sum(abs(vec_stress));
18 for j=1:3
19 if vec_stress(j)<0
20 vec_stress(j)=0;
21 end
22 sum_stress=sum_stress+vec_stress(j);
23 end
24 theta_stress=sum_stress/sum_stress_abs;
25 coeft=theta_stress+(1-theta_stress)/n;
26 rtrial= coeft*sqrt(eps_n1*ce*eps_n1 ');
27 end

14

Appendix B.

Implemented visco-damage routines

Integration algorithm
1 %∗ Damage surface %∗
2 %[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n);
3 [tau_eps_n]=Modelos_de_dano1(MDtype,ce,eps_n,n);
4 [tau_eps_n1]=Modelos_de_dano1(MDtype,ce,eps_n1,n);
5 [rtrial]=(1-alpha)*tau_eps_n+alpha*tau_eps_n1;
6 %∗ Ver el Estado de Carga
7 %∗ −−−−−−−−−> fload=0 : elastic unload
8 %∗ −−−−−−−−−> fload=1 : damage
9 fload=0;

10 if(rtrial > r_n)
11 %∗ Loading
12 fload=1;
13 r_n1= ((eta-delta_t*(1-alpha))/(eta+alpha*delta_t))* ...
14 r_n+(delta_t/(eta+alpha*delta_t))*rtrial;
15 delta_r=r_n1-r_n;
16

17 ...
18

19

20 else
21 %∗ Elastic load/unload
22 fload=0;
23 r_n1= r_n ;
24 q_n1= q_n ;
25 end
26 % Damage variable
27 dano_n1 = 1.d0-(q_n1/r_n1);
28 % Computing stress
29 sigma_n1 =(1.d0-dano_n1)*ce*eps_n1 ';

15

Tangent and Algorithmic consitutive tensors
1 aux_var(1) = fload; % 1 for pure loading, 0 otherwise
2 aux_var(2) = q_n1/r_n1;
3 aux_var(3) = (q_n1-H*r_n1)/r_n1^3;
4 Ce_tan=(1-dano_n1)*ce;
5 Ce_alg=Ce_tan-aux_var(1)*((alpha*delta_t)/(eta+alpha ...
6 *delta_t)*aux_var(3)*r_n1/(sqrt(sigma_n1 '*(inv(ce)) ...
7 *sigma_n1)/(1-dano_n1))*((ce*eps_n1 ')*(ce*eps_n1 ')'));

16

	Introduction
	Rate independent models
	Hardening/Softnening law implementation
	Damage model implementations

	Rate dependent models
	Implemented damage routines
	Implemented visco-damage routines

